1
|
Xu Y, Zhang B, Zhou F, Yi YP, Yang XL, Ouyang X, Hu H. Development of machine learning-based personalized predictive models for risk evaluation of hepatocellular carcinoma in hepatitis B virus-related cirrhosis patients with low levels of serum alpha-fetoprotein. Ann Hepatol 2024; 29:101540. [PMID: 39151891 DOI: 10.1016/j.aohep.2024.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/31/2024] [Accepted: 06/05/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION AND OBJECTIVES The increasing incidence of hepatocellular carcinoma (HCC) in China is an urgent issue, necessitating early diagnosis and treatment. This study aimed to develop personalized predictive models by combining machine learning (ML) technology with a demographic, medical history, and noninvasive biomarker data. These models can enhance the decision-making capabilities of physicians for HCC in hepatitis B virus (HBV)-related cirrhosis patients with low serum alpha-fetoprotein (AFP) levels. PATIENTS AND METHODS A total of 6,980 patients treated between January 2012 and December 2018 were included. Pre-treatment laboratory tests and clinical data were obtained. The significant risk factors for HCC were identified, and the relative risk of each variable affecting its diagnosis was calculated using ML and univariate regression analysis. The data set was then randomly partitioned into validation (20 %) and training sets (80 %) to develop the ML models. RESULTS Twelve independent risk factors for HCC were identified using Gaussian naïve Bayes, extreme gradient boosting (XGBoost), random forest, and least absolute shrinkage and selection operation regression models. Multivariate analysis revealed that male sex, age >60 years, alkaline phosphate >150 U/L, AFP >25 ng/mL, carcinoembryonic antigen >5 ng/mL, and fibrinogen >4 g/L were the risk factors, whereas hypertension, calcium <2.25 mmol/L, potassium ≤3.5 mmol/L, direct bilirubin >6.8 μmol/L, hemoglobin <110 g/L, and glutamic-pyruvic transaminase >40 U/L were the protective factors in HCC patients. Based on these factors, a nomogram was constructed, showing an area under the curve (AUC) of 0.746 (sensitivity = 0.710, specificity=0.646), which was significantly higher than AFP AUC of 0.658 (sensitivity = 0.462, specificity=0.766). Compared with several ML algorithms, the XGBoost model had an AUC of 0.832 (sensitivity = 0.745, specificity=0.766) and an independent validation AUC of 0.829 (sensitivity = 0.766, specificity = 0.737), making it the top-performing model in both sets. The external validation results have proven the accuracy of the XGBoost model. CONCLUSIONS The proposed XGBoost demonstrated a promising ability for individualized prediction of HCC in HBV-related cirrhosis patients with low-level AFP.
Collapse
Affiliation(s)
- Yuan Xu
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Bei Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Fan Zhou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Ying-Ping Yi
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xin-Lei Yang
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xiao Ouyang
- Quiclinic Technology Co., Ltd., Nanchang, PR China
| | - Hui Hu
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
2
|
Tong W, Zhong J, Yang Q, Lin H, Chen B, Lu T, Chen J, Luo N. Single-cell and bulk transcriptomic datasets enable the development of prognostic models based on dynamic changes in the tumor immune microenvironment in patients with hepatocellular carcinoma and portal vein tumor thrombus. Front Immunol 2024; 15:1414121. [PMID: 39530087 PMCID: PMC11550977 DOI: 10.3389/fimmu.2024.1414121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) patients exhibiting portal vein tumor thrombosis (PVTT) face a high risk of rapid malignant progression and poor outcomes, with this issue being compounded by a lack of effective treatment options. The integration of bulk RNA-sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) datasets focused on samples from HCC patients with PVTT has the potential to yield unprecedented insight into the dynamic changes in the tumor microenvironment (TME) and associated immunological characteristics in these patients, providing an invaluable tool for the reliable prediction of disease progression and treatment responses. Methods scRNA-seq data from both primary tumor (PT) and PVTT cells were downloaded from the Gene Expression Omnibus (GEO) database, while the International Cancer Genome Consortium (ICGC) and Cancer Genome Atlas (TCGA) databases were used to access bulk RNA-seq datasets. scRNA-seq, clustering, GSVA enrichment, mutational profiling, and predictive immunotherapeutic treatment analyses were conducted using these data with the goal