1
|
Costin IC, Marcu LG. Patient and treatment-related factors that influence dose to heart and heart substructures in left-sided breast cancer radiotherapy. Phys Med 2024; 128:104851. [PMID: 39504787 DOI: 10.1016/j.ejmp.2024.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Cardiac substructures are critical organs at risk in left-sided breast cancer radiotherapy being often overlooked during treatment planning. The treatment technique plays an important role in diminishing dose to critical structures. This review aims to analyze the impact of treatment- and patient-related factors on heart substructure dosimetry and to identify the gaps in literature regarding dosimetric reporting of cardiac substructures. METHODS A systematic search of the literature was conducted in Medline/Pubmed database incorporating data published over the past 10 years, leading to 81 eligible studies. Treatment-related factors analyzed for their impact on patient outcome included the number of treatment fields, field geometry, treatment time and monitor units. Additionally, patient-related parameters such as breast size and tumor shape were considered for cardiac dosimetry evaluation. RESULTS Limited number of fields appeared to be an advantage for mean heart dose reduction when tangential IMRT versus multiple fields IMRT was evaluated. Larger breast size (910.20 ± 439.80 cm3) is linked to larger treatment fields and higher heart doses. Internal mammary node irradiation further escalates cardiac substructures dosimetry treated with 3DCRT and IMRT/VMAT. Proton therapy delivers lower mean heart dose regardless of breathing condition (free or respiratory-gated). CONCLUSION The management of treatment- and patient-related factors must be taken into account regardless of the treatment technique when evaluating cardiac dose. Furthermore, the gap found in the literature regarding heart toxicity assessment in left-sided breast cancer patients emphasizes the need for cardiac substructure contouring to better manage and control radiation-induced cardiac toxicities in this patient group.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- West University of Timisoara, Faculty of Physics, 300223, Timisoara, Romania; Emergency County Hospital, Oradea 410167, Romania
| | - Loredana G Marcu
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia; Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania.
| |
Collapse
|
2
|
Costin IC, Cinezan C, Marcu LG. Cardio-oncology concerns in radiotherapy: Heart and cardiac substructure toxicities from modern delivery techniques. Crit Rev Oncol Hematol 2024; 204:104538. [PMID: 39427839 DOI: 10.1016/j.critrevonc.2024.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Cardio-oncology is lately gaining more attention due to radiation-induced cardiac events reported by a very large number of studies. In view of this, the current overview of the literature aimed to encompass all studies from the past 15 years to assess changes in cardiac dose due to treatment evolution, as well as the changes in treatment planning customs to incorporate not only the heart as a whole but also cardiac substructures. Modern treatment techniques, particularly proton therapy, offers superior cardiac sparing compared to more established radiotherapy, for all evaluated tumor sites. Intensity modulation, particularly coupled with respiratory gating shows significant improvement in dose-volume parameters pertaining to the heart. While past studies considered mean heart dose as the only reference for cardiac toxicities, recommendations for the other cardiac substructures to be dosimetrically assessed during planning are becoming more common.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- West University of Timisoara, Faculty of Physics, Timisoara 300223, Romania; Clinical Emergency County Hospital Bihor, Oradea 410169, Romania
| | - Corina Cinezan
- Clinical Emergency County Hospital Bihor, Oradea 410169, Romania; Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania
| | - Loredana G Marcu
- Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania; UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
3
|
Zhang M, Zhang FX, Yang XL, Liang Q, Liu J, Zhou WB. Comparative dosimetric study of h-IMRT and VMAT plans for breast cancer after breast-conserving surgery. Transl Oncol 2024; 47:102012. [PMID: 38889521 PMCID: PMC11231535 DOI: 10.1016/j.tranon.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
AIM To compare the dosimetric advantages and disadvantages between hybrid intensity-modulated radiation therapy (h-IMRT) and the volumetric modulated arc therapy (VMAT) technique in hypofractionated whole-breast irradiation (HF-WBI) for early-stage breast cancer (BC). METHODS The dose distribution of h-IMRT and VMAT plans was compared in 20 breast cancer patients. This comparison included evaluation of dosimetric parameters using dose volume histograms (DVHs) for the planning target volume (PTV) and organs-at-risk (OARs). Additionally, the study examined the normal tissue complication probability (NTCP), the second cancer complication probability (SCCP) and the tumor control probability (TCP) based on different models. RESULTS Significant differences were detected between the two plans, in terms of Machine units (MUs), the control points, 95 % volume (V95 %), dose homogeneity index (DHI) and conformity index (CI). The endpoint of grade II radiation pneumonitis and cardiac death due to ischemic heart disease were assessed. In h-IMRT plan, the NTCP values were marginally lower for radiation pneumonitis and slightly higher for cardiac death compared to VMAT plan, as determined by the Lyman-Kutcher-Burman model. The Schneider model was employed to predict the SCCP for both the bilateral lungs and contralateral breast, the results demonstrate that the h-IMRT plan outperforms the VMAT plan, with statistical significance. Additionally, the LQ-Poisson model was employed to forecast the TCP of the PTV, showing that the h-IMRT plan outperformed the VMAT plan (P > 0.05). CONCLUSION The h-IMRT technique, offering superior dose coverage and better therapeutic efficacy with fewer side effects as calculated by models, is more suitable for HF-WBI compared to the VMAT technique.
