1
|
Angelou C, Patallo IS, Doherty D, Romano F, Schettino G. A review of diamond dosimeters in advanced radiotherapy techniques. Med Phys 2024; 51:9230-9249. [PMID: 39221583 PMCID: PMC11656300 DOI: 10.1002/mp.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
This review article synthesizes key findings from studies on the use of diamond dosimeters in advanced radiotherapy techniques, showcasing their applications, challenges, and contributions to enhancing dosimetric accuracy. The article explores various dosimeters, highlighting synthetic diamond dosimeters as potential candidates especially due to their high spatial resolution and negligible ion recombination effect. The clinically validated commercial dosimeter, PTW microDiamond (mD), faces limitations in small fields, proton and hadron therapy and ultra-high dose per pulse (UHDPP) conditions. Variability in reported values for field sizes < $<$ 2 × $\times$ 2cm 2 ${\rm cm}^2$ is noted, reflecting the competition between volume averaging and density perturbation effects. PTW's introduction of flashDiamond (fD) holds promise for dosimetric measurements in UHDPP conditions and is reliable for commissioning ultra-high dose rate (UHDR) electron beam systems, pending the clinical validation of the device. Other advancements in diamond detectors, such as in 3D configurations and real-time dose per pulse x-ray detectors, are considered valuable in overcoming challenges posed by modern radiotherapy techniques, alongside relative dosimetry and pre-treatment verifications. The studies discussed collectively provide a comprehensive overview of the evolving landscape of diamond dosimetry in the field of radiotherapy, and offer insights into future directions for research and development in the field.
Collapse
Affiliation(s)
- Christina Angelou
- Department of PhysicsUniversity of SurreyGuildfordUK
- Radiotherapy and Radiation DosimetryNational Physical Laboratory (NPL)TeddingtonUK
| | | | | | - Francesco Romano
- Istituto Nazionale di Fisica Nucleare (INFN)Sezione di CataniaCataniaItaly
| | - Giuseppe Schettino
- Radiotherapy and Radiation DosimetryNational Physical Laboratory (NPL)TeddingtonUK
| |
Collapse
|
2
|
Casar B, Mendez I, Gershkevitsh E, Wegener S, Jaffray D, Heaton R, Pesznyak C, Stelczer G, Bulski W, Chełminski K, Smirnov G, Antipina N, Beavis AW, Harding N, Jurković S, Hwang MS, Saiful Huq M. On dosimetric characteristics of detectors for relative dosimetry in small fields: a multicenter experimental study. Phys Med Biol 2024; 69:035009. [PMID: 38091616 DOI: 10.1088/1361-6560/ad154c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Objective. In this multicentric collaborative study, we aimed to verify whether the selected radiation detectors satisfy the requirements of TRS-483 Code of Practice for relative small field dosimetry in megavoltage photon beams used in radiotherapy, by investigating four dosimetric characteristics. Furthermore, we intended to analyze and complement the recommendations given in TRS-483.Approach. Short-term stability, dose linearity, dose-rate dependence, and leakage were determined for 17 models of detectors considered suitable for small field dosimetry. Altogether, 47 detectors were used in this study across ten institutions. Photon beams with 6 and 10 MV, with and without flattening filters, generated by Elekta Versa HDTMor Varian TrueBeamTMlinear accelerators, were used.Main results. The tolerance level of 0.1% for stability was fulfilled by 70% of the data points. For the determination of dose linearity, two methods were considered. Results from the use of a stricter method show that the guideline of 0.1% for dose linearity is not attainable for most of the detectors used in the study. Following the second approach (squared Pearson's correlation coefficientr2), it was found that 100% of the data fulfill the criteriar2> 0.999 (0.1% guideline for tolerance). Less than 50% of all data points satisfied the published tolerance of 0.1% for dose-rate dependence. Almost all data points (98.2%) satisfied the 0.1% criterion for leakage.Significance. For short-term stability (repeatability), it was found that the 0.1% guideline could not be met. Therefore, a less rigorous criterion of 0.25% is proposed. For dose linearity, our recommendation is to adopt a simple and clear methodology and to define an achievable tolerance based on the experimental data. For dose-rate dependence, a realistic criterion of 1% is proposed instead of the present 0.1%. Agreement was found with published guidelines for background signal (leakage).