of systematically assessing the heterogeneity of PT and PVTT cells and establishing a model capable of predicting immunotherapeutic and prognostic outcomes in patients with HCC. Results These analyses revealed that PVTT cells exhibited patterns of tumor proliferation, stromal activation, and low levels of immune cell infiltration, presenting with immune desert and immune rejection-like phenotypes. PT cells, in contrast, were found to exhibit a pattern of immunoinflammatory activity. Core PVTT-associated genes were clustered into three patterns consistent with the tumor immune rejection and immune desert phenotypes. An established clustering model was capable of predicting tumor inflammatory stage, subtype, TME stromal activity, and patient outcomes. PVTT signature genes were further used to establish a risk model, with the risk scores derived from this model providing a tool to evaluate patient clinicopathological features including clinical stage, tumor differentiation, histological subtype, microsatellite instability status, and tumor mutational burden. These risk scores were also able to serve as an independent predictor of patient survival outcomes, responses to adjuvant chemotherapy, and responses to immunotherapy. In vitro experiments were used to partially validate the biological prediction results. Conclusion These results offer new insight into the biological and immunological landscape of PVTT in HCC patients, By utilizing individual patient risk scores, providing an opportunity to guide more effective immunotherapeutic interventional efforts.
Collapse
Affiliation(s)
- Wangxia Tong
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jieyue Zhong
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiuyan Yang
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Han Lin
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Bolun Chen
- Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tao Lu
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ning Luo
- Department of Neurology, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
3
|
Lee KH, Lee J, Choi GH, Yun J, Kang J, Choi J, Kim KM, Kim N. Deep Learning-Based Prediction of Post-treatment Survival in Hepatocellular Carcinoma Patients Using Pre-treatment CT Images and Clinical Data. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01227-2. [PMID: 39147884 DOI: 10.1007/s10278-024-01227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The objective of this study was to develop and evaluate a model for predicting post-treatment survival in hepatocellular carcinoma (HCC) patients using their CT images and clinical information, including various treatment information. We collected pre-treatment contrast-enhanced CT images and clinical information including patient-related factors, initial treatment options, and survival status from 692 patients. The patient cohort was divided into a training cohort (n = 507), a testing cohort (n = 146), and an external CT cohort (n = 39), which included patients who underwent CT scans at other institutions. After model training using fivefold cross-validation, model validation was performed on both the testing cohort and the external CT cohort. Our cascaded model employed a 3D convolutional neural network (CNN) to extract features from CT images and derive final survival probabilities. These probabilities were obtained by concatenating previously predicted probabilities for each interval with the patient-related factors and treatment options. We utilized two consecutive fully connected layers for this process, resulting in a number of final outputs corresponding to the number of time intervals, with values representing conditional survival probabilities for each interval. Performance was assessed using the concordance index (C-index), the mean cumulative/dynamic area under the receiver operating characteristics curve (mC/D AUC), and the mean Brier score (mBS), calculated every 3 months. Through an ablation study, we found that using DenseNet-121 as the backbone network and setting the prediction interval to 6 months optimized the model's performance. The integration of multimodal data resulted in superior predictive capabilities compared to models using only CT images or clinical information (C index 0.824 [95% CI 0.822-0.826], mC/D AUC 0.893 [95% CI 0.891-0.895], and mBS 0.121 [95% CI 0.120-0.123] for internal test cohort; C index 0.750 [95% CI 0.747-0.753], mC/D AUC 0.819 [95% CI 0.816-0.823], and mBS 0.159 [95% CI 0.158-0.161] for external CT cohort, respectively). Our CNN-based discrete-time survival prediction model with CT images and clinical information demonstrated promising results in predicting post-treatment survival of patients with HCC.