Collapse
Affiliation(s)
- Min Zhang
- Xiangya Hospital, Central South University, Hunan 41000, PR China
| | - Fang-Xu Zhang
- Fourth People's Hospital of Jinan, Jinan 250031, PR China
| | - Xiao-Lei Yang
- Fourth People's Hospital of Jinan, Jinan 250031, PR China
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Liu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, PR China
| | - Wei-Bing Zhou
- Xiangya Hospital, Central South University, Hunan 41000, PR China.
| |
Collapse
|
4
|
Prokofev I, Salim N. Off-isocentric VMAT technique for breast cancer: Effective dose reduction to organs at risk and its applicability based on patient anatomy. J Appl Clin Med Phys 2024; 25:e14237. [PMID: 38207110 DOI: 10.1002/acm2.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024] Open
Abstract
PURPOSE This study aims to explore the off-isocentric volumetric modulated arc therapy (offVMAT) technique for breast cancer and determine its applicability based on patient anatomical parameters. METHODS We retrospectively analyzed 44 breast cancer patients with varied lymph node involvement using different arc designs. Off-isocentric techniques were benchmarked against previously published arc techniques: classic arcs (clVMAT), tangential arcs (tVMAT), and split arcs (spVMAT). During optimization, target coverage was made for all plans as close as possible to the criteria D99% > 95% and Dmax < 110% of the prescribed dose. A novel patient categorization, based on anatomical parameters (auxiliary structures) rather than lymph node involvement, is introduced. This categorization considers the volume of ipsilateral organs at risk (OARs) adjacent to the target. A binary regression model was developed on these anatomical parameters. It predicts the likelihood of offVMAT (P[offVMAT]) achieving better criteria. RESULTS Using the regression model, patients were divided into two groups: P(offVMAT) > 0.5 and P(offVMAT) < 0.5. For the P(offVMAT) > 0.5 group, most tVMAT plans are unable to achieve the clinical objectives. Comparing offVMAT with spVMAT, offVMAT exhibited better dose parameters for the heart (V20, V10, and D2 are 7.1, 2.4, and 1.5 times lower respectively), ipsilateral lung (V20, V10, V5 and the mean dose are 1.4, 1.3, 1.2, and 1.2 times lower respectively). The average doses to the contralateral side are consistent. In the P(offVMAT) < 0.5 group, the tVMAT technique showed increased doses at medium and high levels, yet reduced doses in contralateral OARs compared to spVMAT and offVMAT. spVMAT showed lower doses in the contralateral lung relative to the offVMAT technique, while clVMAT trailed in both groups. Validation of the model yielded a 90% accuracy rate. CONCLUSIONS The new off-isocentric breast planning technique effectively reduces doses to ipsilateral OARs, maintaining acceptable contralateral mean doses. This technique has an advantage over other techniques for patients with intricate anatomies. It is evaluated using anatomical parameters, which are also used to build binary regression model, which shows the dependence of anatomical parameters on whether offVMAT is preferred for individual patients. Also, such anatomical parameters provide a more objective and precise comparison between different planning techniques.
Collapse
Affiliation(s)
- Igor Prokofev
- Department of Radiotherapy, European Medical Center, Moscow, Russia
| | - Nidal Salim
- Department of Radiotherapy, European Medical Center, Moscow, Russia
| |
Collapse
|
5
|
Heikkilä A, Boman E, Rossi M, Vanhanen A, Mankinen M, Postema M, Koivumäki T. Dosimetric effect of rotational setup errors in volumetric modulated arc therapy and field-in-field treatment of left-sided breast cancer. Phys Med 2024; 117:103203. [PMID: 38171219 DOI: 10.1016/j.ejmp.2023.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/06/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Setup errors are an important factor in the dosimetric accuracy of radiotherapy delivery. In this study, we investigated how rotational setup errors influence the dose distribution in volumetric modulated arc therapy (VMAT) and tangential field-in-field (FiF) treatment of left-sided breast cancer with supraclavicular lymph node involvement in deep inspiration breath hold. Treatment planning computed tomography images and radiotherapy plans of 20 patients were collected retrospectively for the study. Rotational setup errors up to 3° were simulated by rotating the planning images, and the resulting dosimetric changes were calculated. With rotational setup errors up to 3°, the median decrease of V95% to clinical target volume was less than 0.8 percentage point in both VMAT and FiF plans. The dose distribution of the heart and left anterior descending artery was more stable with respect to rotations in VMAT plans compared to FiF plans. Correction of ≥1° setup errors is recommended due to increased doses to the heart and left anterior descending artery after 1° setup errors.
Collapse
Affiliation(s)
- Annele Heikkilä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland; Department of Medical Physics, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland.
| | - Eeva Boman
- Department of Medical Physics, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland; Department of Oncology, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland
| | - Maija Rossi
- Department of Medical Physics, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland; Department of Oncology, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland
| | - Antti Vanhanen
- Department of Medical Physics, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland; Department of Oncology, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland
| | - Mikko Mankinen
- Department of Medical Physics, Central Finland Health Care District, Hoitajantie 3, 40620, Jyväskylä, Finland
| | - Michiel Postema
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland; School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, 1 Jan Smutslaan, 2050 Braamfontein, South Africa
| | - Tuomas Koivumäki
- Department of Medical Physics, Central Finland Health Care District, Hoitajantie 3, 40620, Jyväskylä, Finland
| |
Collapse
|
6
|
Alaimo R, Ippolito E, Falconi R, Perrone Congedi F, Sciommari C, Silipigni S, Pellegrini R, Carnevale A, Greco C, Fiore M, D’Angelillo RM, Ramella S. Breast Volume Is a Predictor of Higher Heart Dose in Whole-Breast Supine Free-Breathing Volumetric-Modulated Arc Therapy Planning. Curr Oncol 2023; 30:10530-10538. [PMID: 38132402 PMCID: PMC10742666 DOI: 10.3390/curroncol30120768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
In breast cancer volumetric-modulated arc therapy (VMAT) planning, the rotation of the gantry around the target implies a greater dose spreading to the whole heart, compared to tangential-field standard treatment. A consecutive cohort of 121 breast cancer patients treated with the VMAT technique was investigated. The correlation of breast volume, heart volume and lung volume with mean heart dose (mHD) and mean and maximum LAD dose (mLAD dose, MLAD dose) was tested, and a subsequent a linear regression analysis was carried out. VMAT treatment plans from 56 left breast cancer and 65 right breast cancer patients were analyzed. For right-sided patients, breast volume was significantly correlated with mHD, mLAD and MLAD dose, while for left-sided patients, breast volume was significantly correlated with mHD and mLAD, while heart volume and lung volume were correlated with mHD, mLAD and MLAD dose. Breast volume was the only predictor of increased heart and LAD dose (p ≤ 0.001) for right-sided patients. In left-sided patients, heart and lung were also predictors of increased mHD (p = 0.005, p ≤ 0.001) and mean LAD dose (p = 0.009, p ≤ 0.001). In this study, we observed an increase in heart and LAD doses in larger-breasted patients treated with VMAT planning. In right-sided patients, breast volume was shown to be the only predictor of increased heart dose and LAD dose.
