1
|
Negrete-Hernandez IM, Lozano IB, Roman-Lopez J, Guzman-Castañeda JI. Implementation of OSL nanoDot dosimetry in different treatment techniques for head and neck cancer. RADIATION PROTECTION DOSIMETRY 2024; 201:70-77. [PMID: 39575905 DOI: 10.1093/rpd/ncae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
In recent decades, technological advances have been made in the field of radiotherapy and with it the emergence of new dosimetric systems for their calibration and commissioning, among other uses. Such is the case of the measurement in the build-up region, where there is no charged-particle equilibrium, which is reflected in the increase in surface dose for patient treatments and potential skin toxicities as a secondary effect. This study utilizes optically stimulated dosemeters (nanoDot) and the radiochromic film (EBT3) to measure skin doses in patients with head and neck cancer who received radiotherapy. Accurately depicting 15 patients with different diagnoses from 3 linear accelerators using 3D, intensity modulated radiation therapy, or volumetric arc therapy/RapidArc technology, these results were compared with those calculated in the treatment planning system (TPS) and obtaining a percentage of variation for the EBT3 ranged from 0.30% to 6.15%, while that observed for the nanoDot was from 0.51% to 4.88%. This difference may be attributed to the reproducibility of placement in patients. Therefore, for clinical use, nanoDot dosemeters are a viable alternative for in vivo dosimetry where rapid validation of planning system results is required.
Collapse
Affiliation(s)
- Ingrid M Negrete-Hernandez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Av. Legaria 694,11500, Ciudad de México, México
| | - Ivonne B Lozano
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Av. Legaria 694,11500, Ciudad de México, México
| | - Jesus Roman-Lopez
- CONAHCYT-Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito exterior S/N, A.P. 70-543, 04510 Ciudad de México, México
| | - Jesus I Guzman-Castañeda
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio 6, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, 07738 Ciudad de México, México
| |
Collapse
|
2
|
Patterson E, Powers M, Metcalfe PE, Cutajar D, Oborn BM, Baines JA. Electron streaming dose measurements and calculations on a 1.5 T MR-Linac. J Appl Clin Med Phys 2024; 25:e14370. [PMID: 38661097 PMCID: PMC11244671 DOI: 10.1002/acm2.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE To evaluate the accuracy of different dosimeters and the treatment planning system (TPS) for assessing the skin dose due to the electron streaming effect (ESE) on a 1.5 T magnetic resonance (MR)-linac. METHOD Skin dose due to the ESE on an MR-linac (Unity, Elekta) was investigated using a solid water phantom rotated 45° in the x-y plane (IEC61217) and centered at the isocenter. The phantom was irradiated with 1 × 1, 3 × 3, 5 × 5, 10 × 10, and 22 × 22 cm2 fields, gantry at 90°. Out-of-field doses (OFDs) deposited by electron streams generated at the entry and exit surface of the angled phantom were measured on the surface of solid water slabs placed ±20.0 cm from the isocenter along the x-direction. A high-resolution MOSkin™ detector served as a benchmark due to its shallower depth of measurement that matches the International Commission on Radiological Protection (ICRP) recommended depth for skin dose assessment (0.07 mm). MOSkin™ doses were compared to EBT3 film, OSLDs, a diamond detector, and the TPS where the experimental setup was modeled using two separate calculation parameters settings: a 0.1 cm dose grid with 0.2% statistical uncertainty (0.1 cm, 0.2%) and a 0.2 cm dose grid with 3.0% statistical uncertainty (0.2 cm, 3.0%). RESULTS OSLD, film, the 0.1 cm, 0.2%, and 0.2 cm, 3.0% TPS ESE doses, underestimated skin doses measured by the MOSkin™ by as much as -75.3%, -7.0%, -24.7%, and -41.9%, respectively. Film results were most similar to MOSkin™ skin dose measurements. CONCLUSIONS These results show that electron streams can deposit significant doses outside the primary field and that dosimeter choice and TPS calculation settings greatly influence the reported readings. Due to the steep dose gradient of the ESE, EBT3 film remains the choice for accurate skin dose assessment in this challenging environment.