Collapse
Affiliation(s)
- Kyung Hwa Lee
- Department of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jungwook Lee
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Gwang Hyeon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University, Seongnam, Republic of Korea
| | - Jihye Yun
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiseon Kang
- Department of Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jonggi Choi
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Kang Mo Kim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
4
|
Dudas D, Saghand PG, Dilling TJ, Perez BA, Rosenberg SA, El Naqa I. Deep Learning-Guided Dosimetry for Mitigating Local Failure of Patients With Non-Small Cell Lung Cancer Receiving Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 119:990-1000. [PMID: 38056778 DOI: 10.1016/j.ijrobp.2023.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) stereotactic body radiation therapy with 50 Gy/5 fractions is sometimes considered controversial, as the nominal biologically effective dose (BED) of 100 Gy is felt by some to be insufficient for long-term local control of some lesions. In this study, we analyzed such patients using explainable deep learning techniques and consequently proposed appropriate treatment planning criteria. These novel criteria could help planners achieve optimized treatment plans for maximal local control. METHODS AND MATERIALS A total of 535 patients treated with 50 Gy/5 fractions were used to develop a novel deep learning local response model. A multimodality approach, incorporating computed tomography images, 3-dimensional dose distribution, and patient demographics, combined with a discrete-time survival model, was applied to predict time to failure and the probability of local control. Subsequently, an integrated gradient-weighted class activation mapping method was used to identify the most significant dose-volume metrics predictive of local failure and their optimal cut-points. RESULTS The model was cross-validated, showing an acceptable performance (c-index: 0.72, 95% CI, 0.68-0.75); the testing c-index was 0.69. The model's spatial attention was concentrated mostly in the tumors' periphery (planning target volume [PTV] - internal gross target volume [IGTV]) region. Statistically significant dose-volume metrics in improved local control were BED Dnear-min ≥ 103.8 Gy in IGTV (hazard ratio [HR], 0.31; 95% CI, 015-0.63), V104 ≥ 98% in IGTV (HR, 0.30; 95% CI, 0.15-0.60), gEUD ≥ 103.8 Gy in PTV-IGTV (HR, 0.25; 95% CI, 0.12-0.50), and Dmean ≥ 104.5 Gy in PTV-IGTV (HR, 0.25; 95% CI, 0.12-0.51). CONCLUSIONS Deep learning-identified dose-volume metrics have shown significant prognostic power (log-rank, P = .003) and could be used as additional actionable criteria for treatment planning in NSCLC stereotactic body radiation therapy patients receiving 50 Gy in 5 fractions. Although our data do not confirm or refute that a significantly higher BED for the prescription dose is necessary for tumor control in NSCLC, it might be clinically effective to escalate the nominal prescribed dose from BED 100 to 105 Gy.
Collapse
Affiliation(s)
| | | | - Thomas J Dilling
- Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bradford A Perez
- Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Stephen A Rosenberg
- Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Issam El Naqa
- Departments of Machine Learning; Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
5
|
Ma L, Li C, Li H, Zhang C, Deng K, Zhang W, Xie C. Deep learning model based on contrast-enhanced MRI for predicting post-surgical survival in patients with hepatocellular carcinoma. Heliyon 2024; 10:e31451. [PMID: 38868019 PMCID: PMC11167253 DOI: 10.1016/j.heliyon.2024.e31451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Objective To develop a deep learning model based on contrast-enhanced magnetic resonance imaging (MRI) data to predict post-surgical overall survival (OS) in patients with hepatocellular carcinoma (HCC). Methods This bi-center retrospective study included 564 surgically resected patients with HCC and divided them