Collapse
Affiliation(s)
- Rita Alaimo
- Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (R.A.); (F.P.C.); (C.S.); (S.S.); (A.C.); (C.G.); (M.F.); (S.R.)
| | - Edy Ippolito
- Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (R.A.); (F.P.C.); (C.S.); (S.S.); (A.C.); (C.G.); (M.F.); (S.R.)
- Department of Radiation Oncology (Medicine and Surgery), Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Rita Falconi
- Medical Physics Unit, S. Filippo Neri Hospital, ASL Roma 1, 00135 Rome, Italy;
| | - Francesca Perrone Congedi
- Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (R.A.); (F.P.C.); (C.S.); (S.S.); (A.C.); (C.G.); (M.F.); (S.R.)
| | - Cecilia Sciommari
- Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (R.A.); (F.P.C.); (C.S.); (S.S.); (A.C.); (C.G.); (M.F.); (S.R.)
| | - Sonia Silipigni
- Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (R.A.); (F.P.C.); (C.S.); (S.S.); (A.C.); (C.G.); (M.F.); (S.R.)
| | | | - Alessia Carnevale
- Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (R.A.); (F.P.C.); (C.S.); (S.S.); (A.C.); (C.G.); (M.F.); (S.R.)
| | - Carlo Greco
- Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (R.A.); (F.P.C.); (C.S.); (S.S.); (A.C.); (C.G.); (M.F.); (S.R.)
- Department of Radiation Oncology (Medicine and Surgery), Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Michele Fiore
- Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (R.A.); (F.P.C.); (C.S.); (S.S.); (A.C.); (C.G.); (M.F.); (S.R.)
- Department of Radiation Oncology (Medicine and Surgery), Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | | | - Sara Ramella
- Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (R.A.); (F.P.C.); (C.S.); (S.S.); (A.C.); (C.G.); (M.F.); (S.R.)
- Department of Radiation Oncology (Medicine and Surgery), Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
7
|
Abdollahi S, Yazdi MHH, Mowlavi AA, Ceberg S, Aznar MC, Tabrizi FV, Salek R, Ghodsi A, Jamali F. Surface guided 3DCRT in deep-inspiration breath-hold for left sided breast cancer radiotherapy: implementation and first clinical experience in Iran. Rep Pract Oncol Radiother 2022; 27:881-896. [PMID: 36523810 PMCID: PMC9746649 DOI: 10.5603/rpor.a2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background The aim of the study is to evaluate the overall accuracy of the surface-guided radiotherapy (SGRT) workflow through a comprehensive commissioning and quality assurance procedures and assess the potential benefits of deep-inspiration breath-hold (DIBH) radiotherapy as a cardiac and lung dose reduction approach for left-sided breast cancer irradiation. Materials and methods Accuracy and reproducibility of the optical surface scanner used for DIBH treatment were evaluated using different phantoms. Patient positioning accuracy and reproducibility of DIBH treatment were evaluated. Twenty patients were studied for treatment plan quality in target dose coverage and healthy organ sparing for the two different treatment techniques. Results Reproducibility tests for the surface scanner showed good stability within 1 mm in all directions. The maximum position variation between applied shifts on the couch and the scanner measured offsets is 1 mm in all directions. The clinical study of 200 fractions showed good agreement between the surface scanner and portal imaging with the isocenter position deviation of less than 3 mm in each lateral, longitudinal, and vertical direction. The standard deviation of the DIBH level showed a value of < 2 mm during all evaluated DIBHs. Compared to the free breathing (FB) technique, DIBH showed significant reduction of 48% for heart mean dose, 43% for heart V25, and 20% for ipsilateral lung V20. Conclusion Surface-guided radiotherapy can be regarded as an accurate tool for patient positioning and monitoring in breast radiotherapy. DIBH treatment are considered to be effective techniques in heart and ipsilateral lung dose reductions for left breast radiotherapy.