Collapse
Affiliation(s)
- Elizabeth Patterson
- Centre for Medical and Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | - Marcus Powers
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Townsville Cancer CentreTownsville Hospital and Health ServiceTownsvilleQueenslandAustralia
| | - Peter E. Metcalfe
- Centre for Medical and Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health Medical Research InstituteUniversity of WollongongWollongongNew South WalesAustralia
| | - Dean Cutajar
- Centre for Medical and Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
- Department of Radiation OncologySt George Cancer Care CentreWollongongNew South WalesAustralia
| | - Bradley M. Oborn
- Centre for Medical and Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
- Institute of Radiooncology‐ OncoRayHelmholtz‐Zentrum Dresden‐Rossendorf, RadiooncologyDresdenGermany
- Illawarra Cancer Care CentreWollongong HospitalWollongongNew South WalesAustralia
| | - John A. Baines
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Townsville Cancer CentreTownsville Hospital and Health ServiceTownsvilleQueenslandAustralia
| |
Collapse
|
3
|
Patterson E, Stokes P, Cutajar D, Rosenfeld A, Baines J, Metcalfe P, Powers M. High-resolution entry and exit surface dosimetry in a 1.5 T MR-linac. Phys Eng Sci Med 2023; 46:787-800. [PMID: 36988905 DOI: 10.1007/s13246-023-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The magnetic field of a transverse MR-linac alters electron trajectories as the photon beam transits through materials, causing lower doses at flat entry surfaces and increased doses at flat beam-exiting surfaces. This study investigated the response of a MOSFET detector, known as the MOSkin™, for high-resolution surface and near-surface percentage depth dose measurements on an Elekta Unity. Simulations with Geant4 and the Monaco treatment planning system (TPS), and EBT-3 film measurements, were also performed for comparison. Measured MOSkin™ entry surface doses, relative to Dmax, were (9.9 ± 0.2)%, (10.1 ± 0.3)%, (11.3 ± 0.6)%, (12.9 ± 1.0)%, and (13.4 ± 1.0)% for 1 × 1 cm2, 3 × 3 cm2, 5 × 5 cm2, 10 × 10 cm2, and 22 × 22 cm2 fields, respectively. For the investigated fields, the maximum percent differences of Geant4, TPS, and film doses extrapolated and interpolated to a depth suitable for skin dose assessment at the beam entry, relative to MOSkin™ measurements at an equivalent depth were 1.0%, 2.8%, and 14.3%, respectively, and at a WED of 199.67 mm at the beam exit, 3.2%, 3.7% and 5.7%, respectively. The largest measured increase in exit dose, due to the electron return effect, was 15.4% for the 10 × 10 cm2 field size using the MOSkin™ and 17.9% for the 22 × 22 cm2 field size, using Geant4 calculations. The results presented in the study validate the suitability of the MOSkin™ detector for transverse MR-linac surface dosimetry.
Collapse
Affiliation(s)
- E Patterson
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | - P Stokes
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - D Cutajar
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - A Rosenfeld
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - J Baines
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - P Metcalfe
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - M Powers
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
4
|
Aghdam SRH, Aghamiri SMR, Siavashpour Z, Malekie S, Dashtipoor MR. Assessment of out-of-field radiation doses for high dose per pulse intraoperative electron beam radiotherapy using TLD-100. Radiat Phys Chem Oxf Engl 1993 2023; 204:110652. [DOI: https:/doi.org/10.1016/j.radphyschem.2022.110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
|
5
|
Aghdam SRH, Aghamiri SMR, Siavashpour Z, Malekie S, Dashtipoor MR. Assessment of out-of-field radiation doses for high dose per pulse intraoperative electron beam radiotherapy using TLD-100. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Moncion A, Wilson M, Ma R, Marsh R, Burmeister J, Dryden D, Lack D, Grubb M, Mayville A, Jursinic P, Dess K, Kamp J, Young K, Dilworth JT, Kestin L, Jagsi R, Mietzel M, Vicini F, Pierce LJ, Moran JM. Evaluation of Dose Accuracy in the Near-Surface Region for Whole Breast Irradiation Techniques in a Multi-Institutional Consortium. Pract Radiat Oncol 2022; 12:e317-e328. [DOI: 10.1016/j.prro.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
|
7
|