into training (326), testing (143), and external validation (95) cohorts. This study used a three-dimensional convolutional neural network (3D-CNN) ResNet to learn features from the pretreatment MR images (T1WIpre, late arterial phase, and portal venous phase) and got the deep learning score (DL score). Three cox regression models were established separately using the DL score (3D-CNN model), clinical features (clinical model), and a combination of above (combined model). The concordance index (C-index) was used to evaluate model performance. Results We trained a 3D-CNN model to get DL score from samples. The C-index of the 3D-CNN model in predicting 5-year OS for the training, testing, and external validation cohorts were 0.746, 0.714, and 0.698, respectively, and were higher than those of the clinical model, which were 0.675, 0.674, and 0.631, respectively (P = 0.009, P = 0.204, and P = 0.092, respectively). The C-index of the combined model for testing and external validation cohorts was 0.750 and 0.723, respectively, significantly higher than the clinical model (P = 0.017, P = 0.016) and the 3D-CNN model (P = 0.029, P = 0.036). Conclusions The combined model integrating the DL score and clinical factors showed a higher predictive value than the clinical and 3D-CNN models and may be more useful in guiding clinical treatment decisions to improve the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Lidi Ma
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Congrui Li
- Department of Diagnostic Radiology, Hunan Cancer Hospital, Central South University, Changsha, PR China
| | - Haixia Li
- Bayer, Guangzhou, Guangdong, PR China
| | - Cheng Zhang
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Kan Deng
- Clinical Science, Philips Healthcare, Guangzhou, PR China
| | - Weijing Zhang
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Chuanmiao Xie
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
6
|
Dudas D, Dilling TJ, El Naqa I. Improved outcome models with denoising diffusion. Phys Med 2024; 119:103307. [PMID: 38325221 PMCID: PMC10939775 DOI: 10.1016/j.ejmp.2024.103307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE Radiotherapy outcome modelling often suffers from class imbalance in the modelled endpoints. One of the main options to address this issue is by introducing new synthetically generated datapoints, using generative models, such as Denoising Diffusion Probabilistic Models (DDPM). In this study, we implemented DDPM to improve performance of a tumor local control model, trained on imbalanced dataset, and compare this approach with other common techniques. METHODS A dataset of 535 NSCLC patients treated with SBRT (50 Gy/5 fractions) was used to train a deep learning outcome model for tumor local control prediction. The dataset included complete treatment planning data (planning CT images, 3D planning dose distribution and patient demographics) with sparsely distributed endpoints (6-7 % experiencing local failure). Consequently, we trained a novel conditional 3D DDPM model to generate synthetic treatment planning data. Synthetically generated treatment planning datapoints were used to supplement the real training dataset and the improvement in the model's performance was studied. Obtained results were also compared to other common techniques for class imbalanced training, such as Oversampling, Undersampling, Augmentation, Class Weights, SMOTE and ADASYN. RESULTS Synthetic DDPM-generated data were visually trustworthy, with Fréchet inception distance (FID) below 50. Extending the training dataset with the synthetic data improved the model's performance by more than 10%, while other techniques exhibited only about 4% improvement. CONCLUSIONS DDPM introduces a novel approach to class-imbalanced outcome modelling problems. The model generates realistic synthetic radiotherapy planning data, with a strong potential to increase performance and robustness of outcome models.
Collapse
Affiliation(s)
- D Dudas
- H. Lee Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, FL, USA; Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czechia.