Collapse
Affiliation(s)
- Božidar Casar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
| | - Ignasi Mendez
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Sonja Wegener
- University of Wuerzburg, Radiation Oncology, Wuerzburg, Germany
| | | | | | | | | | - Wojciech Bulski
- Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | | | | | - Andrew W Beavis
- Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Nicholas Harding
- Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Slaven Jurković
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Croatia
| | - Min-Sig Hwang
- University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, United States of America
| | - M Saiful Huq
- Department of Radiation Oncology, Division of Medical Physics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, United States of America
| |
Collapse
|
3
|
Kandasamy K, Samuel EJJ. Dosimetric Evaluation of Semiflex Three-dimensional Chamber under Unflatten Beam in Comparison among Different Detectors. J Med Phys 2024; 49:84-94. [PMID: 38828067 PMCID: PMC11141746 DOI: 10.4103/jmp.jmp_115_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose The goal of this study is to investigate the dosimetric properties of a Semiflex three-dimensional (3D) chamber in an unflatten beam and compare its data from a small to a large field flattening filter-free (FFF) beam with different radiation detectors. Methods The sensitivity, linearity, reproducibility, dose rate dependency, and energy dependence of a Semiflex 3D detector in flattening filter and filter-free beam were fully investigated. The minimum radiation observed field widths for all detectors were calculated using lateral electronic charged particle equilibrium to investigate dosimetric characteristics such as percentage depth doses (PDDs), profiles, and output factors (OPFs) for Semiflex 3D detector under 6FFF Beam. The Semiflex 3D measured data were compared to that of other detectors employed in this study. Results The ion chamber has a dosage linearity deviation of +1.2% for <10 MU, a dose-rate dependency deviation of +0.5%, and significantly poorer sensitivity due to its small volume. There is a difference in field sizes between manufacturer specs and derived field sizes. The measured PDD, profiles, and OPFs of the Semiflex 3D chamber were within 1% of each other for all square field sizes set under linac for the 6FFF beam. Conclusion It was discovered to be an appropriate detector for relative dose measurements for 6 FFF beams with higher dose rates for field sizes more than or equal to 3 cm × 3 cm.
Collapse
Affiliation(s)
- Kanakavel Kandasamy
- Department of Physics, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu, India
| | | |
Collapse
|
4
|
Pallotta S, Calusi S, Marrazzo L, Talamonti C, Russo S, Esposito M, Fiandra C, Giglioli FR, Pimpinella M, De Coste V, Bruschi A, Barbiero S, Mancosu P, Stasi M, Lisci R. End-to-end test for lung SBRT: An Italian multicentric pilot experience. Phys Med 2022; 104:129-135. [PMID: 36401941 DOI: 10.1016/j.ejmp.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Set up a lung SBRT end-to-end (e2e) test and perform a multicentre validation. MATERIAL AND METHODS A group of medical physicists from four hospitals and the Italian Institute of Ionizing Radiation Metrology designed the present e2e test. One sub-group set up the test, while another tested its feasibility and ease of use. A satisfaction questionnaire was used to collect user feedback. Each participating centre (PC) received the ADAM breathing phantom, a microDiamond detector and radiochromic films. Following the e2e protocol, each PC performed its standard internal procedure for simulating, planning, and irradiating the phantom. Each PC uploaded its planning and treatment delivery data in a shared Google Drive. A single centre analyzed all the data. RESULTS The e2e test was successfully performed by all PCs. Participants' comments indicated that ADAM was well suited to the purpose and the protocol well described. All PCs performed the test in static and dynamic modes. The ratio between measured and planned point dose obtained by PC1, PC2, PC3, PC4 was: 0.99, 0.96, 1.01 and 1.01 (static track) and 0.99, 1.02, 1.01 and 0.94 (dynamic track). The gamma passing rates (3 % global, 3 mm) between planned and measured dose maps were 98.5 %, 94.0 %, 99.1 % and 94.0 % (static track) and 99.5 %, 96.5 %, 86.0 % and 94.5 % (dynamic track) for PC1, PC2, PC3 and PC4, respectively. CONCLUSIONS An e2e test for lung SBRT has been proposed and tested in a multicentre framework. The results and user feedback prove the validity of the proposed e2e test.
