1
|
Shimizu H, Nakamura O, Sasaki K, Aoyama T, Kitagawa T, Kodaira T. Development of an external system for monitoring the couch speed in radiotherapy using continuous bed movement. J Appl Clin Med Phys 2024; 25:e14497. [PMID: 39264235 PMCID: PMC11540012 DOI: 10.1002/acm2.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE Total body irradiation before bone marrow transplantation for hematological malignancies using Radixact, a high-precision radiotherapy machine, can potentially reduce side effects and the risk of secondary malignancies. However, stable control of couch speed is critical, and direct assessment methods outlined in quality assurance guidelines are lacking. This study aims to develop a real-time couch speed verification system for the Radixact. METHODS The developed system used a linear encoder to measure couch speed directly. Accuracy was verified via a linear stage, comparing measurements with a laser distance sensor. After placing a phantom simulating the human body on the Radixact couch, the couch speed was verified using predefined speed plans. RESULTS Operating the linear stage at 0.1, 0.5, and 1.0 mm/s revealed that the maximum position error of the developed verification system compared to the laser distance sensor was nearly equivalent to the distance resolution of the system (0.05 mm/pulse), with negligible average speed error. When the Radixact couch operated at 0.1, 0.5, and 1.0 mm/s, the values obtained by the verification system agreed with the theoretical values within the sampling period (0.01 s) and distance resolution (0.05 mm). CONCLUSION The verification system developed provides real-time monitoring of the speed of the Radixact table, ensuring treatment effectiveness and patient safety. It would guarantee the couch speed's soundness and contribute to the "visualization" of safety.
Collapse
Affiliation(s)
- Hidetoshi Shimizu
- Department of Radiation OncologyAichi Cancer Center HospitalNagoyaAichiJapan
| | | | - Koji Sasaki
- Graduate School of Radiological TechnologyGunma Prefectural College of Health SciencesMaebashiGunmaJapan
| | - Takahiro Aoyama
- Department of Radiation OncologyAichi Cancer Center HospitalNagoyaAichiJapan
| | - Tomoki Kitagawa
- Department of Radiation OncologyAichi Cancer Center HospitalNagoyaAichiJapan
| | - Takeshi Kodaira
- Department of Radiation OncologyAichi Cancer Center HospitalNagoyaAichiJapan
| |
Collapse
|
2
|
Burckbuchler T, Dehaynin N, Niederst C, Bartolucci L, Elazhar H, Jarnet D, Arbor F, Meyer P. Influence of the Planning Parameters of a New Algorithm on the Dosimetric Quality, Beam-On Time and Delivery Accuracy of Tomotherapy Plans. Cancers (Basel) 2024; 16:1883. [PMID: 38791961 PMCID: PMC11119142 DOI: 10.3390/cancers16101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND This work aimed to determine the optimum VOLOTM Ultra algorithm parameters for tomotherapy treatments. METHODS 1056 treatment plans were generated with VOLOTM Ultra for 36 patients and six anatomical locations. The impact of varying four parameters was studied: the accelerated treatment (AT), leaf open/close time (LOT) cutoff, normal tissue objective (NTO) weight, and number of iterations. The beam-on time and dosimetric metrics were quantified for the target volumes and organs at risk (OARs). Delivery quality assurance measurements were obtained for 36 plans to assess the delivery accuracy. RESULTS The mean beam-on time for the helical tomotherapy and TomoDirect (TD) plans decreased by 26.6 ± 2.8% and 17.4 ± 4.3%, respectively, when the accelerated treatment parameter was increased from 0 to 10, at the expense of the planning target volume (PTV) coverage (2% lower D98%) and OAR dose (up to 15% increase). For TD plans, it seems preferable to systematically use an AT value of 10. Increasing the number of iterations beyond six seems unnecessary. In this study, an NTO weight of approximately 10 appears to be ideal and eliminates the need to use rings in the treatment plan. Finally, no correlation was found between the leaf open/close time cutoff and the delivery accuracy, while a leaf open/close cutoff of 60 ms seemed to degrade dosimetry quality. CONCLUSION Optimal values for the AT, LOT cutoff, NTO weight, and number of optimization rounds were identified and should help improve the management of patients whose tomotherapy treatments are planned with VOLOTM Ultra.