| | - T J Dilling
- H. Lee Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, FL, USA
| | - I El Naqa
- H. Lee Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, FL, USA
| |
Collapse
|
7
|
Schön F, Kieslich A, Nebelung H, Riediger C, Hoffmann RT, Zwanenburg A, Löck S, Kühn JP. Comparative analysis of radiomics and deep-learning algorithms for survival prediction in hepatocellular carcinoma. Sci Rep 2024; 14:590. [PMID: 38182664 PMCID: PMC10770355 DOI: 10.1038/s41598-023-50451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
To examine the comparative robustness of computed tomography (CT)-based conventional radiomics and deep-learning convolutional neural networks (CNN) to predict overall survival (OS) in HCC patients. Retrospectively, 114 HCC patients with pretherapeutic CT of the liver were randomized into a development (n = 85) and a validation (n = 29) cohort, including patients of all tumor stages and several applied therapies. In addition to clinical parameters, image annotations of the liver parenchyma and of tumor findings on CT were available. Cox-regression based on radiomics features and CNN models were established and combined with clinical parameters to predict OS. Model performance was assessed using the concordance index (C-index). Log-rank tests were used to test model-based patient stratification into high/low-risk groups. The clinical Cox-regression model achieved the best validation performance for OS (C-index [95% confidence interval (CI)] 0.74 [0.57-0.86]) with a significant difference between the risk groups (p = 0.03). In image analysis, the CNN models (lowest C-index [CI] 0.63 [0.39-0.83]; highest C-index [CI] 0.71 [0.49-0.88]) were superior to the corresponding radiomics models (lowest C-index [CI] 0.51 [0.30-0.73]; highest C-index [CI] 0.66 [0.48-0.79]). A significant risk stratification was not possible (p > 0.05). Under clinical conditions, CNN-algorithms demonstrate superior prognostic potential to predict OS in HCC patients compared to conventional radiomics approaches and could therefore provide important information in the clinical setting, especially when clinical data is limited.
Collapse
Affiliation(s)
- Felix Schön
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| | - Aaron Kieslich
- OncoRay‑National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| | - Heiner Nebelung
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Carina Riediger
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ralf-Thorsten Hoffmann
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alex Zwanenburg
- OncoRay‑National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC) Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Löck
- OncoRay‑National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens-Peter Kühn
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
8
|
Chen J, Yang F, Liu C, Pan X, He Z, Fu D, Jin G, Su D. Diagnostic value of a CT-based radiomics nomogram for discrimination of benign and early stage malignant ovarian tumors. Eur J Med Res 2023; 28:609. [PMID: 38115095 PMCID: PMC10729460 DOI: 10.1186/s40001-023-01561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND This study aimed to identify the diagnostic value of models constructed using computed tomography-based radiomics features for discrimination of benign and early stage malignant ovarian tumors. METHODS The imaging and clinicopathological data of 197 cases of benign and early stage malignant ovarian tumors (FIGO stage I/II), were retrospectively analyzed. The patients were randomly assigned into training data set and validation data set. Radiomics features were extracted from images of plain computed tomography scan and contrast-enhanced computed tomography scan, were then screened in the training data set, and a radiomics model was constructed. Multivariate logistic regression analysis was used to construct a radiomic nomogram, containing the traditional diagnostic model and the radiomics model. Moreover, the decision curve analysis was used to assess the clinical application value of the radiomics nomogram. RESULTS Six textural features with the greatest diagnostic efficiency were finally screened. The value of the area under the receiver operating characteristic curve showed that the radiomics nomogram was superior to the traditional diagnostic model and the radiomics model (P < 0.05) in the training data set. In the validation data set, the radiomics nomogram was superior to the traditional diagnostic model (P < 0.05), but there was no statistically significant difference compared to the radiomics model (P > 0.05). The calibration curve and the Hosmer-Lemeshow test revealed that the three models all had a great degree of fit (All P > 0.05). The results of decision curve analysis indicated that utilization of the radiomics nomogram to distinguish benign and early stage malignant ovarian tumors had a greater clinical application value when the risk threshold was 0.4-1.0. CONCLUSIONS The computed tomography-based radiomics nomogram could be a non-invasive and reliable imaging method to discriminate benign and early stage malignant ovarian tumors.