Collapse
Affiliation(s)
- S Pallotta
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy; Medical Physics Unit, AOU Careggi Florence, Italy.
| | - S Calusi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - L Marrazzo
- Medical Physics Unit, AOU Careggi Florence, Italy
| | - C Talamonti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy; Medical Physics Unit, AOU Careggi Florence, Italy
| | - S Russo
- Health Physics Unit, Azienda USL Toscana Centro Florence, Italy
| | - M Esposito
- Health Physics Unit, Azienda USL Toscana Centro Florence, Italy
| | - C Fiandra
- Oncology Department, University of Tourin, Tourin, Italy
| | - F R Giglioli
- Health Physics Unit A. O. Città della Salute e della Scienza di Torino P.O. Molinette, Tourin, Italy
| | - M Pimpinella
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - V De Coste
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - A Bruschi
- Medical Physics Unit San Rossore, Pisa, Italy
| | - S Barbiero
- Medical Physics Unit San Rossore, Pisa, Italy
| | - P Mancosu
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - M Stasi
- Health Physics - AO Ordine Mauriziano, Tourin, Italy
| | - R Lisci
- Department of Agricultural, Food and Forestry System, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Momeni Harzanji Z, Larizadeh MH, Namiranian N, Nickfarjam A. Evaluation and Comparison of Dosimetric Characteristics of Semiflex ®3D and Microdiamond in Relative Dosimetry under 6 and 15 MV Photon Beams in Small Fields. J Biomed Phys Eng 2022; 12:477-488. [PMID: 36313410 PMCID: PMC9589081 DOI: 10.31661/jbpe.v0i0.2008-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/14/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND In modern radiotherapy techniques, the frequently small and non-uniformed fields can increase treatment efficiency due to their highly conformal dose distribution. Particular features including lack of Lateral Charge Particle Equilibrium (LCPE) lead to detectors with high resolution since any error in obtained dosimetric data could cause patient mistreatments. OBJECTIVE This study aims to evaluate and compare two small detectors (Semiflex®3D and microdiamond) dosimetric characteristics in small field relative dosimetry. MATERIAL AND METHODS In this experimental study, the dosimetric properties of Semiflex®3D and microdiamond were assessed under 6 and 15 MV photon beams. The linearity and stability of the detector's response and dose rate were measured. Square-field sizes ranging from 0.6×0.6 - 5×5 cm2 were used for obtaining percentage depth dose curves (PDDs) and in-plane profiles. The angular and temperature dependence of both detectors' responses were also studied. RESULTS The detector response shows good stability, no deviation from linearity, and low dose rate dependence (≤1.6%). PDDs and in-plan profiles of both detectors are in good agreement and no significant difference was observed except for the high dose gradient regions (P-value≤0.017). Both detectors demonstrated low angular dependence (<0.3%) with temperature dependence lower than 1% for both detectors. CONCLUSION The results indicate both investigated detectors were well performed in small field relative dosimetry and for measuring penumbra, it is better to use microdiamond detector.
Collapse
Affiliation(s)
- Zahra Momeni Harzanji
- MSc, Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Larizadeh
- MD, Department of Radiation Oncology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasim Namiranian
- MD, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Nickfarjam
- PhD, Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Akino Y, Das IJ, Fujiwara M, Kaneko A, Masutani T, Mizuno H, Isohashi F, Suzuki O, Seo Y, Tamari K, Ogawa K. Characteristics of microSilicon diode detector for electron beam dosimetry. JOURNAL OF RADIATION RESEARCH 2021:rrab085. [PMID: 34559877 DOI: 10.1093/jrr/rrab085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/31/2021] [Indexed: 06/13/2023]
Abstract
A microSilicon™ (PTW type 60023), a new unshielded diode detector succeeding Diode E (model 60017, PTW), was characterized for electron beam dosimetry and compared with other detectors. Electron beams generated from a TrueBeam linear accelerator were measured using the microSilicon, Diode E, and microDiamond synthetic single-crystal diamond detector. Positional accuracy of microSilicon was measured by data collected in air and water. The percent depth dose (PDD), off-center ratio (OCR), dose-response linearity, dose rate dependence, and cone factors were evaluated. The PDDs were compared with data measured using a PPC40 plane-parallel ionization chamber. The maximum variations of depth of 50% and 90% of the maximum dose, and practical depth among all detectors and energies were 0.9 mm. The maximum variations of the bremsstrahlung dose among all detectors and energies were within 0.3%. OCR showed good agreement within 1% for the flat and tail regions. The microSilicon detector showed a penumbra width similar to microDiamond, whereas Diode E showed the steepest penumbra shape. All detectors showed good dose-response linearity and stability against the dose rate; only Diode E demonstrated logarithmic dose rate dependency. The cone factor measured with microSilicon was within ±1% for all energies and cone sizes. We demonstrated that the characteristics of microSilicon is suitable for electron beam dosimetry. The microSilicon detector can be a good alternative for electron beam dosimetry in terms of providing an appropriate PDD curve without corrections, high spatial resolution for OCR measurements and cone factors.