Collapse
Affiliation(s)
- Sara Abdollahi
- Physics Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Medical Physics Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | | | - Ali Asghar Mowlavi
- Physics Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sofie Ceberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Marianne Camille Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Roham Salek
- Radiotherapy and Oncology Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Radiotherapy and Oncology Department, Mashhad University of Medical Science, Mashhad, Iran
| | - Alireza Ghodsi
- Department of Statistics, Hakim Sabzevari University, Sabzevar, Iran
| | - Farideh Jamali
- Medical Physics Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| |
Collapse
|
8
|
Retrospective Analysis for Dose Reduction to Organs at Risk with New Personalized Breast Holder (PERSBRA) in Left Breast IMRT. J Pers Med 2022; 12:jpm12091368. [PMID: 36143153 PMCID: PMC9505458 DOI: 10.3390/jpm12091368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
This study evaluated dose differences in normal organs at risk, such as the lungs, heart, left anterior descending artery (LAD), right coronary artery, left ventricle, and right breast under personalized breast holder (PERSBRA), when using intensity-modulated radiation therapy (IMRT). This study evaluated the radiation protection offered by PERSBRA in left breast cancer radiation therapy. Here, we retrospectively collected data from 24 patients with left breast cancer who underwent breast-conserving surgery as well as IMRT radiotherapy. We compared the dose differences in target coverage and organs at risk with and without PERSBRA. For target coverage, tumor prescribed dose 95% coverage, conformity index, and homogeneity index were evaluated. For organs at risk, we compared the mean heart dose, mean left ventricle dose, LAD maximum and mean dose, mean left lung receiving 20 Gy, 10 Gy, and 5 Gy of left lung volume, maximum and mean coronary artery of the right, maximum of right breast, and mean dose. Good target coverage was achieved with and without PERSBRA. When PERSBRA was used with IMRT, the mean dose of the heart decreased by 42%, the maximum dose of LAD decreased by 26.4%, and the mean dose of LAD decreased by 47.0%. The mean dose of the left ventricle decreased by 54.1%, the volume (V20) of the left lung that received 20 Gy decreased by 22.8%, the volume (V10) of the left lung that received 10 Gy decreased by 19.8%, the volume (V5) of the left lung that received 5 Gy decreased by 15.7%, and the mean dose of the left lung decreased by 23.3%. Using PERSBRA with IMRT greatly decreases the dose to organs at risk (left lung, heart, left ventricle, and LAD). This study found that PERSBRA with IMRT can achieve results similar to deep inspiration breath-hold radiotherapy (DIBH) in terms of reducing the heart radiation dose and the risk of developing heart disease in patients with left breast cancer who cannot undergo DIBH.
Collapse
|
9
|
Noblet C, Duthy M, Coste F, Saliou M, Samain B, Drouet F, Papazyan T, Moreau M. Implementation of volumetric-modulated arc therapy for locally advanced breast cancer patients: Dosimetric comparison with deliverability consideration of planning techniques and predictions of patient-specific QA results via supervised machine learning. Phys Med 2022; 96:18-31. [DOI: 10.1016/j.ejmp.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
|
10
|
Lamprecht B, Muscat E, Harding A, Howe K, Brown E, Barry T, Mai GT, Lehman M, Bernard A, Hargrave C, Harvey J. Comparison of whole breast dosimetry techniques - From 3DCRT to VMAT and the impact on heart and surrounding tissues. J Med Radiat Sci 2022; 69:98-107. [PMID: 34432386 PMCID: PMC8892436 DOI: 10.1002/jmrs.541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/07/2021] [Accepted: 08/07/2021] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Various techniques for whole breast radiation therapy (WBRT) have been reported to increase dose to contralateral tissues. Heart dose is of critical importance as there is no apparent dose threshold below which there is no risk. The aim of this study was to compare planning techniques for WBRT that achieves the best target dosimetry and lowest organ at risk (OAR) dose. METHODS Thirty early-stage whole breast patient datasets, 15 each left- and right-sided cases, were retrospectively selected. Five techniques were generated for each data set: three-dimensional conformal radiation therapy (3DCRT), hybrid intensity modulated radiation therapy (HYI), hybrid volumetric modulated arc therapy (VMAT) - (HYV), reduced arc VMAT - bowtie (BT), and BT flattening filter free (FFF) - (BTFFF). Plan goals and OARs were evaluated and compared between techniques. RESULTS BT had the highest median conformity index (CI) values (0.82, IQR: 0.80-0.85 left and 0.83, IQR 0.80-0.86 right). BT recorded lower mean heart doses (median value 1.19Gy, IQR: 0.90-1.55), and BTFFF recorded lower heart V2.5 Gy , V5 Gy ; median 3.96% (IQR: 2.90-6.80) and 0.90% (IQR: 0.50-1.50) respectively for left-sided patients. There was a statistically significant difference in all ipsilateral lung measures, (p < 0.001) with BTFFF producing significantly lower doses across all measures: mean, V5 Gy , V10 Gy and V20 Gy . CONCLUSION Overall BT and BTFFF techniques produced lower OAR doses and equivalent PTV coverage for WBRT. BT and BTFFF techniques increased contralateral lung and breast doses; however, these were within prescribed tolerances and comparable to results published in the literature.