Wong JHD, Zaili Z, Abdul Malik R, Bustam AZ, Saad M, Jamaris S, Mosiun JA, Mohd Taib NA, Ung NM, See M. Evaluation of skin dose and skin toxicity in patients undergoing intraoperative radiotherapy for early breast cancer. J Appl Clin Med Phys 2021; 22:139-147. [PMID: 34254425 PMCID: PMC8364274 DOI: 10.1002/acm2.13338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE This study aims to evaluate in vivo skin dose delivered by intraoperative radiotherapy (IORT) and determine the factors associated with an increased risk of radiation-induced skin toxicity. METHODOLOGY A total of 21 breast cancer patients who underwent breast-conserving surgery and IORT, either as IORT alone or IORT boost plus external beam radiotherapy (EBRT), were recruited in this prospective study. EBT3 film was calibrated in water and used to measure skin dose during IORT at concentric circles of 5 mm and 40 mm away from the applicator. For patients who also had EBRT, the maximum skin dose was estimated using the radiotherapy treatment planning system. Mid-term skin toxicities were evaluated at 3 and 6 months post-IORT. RESULTS The average skin dose at 5 mm and 40 mm away from the applicator was 3.07 ± 0.82 Gy and 0.99 ± 0.28 Gy, respectively. Patients treated with IORT boost plus EBRT received an additional skin dose of 41.07 ± 1.57 Gy from the EBRT component. At 3 months post-IORT, 86% of patients showed no evidence of skin toxicity. However, the number of patients suffering from skin toxicity increased from 15% to 38% at 6 months post-IORT. We found no association between the IORT alone or with the IORT boost plus EBRT and skin toxicity. Older age was associated with increased risk of skin toxicities. A mathematical model was derived to predict skin dose. CONCLUSION EBT3 film is a suitable dosimeter for in vivo skin dosimetry in IORT, providing patient-specific skin doses. Both IORT alone and IORT boost techniques resulted in similar skin toxicity rates.
Collapse
Affiliation(s)
- Jeannie Hsiu Ding Wong
- Department of Biomedical ImagingFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Zainor Zaili
- Department of Biomedical ImagingFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Rozita Abdul Malik
- Clinical Oncology UnitFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Anita Zarina Bustam
- Clinical Oncology UnitFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Marniza Saad
- Clinical Oncology UnitFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Suniza Jamaris
- Breast Surgery UnitDepartment of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- Department of Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Joanne Aisha Mosiun
- Department of Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Nur Aishah Mohd Taib
- Breast Surgery UnitDepartment of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Ngie Min Ung
- Clinical Oncology UnitFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Mee‐Hoong See
- Breast Surgery UnitDepartment of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
8
|
Low-intensity ultrasound combined with allogenic adipose-derived mesenchymal stem cells (AdMSCs) in radiation-induced skin injury treatment. Sci Rep 2020; 10:20006. [PMID: 33203925 PMCID: PMC7673019 DOI: 10.1038/s41598-020-77019-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells are mechano-sensitive cells with the potential to restore the function of damaged tissues. Low-intensity ultrasound has been increasingly considered as a bioactive therapeutic apparatus. Optimizing transplantation conditions is a critical aim for radiation-induced skin tissue injury. Therefore, the therapeutic function of adipose-derived mesenchymal stem cells to ultrasound stimulus was examined based on the mechanical index (MI). Mesenchymal stem cells were isolated from the adipose tissues of mature guinea pigs. An ultrasound system (US) was constructed with a 40 kHz frequency. The radiation-induced skin injury model was produced on the abdominal skin of guinea pigs by 60 Gy of radiation. Then, they were divided to 7 groups (n = 42): control, sham, US (MI = 0.7), AdMSCs injection, US AdMSCs (AdMSCs, under US with MI = 0.2), AdMSCs + US (AdMSCs transplantation and US with MI = 0.7) and US AdMSCs + US (combining the last two groups). The homing of stem cells was verified with fluorescence imaging. The groups were followed with serial photography, ultrasound imaging, tensiometry, and histology. The thickness of the skin was analyzed. Functional changes in skin tissue were evaluated with Young's modulus (kPa). One-way ANOVA tests were performed to analyze differences between treatment protocols (p < 0.05). The results of Kumar's score showed that radiation injury was significantly lower in the treatment groups of US AdMSCs and US AdMSCs + US than other groups after 14 days (p < 0.05). There was a significant difference in skin thickness between treatment groups with control, sham, and US groups after 60 Gy radiation and were closer to the thickness of healthy skin. Young's modulus in US AdMSCs + US, US AdMSCs, and AdMSCs + US groups demonstrated a significant difference with the other groups (p < 0.05). Young's modulus in US AdMSCs + US and US AdMSCs treatment groups were closer to Young's modulus of the healthy skin. The histological results confirmed the improvement of acute radiation damage in the combined treatment method, especially in US AdMSCs + US and US AdMSCs groups with increasing the epithelialization and formation of collagen. An ultrasonic treatment plan based on a mechanical index of the target medium could be used to enhance stem cell therapy.