Collapse
Affiliation(s)
- Yuichi Akino
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka, 565-0814, Japan
| | - Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Masateru Fujiwara
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka, 565-0814, Japan
| | - Akari Kaneko
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka, 565-0814, Japan
| | - Takashi Masutani
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka, 565-0814, Japan
| | - Hirokazu Mizuno
- Department of Central Radiology, Osaka Rosai Hospital, Sakai, Osaka, 591-8025, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Osamu Suzuki
- Osaka Heavy Ion Therapy Center, Osaka, 540-0008, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Akino Y, Fujiwara M, Okamura K, Shiomi H, Mizuno H, Isohashi F, Suzuki O, Seo Y, Tamari K, Ogawa K. Characterization of a microSilicon diode detector for small-field photon beam dosimetry. JOURNAL OF RADIATION RESEARCH 2020; 61:410-418. [PMID: 32211851 PMCID: PMC7299273 DOI: 10.1093/jrr/rraa010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
This study characterized a new unshielded diode detector, the microSilicon (model 60023), for small-field photon beam dosimetry by evaluating the photon beams generated by a TrueBeam STx and a CyberKnife. Temperature dependence was evaluated by irradiating photons and increasing the water temperature from 11.5 to 31.3°C. For Diode E, microSilicon, microDiamond and EDGE detectors, dose linearity, dose rate dependence, energy dependence, percent-depth-dose (PDD), beam profiles and detector output factor (OFdet) were evaluated. The OFdet of the microSilicon detector was compared to the field output factors of the other detectors. The microSilicon exhibited small temperature dependence within 0.4%, although the Diode E showed a linear variation with a ratio of 0.26%/°C. The Diode E and EDGE detectors showed positive correlations between the detector reading and dose rate, whereas the microSilicon showed a stable response within 0.11%. The Diode E and microSilicon demonstrated negative correlations with the beam energy. The OFdet of microSilicon was the smallest among all the detectors. The maximum differences between the OFdet of microSilicon and the field output factors of microDiamond were 2.3 and 1.6% for 5 × 5 mm2 TrueBeam and 5 mm φ CyberKnife beams, respectively. The PDD data exhibited small variations in the dose fall-off region. The microSilicon and microDiamond detectors yielded similar penumbra widths, whereas the other detectors showed steeper penumbra profiles. The microSilicon demonstrated favorable characteristics including small temperature and dose rate dependence as well as the small spatial resolution and output factors suitable for small field dosimetry.