Collapse
Affiliation(s)
- Brock Lamprecht
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
| | - Erika Muscat
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
| | - Amanda Harding
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
| | - Kate Howe
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
| | - Elizabeth Brown
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
- School of Clinical SciencesGardens PointQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Tamara Barry
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
| | - G Tao Mai
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
- School of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Margot Lehman
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
- School of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Anne Bernard
- Institute for Molecular BioscienceQFAB Bioinformatics,University of QueenslandBrisbaneQueenslandAustralia
| | - Catriona Hargrave
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
- School of Clinical SciencesGardens PointQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Jennifer Harvey
- Radiation Oncology DepartmentPrincess Alexandra HospitalCancer ServicesBrisbaneQueenslandAustralia
- School of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
11
|
Zhang W, Li R, You D, Su Y, Dong W, Ma Z. Dosimetry and Feasibility Studies of Volumetric Modulated Arc Therapy With Deep Inspiration Breath-Hold Using Optical Surface Management System for Left-Sided Breast Cancer Patients. Front Oncol 2020; 10:1711. [PMID: 33014848 PMCID: PMC7494967 DOI: 10.3389/fonc.2020.01711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/31/2020] [Indexed: 01/29/2023] Open
Abstract
Background During radiotherapy (RT) procedure of breast cancer, portions of the heart and lung will receive some radiation dose, which may result in acute and late toxicities. In the current study, we report the experience of our single institution with organs at risk (OARs)–sparing RT with deep inspiration breath hold (DIBH) using an Optical Surface Management System (OSMS) and compare the dosimetric parameters with that of free breathing (FB). Patients and Methods Forty-eight cases diagnosed as early stage left-sided breast cancer scheduled for postoperative RT were enrolled. The OSMS was used to monitor the breathing magnitude and track the real-time respiratory status, which can control a stable lung and heart volume during RT delivery under DIBH. We did the dosimetric analysis of the heart, left anterior descending (LAD) coronary artery, lungs, and contralateral breast under FB and DIBH plans. Results Compared with FB–volumetric-modulated arc therapy (FB-VMAT), DIBH-VMAT resulted in significantly changed volumes to the heart and lungs receiving irradiation dose. The average mean heart dose and average D2%, V5, and V10 showed significant differences between the DIBH and FB techniques. For the LAD coronary artery, we found significantly reduced average mean dose, D2%, and V10 with DIBH. Similar results were also found in the lungs and contralateral breast. The use of flattening-filter–free decreased treatment time compared with the flat beam mode in our VMAT (p < 0.05). For the 48 patients, there were no significant differences in the lateral, longitudinal, and vertical directions between OSMS and cone beam CT. Conclusions DIBH-VMAT with OSMS is very feasible in daily practice with excellent patient compliance in our single-center experience. Note that OSMS is an effective tool that may allow easier-to-achieve precise positioning and better and shorter position-verify time. Meanwhile, compared with FB, DIBH was characterized by lower doses to OARs, which may reduce the probability of cardiac and pulmonary complications in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruisheng Li
- Department of Medical Imaging, Yantai Yuhuangding Hospital, Yantai, China
| | - Dong You
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yi Su
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wei Dong
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Zhao Ma
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
12
|
Song J, Tang T, Caudrelier JM, Bélec J, Chan J, Lacasse P, Aldosary G, Nair V. Dose-sparing effect of deep inspiration breath hold technique on coronary artery and left ventricle segments in treatment of breast cancer. Radiother Oncol 2020; 154:101-109. [PMID: 32950530 DOI: 10.1016/j.radonc.2020.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE The risk of radiation-induced cardiac injury remains a challenging problem in the treatment of breast cancer. Certain cardiac structures receive higher doses than others, which results in variable frequencies of radiation-induced injuries across these structures. Radiation dose can be reduced using the deep inspiration breath hold (DIBH) technique. We aimed to investigate the dose reductions from DIBH in individual cardiac segments. MATERIALS AND METHODS A dosimetric analysis was performed on left-sided breast cancer patients who underwent breast-conserving surgery and whole breast irradiation. Radiation doses to the cardiac structures were compared between the DIBH and free-breathing (FB) techniques and the dose reductions with DIBH were correlated to the lung expansion. RESULTS For the 75 patients included in our study, DIBH effectively reduced doses to the heart, left lung, left anterior descending coronary artery (LAD) and left ventricle (LV), but the degree of dose reductions was variable across different structures. The absolute dose reductions were greatest in the distal LAD (14.4 Gy) and apical LV (12.1 Gy) segments, compared with the other LAD (middle 9.7 Gy, proximal 1.6 Gy) and LV (anterior 5.3 Gy, lateral 2.9 Gy, septal 2.0 Gy, inferior 0.2 Gy) segments. Left lung expansion was significantly correlated with the dose reductions in the LAD (Spearman's rank correlation coefficient, ρ, 0.304) and LV (ρ, 0.420) segments. CONCLUSIONS Our study demonstrates the dose-sparing effects of DIBH in various cardiac structures, especially the distal LAD and apical LV segments. The large dose reductions seen in the distal LAD and apical LV segments could potentially translate into clinical benefit of reduced cardiac toxicity, as these structures have been previously shown to receive the highest doses and are associated with radiation-induced injury.
Collapse
Affiliation(s)
- Jiheon Song
- Division of Radiation Oncology, The Ottawa Hospital, Canada.
| | - Terence Tang
- Faculty of Medicine, University of Ottawa, Canada
| | | | - Jason Bélec
- Department of Medical Physics, The Ottawa Hospital, Canada
| | - Jessica Chan
- Division of Radiation Oncology, The Ottawa Hospital, Canada
| | | | | | - Vimoj Nair
- Division of Radiation Oncology, The Ottawa Hospital, Canada
| |
Collapse
|
13
|
Quirk S, Grendarova P, Phan T, Conroy L, Burke B, Long K, Thind K, Cao J, Craighead P, Olivotto IA, Roumeliotis M. A retrospective analysis to demonstrate achievable dosimetry for the left anterior descending artery in left-sided breast cancer patients treated with radiotherapy. Radiother Oncol 2020; 148:167-173. [DOI: 10.1016/j.radonc.2020.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
|
14
|
Yeh TC, Chi MS, Chi KH, Hsu CH. Evaluation of abches and volumetric modulated arc therapy under deep inspiration breath-hold technique for patients with left-sided breast cancer: A retrospective observational study. Medicine (Baltimore) 2019; 98:e17340. [PMID: 31574873 PMCID: PMC6775396 DOI: 10.1097/md.0000000000017340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Radiotherapy after breast-conserving surgery or mastectomy has clinical benefits including reducing local recurrence and improving overall survival. Deep inspiration breath-hold (DIBH) technique using the Abches system is an easy and practical method to reduce radiation dose to the heart and lungs. This retrospective study was proposed to investigate the dosimetric difference between Abches system and free breathing technique in treating left-sided breast cancer.Eligible patients underwent computed tomography (CT) scans to acquire both free breathing (FB) and DIBH technique data using the Abches. For each patient, both FB and DIBH image sets were planned based on the volumetric modulated arc therapy (VMAT). Radiation dose to the heart, ipsilateral lung, and contralateral lung was compared between the Abches system and FB.No significant differences in the planning target volume (PTV) (674.58 vs 665.88 cm, P = .29), mean dose (52.28 vs 52.03 Gy, P = .13), and volume received at the prescribed dose (Vpd) (94.66% vs 93.92%, P = .32) of PTV were observed between the FB and DIBH plans. Significant differences were found in mean heart (6.71 Gy vs 4.21 Gy, P < .001), heart V5 (22.73% vs 14.39%, P = .002), heart V20 (10.96% vs. 5.62%, P < .001), mean left lung (11.51 vs 10.07 Gy, P = .01), left lung V20 (22.88% vs 19.53%, P = .02), left lung V30 (18.58 vs 15.27%, P = .005), and mean right lung dose (.89 vs 72 Gy, P = .03).This is the first report on reduced mean left lung, mean right lung dose, and V20 of left lung using VMAT and Abches. The combination of Abches and VMAT can practically and efficiently reduce extraradiation doses to the heart and lungs.