Collapse
Affiliation(s)
- Jia Chen
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Fei Yang
- Department of Clinical Medical, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, People's Republic of China
| | - Chanzhen Liu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Xinwei Pan
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Ziying He
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Danhui Fu
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Guanqiao Jin
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
| | - Danke Su
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
9
|
Park JW, Lee H, Hong H, Seong J. Efficacy of Radiomics in Predicting Oncologic Outcome of Liver-Directed Combined Radiotherapy in Locally Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5405. [PMID: 38001665 PMCID: PMC10670316 DOI: 10.3390/cancers15225405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE We investigated whether radiomic features extracted from three-phase dynamic contrast-enhanced computed tomography (CECT) can be used to predict clinical outcomes, including objective treatment response (OR) and in-field failure-free survival rate (IFFR), in patients with hepatocellular carcinoma (HCC) who received liver-directed combined radiotherapy (LD-CRT). METHODS We included 409 patients, and they were randomly divided into training (n = 307) and validation (n = 102) cohorts. For radiomics models, we extracted 116 radiomic features from the region of interest on the CECT images. Significant clinical prognostic factors are identified to predict the OR and IFFR in the clinical models. We developed clinical models, radiomics models, and a combination of both features (CCR model). RESULTS Among the radiomic models evaluated for OR, the OR-PVP-Peri-1cm model showed favorable predictive performance with an area under the curve (AUC) of 0.647. The clinical model showed an AUC of 0.729, whereas the CCR model showed better performance (AUC 0.759). For the IFFR, the IFFR-PVP-Peri-1cm model showed an AUC of 0.673, clinical model showed 0.687, and the CCR model showed 0.736. We also developed and validated a prognostic nomogram based on CCR models. CONCLUSION In predicting the OR and IFFR in patients with HCC undergoing LD-CRT, CCR models performed better than clinical and radiomics models. Moreover, the constructed nomograms based on these models may provide valuable information on the prognosis of these patients.
Collapse
Affiliation(s)
- Jong Won Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Hansang Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
| | - Helen Hong
- Department of Software Convergence, College of Interdisciplinary Studies for Emerging Industries, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
10
|
Liu C, Liu Z, Holmes J, Zhang L, Zhang L, Ding Y, Shu P, Wu Z, Dai H, Li Y, Shen D, Liu N, Li Q, Li X, Zhu D, Liu T, Liu W. Artificial general intelligence for radiation oncology. META-RADIOLOGY 2023; 1:100045. [PMID: 38344271 PMCID: PMC10857824 DOI: 10.1016/j.metrad.2023.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises to catalyze a shift towards data-driven, personalized radiation therapy. However, these models should complement human expertise and care. This paper provides an overview of how AGI can transform radiation oncology to elevate the standard of patient care in radiation oncology, with the key insight being AGI's ability to exploit multimodal clinical data at scale.
Collapse
Affiliation(s)
- Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | | | - Jason Holmes
- Department of Radiation Oncology, Mayo Clinic, USA
| | - Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, USA
| | - Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, USA
| | - Yuzhen Ding
- Department of Radiation Oncology, Mayo Clinic, USA
| | - Peng Shu
- School of Computing, University of Georgia, USA
| | - Zihao Wu
- School of Computing, University of Georgia, USA
| | - Haixing Dai
- School of Computing, University of Georgia, USA
| | - Yiwei Li
- School of Computing, University of Georgia, USA
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, China
- Shanghai United Imaging Intelligence Co., Ltd, China
- Shanghai Clinical Research and Trial Center, China
| | - Ninghao Liu
- School of Computing, University of Georgia, USA
| | - Quanzheng Li
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Xiang Li
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, USA
| | | | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, USA
| |
Collapse
|
11
|