Collapse
Affiliation(s)
- Yuichi Akino
- Oncology Center, Osaka University Hospital, 2-2 (D10), Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka 565-0814, Japan
| | - Masateru Fujiwara
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka 565-0814, Japan
| | - Keita Okamura
- Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | - Hiroya Shiomi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hirokazu Mizuno
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Osamu Suzuki
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Paganini L, Reggiori G, Stravato A, Palumbo V, Mancosu P, Lobefalo F, Gaudino A, Fogliata A, Scorsetti M, Tomatis S. MLC parameters from static fields to VMAT plans: an evaluation in a RT-dedicated MC environment (PRIMO). Radiat Oncol 2019; 14:216. [PMID: 31791355 PMCID: PMC6889207 DOI: 10.1186/s13014-019-1421-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background PRIMO is a graphical environment based on PENELOPE Monte Carlo (MC) simulation of radiotherapy beams able to compute dose distribution in patients, from plans with different techniques. The dosimetric characteristics of an HD-120 MLC (Varian), simulated using PRIMO, were here compared with measurements, and also with Acuros calculations (in the Eclipse treatment planning system, Varian). Materials and methods A 10 MV FFF beam from a Varian EDGE linac equipped with the HD-120 MLC was used for this work. Initially, the linac head was simulated inside PRIMO, and validated against measurements in a water phantom. Then, a series of different MLC patterns were established to assess the MLC dosimetric characteristics. Those tests included: i) static fields: output factors from MLC shaped fields (2 × 2 to 10 × 10 cm2), alternate open and closed leaf pattern, MLC transmitted dose; ii) dynamic fields: dosimetric leaf gap (DLG) evaluated with sweeping gaps, tongue and groove (TG) effect assessed with profiles across alternate open and closed leaves moving across the field. The doses in the different tests were simulated in PRIMO and then compared with EBT3 film measurements in solid water phantom, as well as with Acuros calculations. Finally, MC in PRIMO and Acuros were compared in some clinical cases, summarizing the clinical complexity in view of a possible use of PRIMO as an independent dose calculation check. Results Static output factor MLC tests showed an agreement between MC calculated and measured OF of 0.5%. The dynamic tests presented DLG values of 0.033 ± 0.003 cm and 0.032 ± 0.006 cm for MC and measurements, respectively. Regarding the TG tests, a general agreement between the dose distributions of 1–2% was achieved, except for the extreme patterns (very small gaps/field sizes and high TG effect) were the agreement was about 4–5%. The analysis of the clinical cases, the Gamma agreement between MC in PRIMO and Acuros dose calculation in Eclipse was of 99.5 ± 0.2% for 3%/2 mm criteria of dose difference/distance to agreement. Conclusions MC simulations in the PRIMO environment were in agreement with measurements for the HD-120 MLC in a 10 MV FFF beam from a Varian EDGE linac. This result allowed to consistently compare clinical cases, showing the possible use of PRIMO as an independent dose calculation check tool.
Collapse
Affiliation(s)
- Lucia Paganini
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Giacomo Reggiori
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy.
| | - Antonella Stravato
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Valentina Palumbo
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Pietro Mancosu
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Francesca Lobefalo
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Anna Gaudino
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Antonella Fogliata
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, (Milan), Italy
| | - Stefano Tomatis
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, (Milan), Italy
| |
Collapse
|
9
|
Fukui Y, Hamada Y, Noma K, Harada N. [Characterization of Small Volume Plastic Scintillation Detector]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:652-658. [PMID: 31327776 DOI: 10.6009/jjrt.2019_jsrt_75.7.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Some radiation detectors are used for quality assurance and measured to radiation dose for high precision external beam radiotherapy. Recently, plastic scintillation detectors for MeV X-ray measurement are commercially released. The purpose of this study was to evaluate the performance of a commercial plastic scintillation detector with respect to the dose linearity, dose rate dependence, and the output coefficient compared the ionization chamber and the semiconductor detector using each different X-ray energy with or without flattening filter. The result that the dose linearity of each detector showed a linear response in any detectors. Dose rate dependence of plastic scintillation detector was increased when setting dose rate was changed, especially setting to low dose rate. The output coefficient of plastic scintillation detector was equivalent as that of the semiconductor detector even in smallest irradiation field. In conclusion, it was suggested that the plastic scintillation detector is a suitable detector in dose verification measurements for high precision external beam radiotherapy, although we must be with care to low dose rate measurements.