Collapse
Affiliation(s)
- Tien-Chi Yeh
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho Su Memorial Hospital
| | - Mau-Shin Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho Su Memorial Hospital
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho Su Memorial Hospital
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Hsien Hsu
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho Su Memorial Hospital
| |
Collapse
|
15
|
Laaksomaa M, Sarudis S, Rossi M, Lehtonen T, Pehkonen J, Remes J, Luukkanen H, Skyttä T, Kapanen M. AlignRT ® and Catalyst™ in whole-breast radiotherapy with DIBH: Is IGRT still needed? J Appl Clin Med Phys 2019; 20:97-104. [PMID: 30861276 PMCID: PMC6414178 DOI: 10.1002/acm2.12553] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Surface guided radiotherapy (SGRT) is reported as a feasible setup technique for whole‐breast radiotherapy in deep inspiration breath hold (DIBH), but position errors of bony structures related to deeper parts of the target are not fully known. The aim of this study was to estimate patient setup accuracy and margins obtained with two different SGRT workflows with and without daily kV‐ and/or MV‐based image guidance (IGRT). Methods A total of 50 breast cancer patients were treated in DIBH, using SGRT for the patient setup, and IGRT for isocenter corrections. The patients were treated at two different departments, one using AlignRT® (25 patients) and the other using Catalyst™ (25 patients). Inter‐fractional position errors were analyzed retrospectively in orthogonal and tangential setup images, and analyzed with and without IGRT. Results In the orthogonal kV‐kV images, the systematic residual errors of the bony structures were ≤ 3 mm in both groups with SGRT‐only. When fine‐adjusted by daily IGRT, the errors decreased to ≤ 2 mm; except for the shoulder joint. The residual errors of the ribs in tangential images were between 1 and 2 mm with both workflows. The heart planning margins were between 3 and 7 mm. Conclusions The frequency of IGRT may be considerably reduced with a well‐planned SGRT‐workflow for whole‐breast DIBH with residual errors ≤ 3 mm. This accuracy can be further improved with an IGRT scheme.
Collapse
Affiliation(s)
- Marko Laaksomaa
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Sebastian Sarudis
- Department of Medical Physics, Länssjukhuset Ryhov, Jönköping, Sweden
| | - Maija Rossi
- Department of Oncology, Tampere University Hospital, Tampere, Finland.,Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| | - Turkka Lehtonen
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Jani Pehkonen
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Jenny Remes
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Helmi Luukkanen
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Tanja Skyttä
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Mika Kapanen
- Department of Oncology, Tampere University Hospital, Tampere, Finland.,Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
16
|
Svensson H, Lundstedt D, Hällje M, Gustafsson M, Chakarova R, Karlsson P. Integration of biological factors in the treatment plan evaluation in breast cancer radiotherapy. Phys Imaging Radiat Oncol 2019; 11:54-60. [PMID: 33458278 PMCID: PMC7807607 DOI: 10.1016/j.phro.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
This study suggests a PQM methodology for breast cancer radiotherapy evaluation. The risk/benefit balance estimation includes tumor biology and smoking status. Smoking status influenced risk/benefit balance for different treatment techniques. Survival benefit dominated for all patients with high-risk breast cancer. Survival benefit for smokers with low- or intermediate- risk cancer was not seen.
Background/purpose Tumor biology and patient smoking status have clear effects on the benefit of breast radiotherapy. This study developed treatment evaluation strategies that integrated dosimetry, tumor aggressiveness and smoking status for patients undergoing hypo-fractionated whole breast irradiation with simultaneous integrated boost. Materials/methods The evaluation method Plan Quality Metrics (PQM) was adapted for breast cancer. Radiotherapy (RT) benefit was assessed for three levels of tumor aggressiveness; RT risk was estimated using mean dose to organs at risk and published Excess Relative Risk per Gy data for lung cancer and cardiac mortality for smokers and non-smokers. Risk for contralateral breast cancer was also evaluated. PQM and benefit/risk was applied to four patient groups (n = 10 each). Plans using 3D conformal radiotherapy (3DCRT), 3DCRT plus intensity-modulated radiation therapy (IMRT), 3DCRT plus volumetric modulated arc therapy (VMAT) and VMAT were evaluated for each patient. Results 3DCRT-IMRT hybrid planning resulted in higher PQM score (median 87.0 vs. 3DCRT 82.4, p < 0.01), better dose conformity, lower doses to the heart, lungs and contralateral breast. Survival benefit was most predominant for patients with high-risk breast cancer (>7% and >4.5% gain for non-smokers and smokers). For smokers with intermediate- or low-risk breast cancer, RT induced mortality risk dominated for all techniques. When considering the risk of local recurrence, RT benefitted also smokers (>5% and >2% for intermediate- and low-risk cancer). Conclusions PQM methodology was suggested for breast cancer radiotherapy evaluation. Further validation is needed. RT was beneficial for all patients with high risk of recurrence. A survival benefit for smokers with low or intermediate risk of recurrence could not be confirmed.