Tsai MH, Jhou MJ, Liu TC, Fang YW, Lu CJ. An integrated machine learning predictive scheme for longitudinal laboratory data to evaluate the factors determining renal function changes in patients with different chronic kidney disease stages. Front Med (Lausanne) 2023; 10:1155426. [PMID: 37859858 PMCID: PMC10582636 DOI: 10.3389/fmed.2023.1155426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Background and objectives Chronic kidney disease (CKD) is a global health concern. This study aims to identify key factors associated with renal function changes using the proposed machine learning and important variable selection (ML&IVS) scheme on longitudinal laboratory data. The goal is to predict changes in the estimated glomerular filtration rate (eGFR) in a cohort of patients with CKD stages 3-5. Design A retrospective cohort study. Setting and participants A total of 710 outpatients who presented with stable nondialysis-dependent CKD stages 3-5 at the Shin-Kong Wu Ho-Su Memorial Hospital Medical Center from 2016 to 2021. Methods This study analyzed trimonthly laboratory data including 47 indicators. The proposed scheme used stochastic gradient boosting, multivariate adaptive regression splines, random forest, eXtreme gradient boosting, and light gradient boosting machine algorithms to evaluate the important factors for predicting the results of the fourth eGFR examination, especially in patients with CKD stage 3 and those with CKD stages 4-5, with or without diabetes mellitus (DM). Main outcome measurement Subsequent eGFR level after three consecutive laboratory data assessments. Results Our ML&IVS scheme demonstrated superior predictive capabilities and identified significant factors contributing to renal function changes in various CKD groups. The latest levels of eGFR, blood urea nitrogen (BUN), proteinuria, sodium, and systolic blood pressure as well as mean levels of eGFR, BUN, proteinuria, and triglyceride were the top 10 significantly important factors for predicting the subsequent eGFR level in patients with CKD stages 3-5. In individuals with DM, the latest levels of BUN and proteinuria, mean levels of phosphate and proteinuria, and variations in diastolic blood pressure levels emerged as important factors for predicting the decline of renal function. In individuals without DM, all phosphate patterns and latest albumin levels were found to be key factors in the advanced CKD group. Moreover, proteinuria was identified as an important factor in the CKD stage 3 group without DM and CKD stages 4-5 group with DM. Conclusion The proposed scheme highlighted factors associated with renal function changes in different CKD conditions, offering valuable insights to physicians for raising awareness about renal function changes.
Collapse
Affiliation(s)
- Ming-Hsien Tsai
- Division of Nephrology, Department of Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Mao-Jhen Jhou
- Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Tzu-Chi Liu
- Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Wei Fang
- Division of Nephrology, Department of Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chi-Jie Lu
- Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Information Management, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Wei L, Niraula D, Gates EDH, Fu J, Luo Y, Nyflot MJ, Bowen SR, El Naqa IM, Cui S. Artificial intelligence (AI) and machine learning (ML) in precision oncology: a review on enhancing discoverability through multiomics integration. Br J Radiol 2023; 96:20230211. [PMID: 37660402 PMCID: PMC10546458 DOI: 10.1259/bjr.20230211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 09/05/2023] Open
Abstract
Multiomics data including imaging radiomics and various types of molecular biomarkers have been increasingly investigated for better diagnosis and therapy in the era of precision oncology. Artificial intelligence (AI) including machine learning (ML) and deep learning (DL) techniques combined with the exponential growth of multiomics data may have great potential to revolutionize cancer subtyping, risk stratification, prognostication, prediction and clinical decision-making. In this article, we first present different categories of multiomics data and their roles in diagnosis and therapy. Second, AI-based data fusion methods and modeling methods as well as different validation schemes are illustrated. Third, the applications and examples of multiomics research in oncology are demonstrated. Finally, the challenges regarding the heterogeneity data set, availability of omics data, and validation of the research are discussed. The transition of multiomics research to real clinics still requires consistent efforts in standardizing omics data collection and analysis, building computational infrastructure for data sharing and storing, developing advanced methods to improve data fusion and interpretability, and ultimately, conducting large-scale prospective clinical trials to fill the gap between study findings and clinical benefits.