Collapse
Affiliation(s)
- Yusuke Fukui
- Radiology Service, Shiga University of Medical Science Hospital
| | - Yuto Hamada
- Radiology Service, Shiga University of Medical Science Hospital (Current address: Canon Medical Systems Corporation)
| | - Kazuo Noma
- Radiology Service, Shiga University of Medical Science Hospital
| | - Naoki Harada
- Radiology Service, Shiga University of Medical Science Hospital
| |
Collapse
|
10
|
Casar B, Gershkevitsh E, Mendez I, Jurković S, Huq MS. A novel method for the determination of field output factors and output correction factors for small static fields for six diodes and a microdiamond detector in megavoltage photon beams. Med Phys 2018; 46:944-963. [PMID: 30521073 PMCID: PMC7379629 DOI: 10.1002/mp.13318] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/04/2022] Open
Abstract
Purpose The goal of this work is to provide a large and consistent set of data for detector‐specific output correction factors, kQclin,Qreffclin,fref, for small static fields for seven solid‐state detectors and to determine field output factors, ΩQclin,Qreffclin,fref, using EBT3 radiochromic films and W1 plastic scintillator as reference detectors on two different linear accelerators and four megavoltage photon beams. Consistent measurement conditions and recommendations given in the International Code of Practice TRS‐483 for small‐field dosimetry were followed throughout the study. Methods ΩQclin,Qreffclin,fref were determined on two linacs, Elekta Versa HD and Varian TrueBeam, for 6 and 10 MV beams with and without flattening filter and for nine fields ranging from 0.5 × 0.5 cm2 to 10 × 10 cm2. Signal readings obtained with EBT3 radiochromic films and W1 plastic scintillator were fitted by an analytical function. Volume averaging correction factors, determined from two‐dimensional (2D) dose matrices obtained with EBT3 films and fitted to bivariate Gaussian function, were used to correct measured signals. kQclin,Qreffclin,fref were determined empirically for six diodes, IBA SFD, IBA Razor, PTW 60008 P, PTW 60012 E, PTW 60018 SRS, and SN EDGE, and a PTW 60019 microDiamond detector. Results Field output factors and detector‐specific kQclin,Qreffclin,fref are presented in the form of analytical functions as well as in the form of discrete values. It is found that in general, for a given linac, small‐field output factors need to be determined for every combination of beam energy and filtration (WFF or FFF) and field size as the differences between them can be statistically significant (P < 0.05). For different beam energies, the present data for kQclin,Qreffclin,fref are found to differ significantly (P < 0.05) from the corresponding data published in TRS‐483 mostly for the smallest fields (<1.5 cm). For the PTW microDiamond detector, statistically significant differences (P < 0.05) between kQclin,Qreffclin,fref values were found for all investigated beams on an Elekta Versa HD linac for field sizes 0.5 × 0.5 cm2 and 0.8 × 0.8 cm2. Significant differences in kQclin,Qreffclin,fref between beams of a given energy but with and without flattening filters are found for measurements made in small fields (<1.5 cm) at a given linac. Differences in kQclin,Qreffclin,fref are also found when measurements are made at different linacs using the same beam energy filtration combination; for the PTW microDiamond detector, these differences were found to be around 6% and were considered as significant. Conclusions Selection of two reference detectors, EBT3 films and W1 plastic scintillator, and use of an analytical function, is a novel approach for the determination of ΩQclin,Qreffclin,fref for small static fields in megavoltage photon beams. Large set of kQclin,Qreffclin,fref data for seven solid‐state detectors and four beam energies determined on two linacs by a single group of researchers can be considered a valuable supplement to the literature and the TRS‐483 dataset.
Collapse
Affiliation(s)
- Božidar Casar
- Department for Dosimetry and Quality of Radiological Procedures, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Eduard Gershkevitsh
- Medical Physics Service, North Estonia Medical Centre, J. Sütiste tee 19, 13419, Tallinn, Estonia
| | - Ignasi Mendez
- Department for Dosimetry and Quality of Radiological Procedures, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Slaven Jurković
- Medical Physics Department, University Hospital Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Reggiori G, Stravato A, Mancosu P, Lobefalo F, Paganini L, Zucconi F, Palumbo V, Gaudino A, Scorsetti M, Tomatis S. Small field characterization of a Nanochamber prototype under flattening filter free photon beams. Phys Med 2018; 49:139-146. [DOI: 10.1016/j.ejmp.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 11/28/2022] Open
|
12
|
Woodings SJ, Wolthaus JWH, van Asselen B, de Vries JHW, Kok JGM, Lagendijk JJW, Raaymakers BW. Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac. ACTA ACUST UNITED AC 2018; 63:05NT04. [DOI: 10.1088/1361-6560/aaa1c6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|