Collapse
Affiliation(s)
- Henrik Svensson
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Corresponding author at: Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gula stråket 2B, 413 45 Gothenburg, Sweden.
| | - Dan Lundstedt
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Hällje
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Gustafsson
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roumiana Chakarova
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
17
|
Russo S, Esposito M, Hernandez V, Saez J, Rossi F, Paoletti L, Pini S, Bastiani P, Reggiori G, Nicolini G, Vanetti E, Tomatis S, Scorsetti M, Mancosu P. Does deep inspiration breath hold reduce plan complexity? Multicentric experience of left breast cancer radiotherapy with volumetric modulated arc therapy. Phys Med 2019; 59:79-85. [PMID: 30928069 DOI: 10.1016/j.ejmp.2019.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/14/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Volumetric modulated arc therapy (VMAT) for left breast treatments allows heart sparing without compromising PTV coverage. However, this technique may require highly complex plans. Deep Inspiration Breath Hold (DIBH) procedure increases the heart-to-breast distance, facilitating the dose sparing of the heart. The aim of the present work was to investigate if the cardiac-sparing benefits of the DIBH technique were achieved with lower plan modulation and complexity than Free Breathing (FB) treatments. METHODS AND MATERIALS Ten left side breast cases were considered by two centers with different treatment planning systems (TPS) and Linacs. VMAT plans were elaborated in FB and DIBH according to the same protocol. Plan complexity was evaluated by scoring several complexity indices. A new global score index accounting for both plan quality and dosimetric parameters was defined. Pre-treatment QA was performed for all VMAT plans using EPID and Epiqa software. RESULTS DIBH-VMAT plans were associated with significant PTV coverage improvement and mean heart dose reduction (p < 0.003), increasing the resulting global score index. All the evaluated complexity indices showed lower plan complexity for DIBH plans than FB ones, but only in few cases the results were statistically significant. All plans passed the gamma analysis with the selected criteria. CONCLUSIONS The DIBH technique is superior to the FB technique when the heart needs further sparing, allowing a reduction of the doses to OARs with a slightly lower degree of plan complexity and without compromising plan deliverability. These benefits were achieved regardless of the technological scenarios adopted.
Collapse
Affiliation(s)
| | - Marco Esposito
- Medical Physics Unit, AUSL Toscana Centro, Florence, Italy
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - Jordi Saez
- Radiation Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Lisa Paoletti
- Radiotherapy Unit, AUSL Toscana Centro, Florence, Italy
| | - Silvia Pini
- Medical Physics Unit, AUSL Toscana Centro, Florence, Italy
| | | | - Giacomo Reggiori
- Medical Physicist Group of Radiotherapy and Radiosurgery Dept., Humanitas Clinical and Research Hospital IRCCS, Milan-Rozzano, Italy
| | - Giorgia Nicolini
- Medical Physics Team, Radiqa Developments, Bellinzona, Switzerland
| | - Eugenio Vanetti
- Medical Physics Team, Radiqa Developments, Bellinzona, Switzerland
| | - Stefano Tomatis
- Medical Physicist Group of Radiotherapy and Radiosurgery Dept., Humanitas Clinical and Research Hospital IRCCS, Milan-Rozzano, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Hospital IRCCS, Milan-Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy
| | - Pietro Mancosu
- Medical Physicist Group of Radiotherapy and Radiosurgery Dept., Humanitas Clinical and Research Hospital IRCCS, Milan-Rozzano, Italy
| |
Collapse
|
18
|
Cozzi L, Fogliata A, Thompson S, Franzese C, Franceschini D, de Rose F, Tomatis S, Scorsetti M. Critical Appraisal of the Treatment Planning Performance of Volumetric Modulated Arc Therapy by Means of a Dual Layer Stacked Multileaf Collimator for Head and Neck, Breast, and Prostate. Technol Cancer Res Treat 2019; 17:1533033818803882. [PMID: 30295172 PMCID: PMC6176542 DOI: 10.1177/1533033818803882] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose: To ascertain whether a new delivery system (the Halcyon system) equipped with
dual-layer stacked multileaf collimator operating in a mode, which allows
independent, fully interdigitating motion of both layers and 6 flattening
filter free energy, could generate plans of high clinical quality compared
to a well-established delivery system with single layer multileaf
collimator. Methods: Twenty patients in each of the 3 groups (advanced head and neck, breast, and
high-risk prostate) were selected for an in silico planning study. For each
patient, reference plans were developed for volumetric modulated arc therapy
technique with 6 MV photon beams from a TrueBeam linear accelerator and
compared against the corresponding plans for the Halcyon system. Plan
comparison was performed in terms of dose volume histogram quantitative
analysis. Results: Concerning the planning target volumes, with identical dose calculation and
optimization algorithms and with identical planning techniques, no
clinically relevant difference in coverage (D98%), hot spot
(D2%), or homogeneity was observed. Similarly, for all the
organs at risk, the dosimetric findings showed that (1) all planning
constraints were met by the 2 delivery systems and (2) although statistical
significant differences were reported for most of the parameters but none of
these were judged of potential clinical relevance. Conclusion: The data presented confirmed that the new delivery system can generate
treatment plans for volumetric modulated arc therapy with the same
dosimetric quality of what is achievable with other systems routinely used
in the clinics without significantly changing the current practice.
Additional studies which customize the optimization parameters for each
delivery device would complement the spectrum of investigations.