Collapse
|
9
|
Surface dose and acute skin reactions in external beam breast radiotherapy. Med Dosim 2019; 45:153-158. [PMID: 31718856 DOI: 10.1016/j.meddos.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023]
Abstract
The biologically relevant depth for acute skin reactions in radiotherapy is 70 µm. The dose at this depth is difficult to measure or calculate and can be quite different than the dose at a depth of as little as 1 mm. For breast radiotherapy with medial and lateral tangential beams, the skin dose depends on both the contribution from the entrance beam and the exit beam. The skin dose has been estimated in a breast model hemi-ellipse accounting for field size, beam energy, obliquity, lack of backscatter, fractionation, size and shape of the hemi-ellipse. The dose has been held constant along the axis of symmetry of the hemi-ellipse by introducing modulation as in clinical IMRT practice. Dose distributions have been computed as a function of the polar angle from the center of the hemi-ellipse. The exit dose always dominates the entrance dose for all realistic parameters. As a result, the surface dose is higher for 18 MV than 6 MV over the entire surface for all reasonable sizes and shapes of the hemi-ellipse. The results of these calculations suggest that substituting an 18 MV beam for a 6 MV beam to achieve greater skin sparing may have just the opposite effect. The ratio of the surface dose to the mid-depth dose ranges from about 35% at polar angle 0o to up to 70% at polar angle 80o. The dose rises sharply at angles above 30o. The surface dose rises moderately at all angles as the size of the hemi-ellipse increases. The effect of shape is somewhat complex: as the breast becomes flatter, doses at intermediate angles increase, but doses at small and large angles decrease. The biologically effective dose for erythema and moist desquamation is about 2 to 3 Gy higher at all polar angles for conventional fractionation (2.00 Gy × 25 fractions) than for hypofractionation (2.66 Gy × 16).
Collapse
|
10
|
Jamalludin Z, Jong WL, Ho GF, Rosenfeld AB, Ung NM. In vivo dosimetry using MOSkin detector during Cobalt-60 high-dose-rate (HDR) brachytherapy of skin cancer. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:1099-1107. [PMID: 31650362 DOI: 10.1007/s13246-019-00809-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/16/2019] [Indexed: 01/10/2023]
Abstract
The MOSkin, a metal-oxide semiconductor field-effect transistor based detector, is suitable for evaluating skin dose due to its water equivalent depth (WED) of 0.07 mm. This study evaluates doses received by target area and unavoidable normal skin during a the case of skin brachytherapy. The MOSkin was evaluated for its feasibility as detector of choice for in vivo dosimetry during skin brachytherapy. A high-dose rate Cobalt-60 brachytherapy source was administered to the tumour located at the medial aspect of the right arm, complicated with huge lymphedema thus limiting the arm motion. The source was positioned in the middle of patients' right arm with supine, hands down position. A 5 mm lead and 5 mm bolus were sandwiched between the medial aspect of the arm and lateral chest to reduce skin dose to the chest. Two calibrated MOSkin detectors were placed on the target and normal skin area for five treatment sessions for in vivo dose monitoring. The mean dose to the target area ranged between 19.9 and 21.1 Gy and was higher in comparison with the calculated dose due to contribution of backscattered dose from lead. The mean measured dose at normal skin chest area was 1.6 Gy (1.3-1.9 Gy), less than 2 Gy per fraction. Total dose in EQD2 received by chest skin was much lower than the recommended skin tolerance. The MOSkin detector presents a reliable real-time dose measurement. This study has confirmed the applicability of the MOSkin detector in monitoring skin dose during brachytherapy treatment due to its small sensitive volume and WED 0.07 mm.
Collapse
Affiliation(s)
- Z Jamalludin
- Medical Physics Unit, University of Malaya Medical Centre, 59100, Kuala Lumpur, Malaysia
- Department of Clinical Oncology, University of Malaya Medical Centre, 59100, Kuala Lumpur, Malaysia
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - W L Jong
- Department of Clinical Oncology, University of Malaya Medical Centre, 59100, Kuala Lumpur, Malaysia
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - G F Ho
- Department of Clinical Oncology, University of Malaya Medical Centre, 59100, Kuala Lumpur, Malaysia
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - A B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - N M Ung
- Department of Clinical Oncology, University of Malaya Medical Centre, 59100, Kuala Lumpur, Malaysia.