Collapse
Affiliation(s)
- Théo Burckbuchler
- Medical Physics Unit, Institut de Cancerologie de Strasbourg (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - Nicolas Dehaynin
- Medical Physics Unit, Institut de Cancerologie de Strasbourg (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - Claudine Niederst
- Medical Physics Unit, Institut de Cancerologie de Strasbourg (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - Laurent Bartolucci
- Medical Physics Unit, Institut de Cancerologie de Strasbourg (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - Halima Elazhar
- Medical Physics Unit, Institut de Cancerologie de Strasbourg (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - Delphine Jarnet
- Medical Physics Unit, Institut de Cancerologie de Strasbourg (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - Florence Arbor
- Medical Physics Unit, Institut de Cancerologie de Strasbourg (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
| | - Philippe Meyer
- Medical Physics Unit, Institut de Cancerologie de Strasbourg (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France
- Team IMAGeS, ICUBE Laboratory, University of Strasbourg, CNRS, UMR 7357, 67412 Illkirch, France
| |
Collapse
|
3
|
Xiao Q, Li G. Application and Challenges of Statistical Process Control in Radiation Therapy Quality Assurance. Int J Radiat Oncol Biol Phys 2024; 118:295-305. [PMID: 37604239 DOI: 10.1016/j.ijrobp.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Quality assurance (QA) is important for ensuring precision in radiation therapy. The complexity and resource-intensive nature of QA has increased with the continual evolution of equipment and techniques. An effective approach is to improve the process control technology and resource optimization. Statistical process control is an economical and efficient tool that has been widely used to monitor, control, and improve quality management processes and is now being increasingly used for radiation therapy QA. This article reviews the development and methodology of statistical process control technology, evaluates its suitability in radiation therapy QA practices, and assesses its importance and challenges in optimizing radiation therapy QA processes.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangjun Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Raveendran V, R GR, P T A, Bhasi S, C P R, Kinhikar RA. Moving towards process-based radiotherapy quality assurance using statistical process control. Phys Med 2023; 112:102651. [PMID: 37562233 DOI: 10.1016/j.ejmp.2023.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Monitoring Radiotherapy Quality Assurance (QA) using Statistical Process Control (SPC) methods has gained wide acceptance. The significance of understanding the SPC methodologies has increased among the medical physics community with the release of Task Group (TG) reports from the American Association of Physicists in Medicine (AAPM) on patient-specific QA (PSQA) (TG-218) and Proton therapy QA (TG-224). Even though these reports recommend using SPC for QA analysis, physicists have ambiguities and doubts in choosing proper SPC tools and methodologies. This review article summarises the utilisation of SPC methods for different Radiotherapy QAs published in the literature, such as PSQA, routine Linac QA and patient positional verification. QA analysis using SPC could assist the user in distinguishing between 'special' and 'routine' sources of variations in the QA, which can aid in reducing actions on false positive QA results. For improved PSQA monitoring, machine-specific, site-specific, and technique-specific Tolerance Limits and Action Limits derived from a two-stage SPC-based approach can be used. Adopting a combination of Shewhart's control charts and time-weighted control charts for routine Linac QA monitoring could add more insights to the QA process. Incorporating SPC tools into existing image review modules or introducing new SPC software packages specifically designed for clinical use can significantly enhance the image review process. Proper selection and having adequate knowledge of SPC tools are essential for efficient QA monitoring, which is a function of the type of QA data available, and the magnitude of process drift to be monitored.
Collapse
Affiliation(s)
- Vysakh Raveendran
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, Maharashtra, India.; Department of Physics, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari District, Tamil Nadu, India..