Collapse
Affiliation(s)
- Luca Cozzi
- 1 Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Milan-Rozzano, Italy.,2 Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy
| | - Antonella Fogliata
- 1 Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Milan-Rozzano, Italy
| | | | - Ciro Franzese
- 1 Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Milan-Rozzano, Italy
| | - Davide Franceschini
- 1 Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Milan-Rozzano, Italy
| | - Fiorenza de Rose
- 1 Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Milan-Rozzano, Italy
| | - Stefano Tomatis
- 1 Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Milan-Rozzano, Italy
| | - Marta Scorsetti
- 1 Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Milan-Rozzano, Italy.,2 Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy
| |
Collapse
|
19
|
Zeverino M, Petersson K, Kyroudi A, Jeanneret-Sozzi W, Bourhis J, Bochud F, Moeckli R. A treatment planning comparison of contemporary photon-based radiation techniques for breast cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 7:32-38. [PMID: 33458403 PMCID: PMC7807600 DOI: 10.1016/j.phro.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/24/2018] [Accepted: 08/17/2018] [Indexed: 01/03/2023]
Abstract
Background and purpose Adjuvant radiation therapy (RT) of the whole breast (WB) is still the standard treatment for early breast cancer. A variety of radiation techniques is currently available according to different delivery strategies. This study aims to provide a comparison of six treatment planning strategies commonly adopted for breast-conserving adjuvant RT and to use the Pareto concept in an attempt to assess the degree of plan optimization. Materials and methods Two groups of six left- and five right-sided cases with different dose prescriptions were involved (22 patients in total). Field-in-Field (FiF), two and four Fields static-IMRT (sIMRT-2f and sIMRT-4f), Volumetric-Modulated-Arc-Therapy (VMAT), Helical Tomotherapy (HT) and Static-Angles Tomotherapy (TomoDirect™ – TD) were planned. Dose volume constraints were taken from the RTOG protocol 1005. Pareto fronts were built for a selected case to evaluate the reliability of the plan optimization process. Results The best target dose coverage was observed for TD able to improve significantly (p < 0.01) the V95% in a range varying from 1.2% to 7.5% compared to other techniques. The V105% was significantly reduced up to 2% for HT (p < 0.05) although FiF and VMAT produced similar values. For the ipsilateral lung, V5Gy, V10Gy and Dmean were significantly lower than all other techniques (p < 0.02) for TD while the lowest value of V20Gy was observed for HT. The maximum dose to contralateral breast was significantly lowest for TD (p < 0.02) and for FiF (p < 0.05). Minor differences were observed for the heart in left-sided patients. Plans for all tested techniques were found to lie on their respective Pareto fronts. Conclusions Overall, TD provided significantly better results in terms of target coverage and dose sparing of ipsilateral lung with respect to all other evaluated techniques. It also significantly minimized dose to contralateral breast together with FiF. Pareto front analysis confirmed the reliability of the optimization for a selected case.
Collapse
Affiliation(s)
- Michele Zeverino
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Kristoffer Petersson
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Archonteia Kyroudi
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Wendy Jeanneret-Sozzi
- Department of Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Francois Bochud
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
20
|
Tyran M, Tallet A, Resbeut M, Ferre M, Favrel V, Fau P, Moureau-Zabotto L, Darreon J, Gonzague L, Benkemouche A, Varela-Cagetti L, Salem N, Farnault B, Acquaviva MA, Mailleux H. Safety and benefit of using a virtual bolus during treatment planning for breast cancer treated with arc therapy. J Appl Clin Med Phys 2018; 19:463-472. [PMID: 29959819 PMCID: PMC6123145 DOI: 10.1002/acm2.12398] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose This study evaluates the benefit of a virtual bolus method for volumetric modulated arc therapy (VMAT) plan optimization to compensate breast modifications that may occur during breast treatment. Methods Ten files were replanned with VMAT giving 50 Gy to the breast and 47 Gy to the nodes within 25 fractions. The planning process used a virtual bolus for the first optimization, then the monitors units were reoptimized without bolus, after fixing the segments shapes. Structures and treatment planning were exported on a second scanner (CT) performed during treatment as a consequence to modifications in patient's anatomy. The comparative end‐point was clinical target volume's coverage. The first analysis compared the VMAT plans made using the virtual bolus method (VB‐VMAT) to the plans without using it (NoVB‐VMAT) on the first simulation CT. Then, the same analysis was performed on the second CT. Finally, the level of degradation of target volume coverage between the two CT using VB‐VMAT was compared to results using a standard technique of forward‐planned multisegment technique (Tan‐IMRT). Results Using a virtual bolus for VMAT does not degrade dosimetric results on the first CT. No significant result in favor of the NoVB‐VMAT plans was noted. The VB‐VMAT method led to significant better dose distribution on a second CT with modified anatomies compared to NoVB‐VMAT. The clinical target volume's coverage by 95% (V95%) of the prescribed dose was 98.9% [96.1–99.6] on the second CT for VB‐VMAT compared to 92.6% [85.2–97.7] for NoVB‐VMAT (P = 0.0002). The degradation of the target volume coverage for VB‐VMAT is not worse than for Tan‐IMRT: the median differential of V95% between the two CT was 0.9% for VMAT and 0.7% for Tan‐IMRT (P = 1). Conclusion This study confirms the safety and benefit of using a virtual bolus during the VMAT planning process to compensate potential breast shape modifications.
Collapse
Affiliation(s)
- Marguerite Tyran
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Agnes Tallet
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Michel Resbeut
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Marjorie Ferre
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Veronique Favrel
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Pierre Fau
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | | | - Julien Darreon
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Laurence Gonzague
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Ahcene Benkemouche
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | | | - Naji Salem
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Bertrand Farnault
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| | | | - Hugues Mailleux
- Department of Radiation-Oncology, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|