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Cramer T, Fratelli I, Barquinha P, Santa A, Fernandes C, D’Annunzio F, Loussert C, Martins R, Fortunato E, Fraboni B. Passive radiofrequency x-ray dosimeter tag based on flexible radiation-sensitive oxide field-effect transistor. SCIENCE ADVANCES 2018; 4:eaat1825. [PMID: 29963634 PMCID: PMC6025907 DOI: 10.1126/sciadv.aat1825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Distributed x-ray radiation dosimetry is crucial in diverse security areas with significant environmental and human impacts such as nuclear waste management, radiotherapy, or radioprotection devices. We present a fast, real-time dosimetry detection system based on flexible oxide thin-film transistors that show a quantitative shift in threshold voltage of up to 3.4 V/gray upon exposure to ionizing radiation. The transistors use indium-gallium-zinc-oxide as a semiconductor and a multilayer dielectric based on silicon oxide and tantalum oxide. Our measurements demonstrate that the threshold voltage shift is caused by the accumulation of positive ionization charge in the dielectric layer due to high-energy photon absorption in the high-Z dielectric. The high mobility combined with a steep subthreshold slope of the transistor allows for fast, reliable, and ultralow-power readout of the deposited radiation dose. The order-of-magnitude variation in transistor channel impedance upon exposure to radiation makes it possible to use a low-cost, passive radiofrequency identification sensor tag for its readout. In this way, we demonstrate a passive, programmable, wireless sensor that reports in real time the excess of critical radiation doses.
Collapse
Affiliation(s)
- Tobias Cramer
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Ilaria Fratelli
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Pedro Barquinha
- CENIMAT/I3N and CEMOP-UNINOVA, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana Santa
- CENIMAT/I3N and CEMOP-UNINOVA, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Cristina Fernandes
- CENIMAT/I3N and CEMOP-UNINOVA, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | | | - Rodrigo Martins
- CENIMAT/I3N and CEMOP-UNINOVA, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT/I3N and CEMOP-UNINOVA, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| |
Collapse
|
12
|
Jong W, Ung N, Tiong A, Rosenfeld A, Wong J. Characterisation of a MOSFET-based detector for dose measurement under megavoltage electron beam radiotherapy. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Fu HJ, Li CW, Tsai WT, Chang CC, Tsang YW. Skin dose for head and neck cancer patients treated with intensity-modulated radiation therapy(IMRT). Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2017.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Semiconductor real-time quality assurance dosimetry in brachytherapy. Brachytherapy 2017; 17:133-145. [PMID: 28964727 DOI: 10.1016/j.brachy.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 11/23/2022]
Abstract
With the increase in complexity of brachytherapy treatments, there has been a demand for the development of sophisticated devices for delivery verification. The Centre for Medical Radiation Physics (CMRP), University of Wollongong, has demonstrated the applicability of semiconductor devices to provide cost-effective real-time quality assurance for a wide range of brachytherapy treatment modalities. Semiconductor devices have shown great promise to the future of pretreatment and in vivo quality assurance in a wide range of brachytherapy treatments, from high-dose-rate (HDR) prostate procedures to eye plaque treatments. The aim of this article is to give an insight into several semiconductor-based dosimetry instruments developed by the CMRP. Applications of these instruments are provided for breast and rectal wall in vivo dosimetry in HDR brachytherapy, urethral in vivo dosimetry in prostate low-dose-rate (LDR) brachytherapy, quality assurance of HDR brachytherapy afterloaders, HDR pretreatment plan verification, and real-time verification of LDR and HDR source dwell positions.
Collapse
|
15
|
Carrara M, Romanyukha A, Tenconi C, Mazzeo D, Cerrotta A, Borroni M, Cutajar D, Petasecca M, Lerch M, Bucci J, Richetti A, Presilla S, Fallai C, Gambarini G, Pignoli E, Rosenfeld A. Clinical application of MOSkin dosimeters to rectal wall in vivo dosimetry in gynecological HDR brachytherapy. Phys Med 2017; 41:5-12. [DOI: 10.1016/j.ejmp.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022] Open
|