| | - Ganapathi Raman R
- Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamil Nadu, India
| | - Anjana P T
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, Maharashtra, India
| | - Saju Bhasi
- Division of Radiation Physics, Regional Cancer Centre, Trivandrum, India
| | - Ranjith C P
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, Maharashtra, India
| | - Rajesh Ashok Kinhikar
- Department of Medical Physics, Tata Memorial Centre, Homi Bhabha National Institute Parel, Mumbai, India
| |
Collapse
|
5
|
Li G, Xiao Q, Dai G, Wang Q, Bai L, Zhang X, Zhang X, Duan L, Zhong R, Bai S. Guaranteed performance of individual control chart used in gamma passing rate-based patient-specific quality assurance. Phys Med 2023; 109:102581. [PMID: 37084678 DOI: 10.1016/j.ejmp.2023.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
PURPOSE To assess the effect of sampling variability on the performance of individual charts (I-charts) for PSQA and provide a robust and reliable method for unknown PSQA processes. MATERIALS AND METHODS A total of 1327 pretreatment PSQAs were analyzed. Different datasets with samples in the range of 20-1000 were used to estimate the lower control limit (LCL). Based on the iterative "Identify-Eliminate-Recalculate" and direct calculation without any outlier filtering procedures, five I-charts methods, namely the Shewhart, quantile, scaled weighted variance (SWV), weighted standard deviation (WSD), and skewness correction (SC) method, were used to compute the LCL. The average run length (ARL0) and false alarm rate (FAR0) were calculated to evaluate the performance of LCL. RESULTS The ground truth of the values of LCL, FAR0, and ARL0 obtained via in-control PSQAs were 92.31%, 0.135%, and 740.7, respectively. Further, for in-control PSQAs, the width of the 95% confidence interval of LCL values for all methods tended to decrease with the increase in sample size. In all sample ranges of in-control PSQAs, only the median LCL and ARL0 values obtained via WSD and SWV methods were close to the ground truth. For the actual unknown PSQAs, based on the "Identify-Eliminate-Recalculate" procedure, only the median LCL values obtained by the WSD method were closest to the ground truth. CONCLUSIONS Sampling variability seriously affected the I-chart performance in PSQA processes, particularly for small samples. For unknown PSQAs, the WSD method based on the implementation of the iterative "Identify-Eliminate-Recalculate" procedure exhibited sufficient robustness and reliability.
Collapse
Affiliation(s)
- Guangjun Li
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing Xiao
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guyu Dai
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiang Wang
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long Bai
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangbin Zhang
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangyu Zhang
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lian Duan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, United States
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sen Bai
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Analysis of clinical patient-specific pre-treatment quality assurance with the new helical tomotherapy platform, following the AAPM TG-218 report. Radiat Oncol 2021; 16:226. [PMID: 34809645 PMCID: PMC8607724 DOI: 10.1186/s13014-021-01952-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose This study presents patient-specific quality assurance (QA) results from the first 395 clinical cases for the new helical TomoTherapy® platform (Radixact) coupled with dedicated Precision TPS. Methods The passing rate of the Gamma Index (GP%) of 395 helical QA of patient-specific tomotherapy, acquired with ArcCHECK, is presented, analysed and correlated to various parameters of the plan. Following TG-218 recommendations, the clinic specific action limit (ALcs) and tolerance limit (TLcs) were calculated for our clinic and monitored during the analysed period. Results The mean values (± 1 standard deviation) of GP% (3%/2 mm) (both global and local normalization) are: 97.6% and 90.9%, respectively. The proposed ALcs and TLcs, after a period of two years’ process monitoring are 89.4% and 91.1% respectively. Conclusions The phantom measurements closely match the planned dose distributions, demonstrating that the calculation accuracy of the new Precision TPS and the delivery accuracy of the Radixact unit are adequate, with respect to international guidelines and reports. Furthermore, a first correlation with the planning parameters was made. Action and tolerance limits have been set for the new Radixact Linac.
Collapse
|
7
|
Performance assessment of surface-guided radiation therapy and patient setup in head-and-neck and breast cancer patients based on statistical process control. Phys Med 2021; 89:243-249. [PMID: 34428608 DOI: 10.1016/j.ejmp.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To assess the effectiveness of SGRT in clinical applications through statistical process control (SPC). METHODS Taking the patients' positioning through optical surface imaging (OSI) as a process, the average level of process execution was defined as the process mean. Setup errors detected by cone-beam computed tomography (CBCT) and OSI were extracted for head-and-neck cancer (HNC) and breast cancer patients. These data were used to construct individual and exponentially weighted moving average (EWMA) control charts to analyze outlier fractions and small process shifts from the process mean. Using the control charts and process capability indices derived from this process, the patient positioning-related OSI performance and setup error were analyzed for each patient. RESULTS Outlier fractions and small shifts from the process mean that are indicative of setup errors were found to be widely prevalent, with the outliers randomly distributed between fractions. A systematic error of up to 1.6 mm between the OSI and CBCT results was observed in all directions, indicating a significantly degraded OSI performance. Adjusting this systematic error for each patient using setup errors of the first five fractions could effectively mitigate these effects. Process capability analysis following adjustment for systematic error indicated that OSI performance was acceptable (process capability index Cpk = 1.0) for HNC patients but unacceptable (Cpk < 0.75) for breast cancer patients. CONCLUSION SPC is a powerful tool for detecting the outlier fractions and process changes. Our application of SPC to patient-specific evaluations validated the suitability of OSI in clinical applications involving patient positioning.
