Tachibana H, Takahashi R, Kogure T, Nishiyama S, Kurosawa T. Practical dosimetry procedure of air kerma for kilovoltage X-ray imaging in radiation oncology using a 0.6-cc cylindrical ionization chamber with a cobalt absorbed dose-to-water calibration coefficient.
Radiol Phys Technol 2022;
15:264-270. [PMID:
35829894 DOI:
10.1007/s12194-022-00665-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
In this study, we implemented a practical dosimetry procedure of air kerma for kilovoltage X-ray beams using a 0.6-cc cylindrical ionization chamber, and validated the procedure with the accuracy of the measurements using the 0.6-cc chamber compared to the measurements using a 6-cc chamber and a semiconductor device. In addition, the kerma area products (KAPs) were compared with the dose reference levels of radiology. A modified air kerma formalism using a 0.6-cc cylindrical ionization chamber air kerma formalism with a cobalt absorbed dose-to-water calibration coefficient was implemented. Validation of the formalism showed good agreement between the 0.6-cc chamber and the 6-cc chamber (< 5%), and between the 0.6-cc chamber and the semiconductor device (< 2%) in the 60-120 kV range. The KAPs for four RO machines had difference factors of 0.04-15.4 and 0.01-4.1 from their median and maximum dose reference levels in radiology, respectively.
Collapse