Collapse
|
8
|
Chang KH, Lee YH, Park BH, Han MC, Kim J, Kim H, Cho MS, Kang H, Lee H, Kim DW, Park K, Cho J, Kim YB, Kim JS, Hong CS. Statistical Analysis of Treatment Planning Parameters for Prediction of Delivery Quality Assurance Failure for Helical Tomotherapy. Technol Cancer Res Treat 2020; 19:1533033820979692. [PMID: 33302821 PMCID: PMC7734483 DOI: 10.1177/1533033820979692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: This study aimed to investigate the parameters with a significant impact on delivery quality assurance (DQA) failure and analyze the planning parameters as possible predictors of DQA failure for helical tomotherapy. Methods: In total, 212 patients who passed or failed DQA measurements were retrospectively included in this study. Brain (n = 43), head and neck (n = 37), spinal (n = 12), prostate (n = 36), rectal (n = 36), pelvis (n = 13), cranial spinal irradiation and a treatment field including lymph nodes (n = 24), and other types of cancer (n = 11) were selected. The correlation between DQA results and treatment planning parameters were analyzed using logistic regression analysis. Receiver operating characteristic (ROC) curves, areas under the curves (AUCs), and the Classification and Regression Tree (CART) algorithm were used to analyze treatment planning parameters as possible predictors for DQA failure. Results: The AUC for leaf open time (LOT) was 0.70, and its cut-off point was approximately 30%. The ROC curve for the predicted probability calculated when the multivariate variable model was applied showed an AUC of 0.815. We confirmed that total monitor units, total dose, and LOT were significant predictors for DQA failure using the CART. Conclusions: The probability of DQA failure was higher when the percentage of LOT below 100 ms was higher than 30%. The percentage of LOT below 100 ms should be considered in the treatment planning process. The findings from this study may assist in the prediction of DQA failure in the future.
Collapse
Affiliation(s)
- Kyung Hwan Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hyun Lee
- Eretec Inc. 401, Simin-daero, Dongan-gu, Anyang-si, Gyeonggi-do, South Korea
| | - Byung Hun Park
- Eretec Inc. 401, Simin-daero, Dongan-gu, Anyang-si, Gyeonggi-do, South Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihun Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Seok Cho
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Hyokyeong Kang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho Lee
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwangwoo Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| |
Collapse
|
9
|
Santos T, Ventura T, Mateus J, Capela M, Lopes MDC. On the complexity of helical tomotherapy treatment plans. J Appl Clin Med Phys 2020; 21:107-118. [PMID: 32363800 PMCID: PMC7386195 DOI: 10.1002/acm2.12895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Multiple metrics are proposed to characterize and compare the complexity of helical tomotherapy (HT) plans created for different treatment sites. METHODS A cohort composed of 208 HT plans from head and neck (105), prostate (51) and brain (52) tumor sites was considered. For each plan, 14 complexity metrics were calculated. Those metrics evaluate the percentage of leaves with small opening times or approaching the projection duration, the percentage of closed leaves, the amount of tongue-and-groove effect, and the overall modulation of the planned sinogram. To enable data visualization, an approach based on principal component analysis was followed to reduce the dataset dimensionality. This allowed the calculation of a global plan complexity score. The correlation between plan complexity and pretreatment verification results using the Spearman's rank correlation coefficients was investigated. RESULTS According to the global score, the most complex plans were the head and neck tumor cases, followed by the prostate and brain lesions irradiated with stereotactic technique. For almost all individual metrics, head and neck plans confirmed to be the plans with the highest complexity. Nevertheless, prostate cases had the highest percentage of leaves with an opening time approaching the projection duration, whereas the stereotactic brain plans had the highest percentage of closed leaves per projection. Significant correlations between some of the metrics and the pretreatment verification results were identified for the stereotactic brain group. CONCLUSIONS The proposed metrics and the global score demonstrated to be useful to characterize and quantify the complexity of HT plans of different treatment sites. The reported differences inter- and intra-group may be valuable to guide the planning process aiming at reducing uncertainties and harmonize planning strategies.
Collapse
Affiliation(s)
- Tania Santos
- Physics Department, University of Coimbra, Coimbra, Portugal.,Medical Physics Department, IPOCFG, E.P.E, Coimbra, Portugal
| | - Tiago Ventura
- Medical Physics Department, IPOCFG, E.P.E, Coimbra, Portugal
| | - Josefina Mateus
- Medical Physics Department, IPOCFG, E.P.E, Coimbra, Portugal
| | - Miguel Capela
- Medical Physics Department, IPOCFG, E.P.E, Coimbra, Portugal
| | | |
Collapse
|