Collapse
Affiliation(s)
- Lise Wei
- Department of Radiation Oncology, University of Michigan, Michigan, United States
| | - Dipesh Niraula
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, United States
| | - Evan D. H. Gates
- Department of Radiation Oncology, University of Washington, Washington, United States
| | - Jie Fu
- Department of Radiation Oncology, Stanford University, Stanford, California, United States
| | - Yi Luo
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, United States
| | - Matthew J. Nyflot
- Department of Radiation Oncology, University of Washington, Washington, United States
| | - Stephen R. Bowen
- Department of Radiation Oncology, University of Washington, Washington, United States
| | - Issam M El Naqa
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, United States
| | - Sunan Cui
- Department of Radiation Oncology, University of Washington, Washington, United States
| |
Collapse
|
13
|
Lakshmipriya B, Pottakkat B, Ramkumar G. Deep learning techniques in liver tumour diagnosis using CT and MR imaging - A systematic review. Artif Intell Med 2023; 141:102557. [PMID: 37295904 DOI: 10.1016/j.artmed.2023.102557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
Deep learning has become a thriving force in the computer aided diagnosis of liver cancer, as it solves extremely complicated challenges with high accuracy over time and facilitates medical experts in their diagnostic and treatment procedures. This paper presents a comprehensive systematic review on deep learning techniques applied for various applications pertaining to liver images, challenges faced by the clinicians in liver tumour diagnosis and how deep learning bridges the gap between clinical practice and technological solutions with an in-depth summary of 113 articles. Since, deep learning is an emerging revolutionary technology, recent state-of-the-art research implemented on liver images are reviewed with more focus on classification, segmentation and clinical applications in the management of liver diseases. Additionally, similar review articles in literature are reviewed and compared. The review is concluded by presenting the contemporary trends and unaddressed research issues in the field of liver tumour diagnosis, offering directions for future research in this field.
Collapse
Affiliation(s)
- B Lakshmipriya
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| | - G Ramkumar
- Department of Radio Diagnosis, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
14
|
Ger RB, Wei L, Naqa IE, Wang J. The Promise and Future of Radiomics for Personalized Radiotherapy Dosing and Adaptation. Semin Radiat Oncol 2023; 33:252-261. [PMID: 37331780 PMCID: PMC11214660 DOI: 10.1016/j.semradonc.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Quantitative image analysis, also known as radiomics, aims to analyze large-scale quantitative features extracted from acquired medical images using hand-crafted or machine-engineered feature extraction approaches. Radiomics has great potential for a variety of clinical applications in radiation oncology, an image-rich treatment modality that utilizes computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for treatment planning, dose calculation, and image guidance. A promising application of radiomics is in predicting treatment outcomes after radiotherapy such as local control and treatment-related toxicity using features extracted from pretreatment and on-treatment images. Based on these individualized predictions of treatment outcomes, radiotherapy dose can be sculpted to meet the specific needs and preferences of each patient. Radiomics can aid in tumor characterization for personalized targeting, especially for identifying high-risk regions within a tumor that cannot be easily discerned based on size or intensity alone. Radiomics-based treatment response prediction can aid in developing personalized fractionation and dose adjustments. In order to make radiomics models more applicable across different institutions with varying scanners and patient populations, further efforts are needed to harmonize and standardize the acquisition protocols by minimizing uncertainties within the imaging data.
Collapse
Affiliation(s)
- Rachel B Ger
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX..
| |
Collapse
|
15
|
Jiang C, Cai YQ, Yang JJ, Ma CY, Chen JX, Huang L, Xiang Z, Wu J. Radiomics in the diagnosis and treatment of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2023:S1499-3872(23)00044-9. [PMID: 37019775 DOI: 10.1016/j.hbpd.2023.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor. At present, early diagnosis of HCC is difficult and therapeutic methods are limited. Radiomics can achieve accurate quantitative evaluation of the lesions without invasion, and has important value in the diagnosis and treatment of HCC. Radiomics features can predict the development of cancer in patients, serve as the basis for risk stratification of HCC patients, and help clinicians distinguish similar diseases, thus improving the diagnostic accuracy. Furthermore, the prediction of the treatment outcomes helps determine the treatment plan. Radiomics is also helpful in predicting the HCC recurrence, disease-free survival and overall survival. This review summarized the role of radiomics in the diagnosis, treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yi-Qi Cai
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jia-Jia Yang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Can-Yu Ma
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jia-Xi Chen
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
16
|
Chi H, Zhao S, Yang J, Gao X, Peng G, Zhang J, Xie X, Song G, Xu K, Xia Z, Chen S, Zhao J. T-cell exhaustion signatures characterize the immune landscape and predict HCC prognosis via integrating single-cell RNA-seq and bulk RNA-sequencing. Front Immunol 2023; 14:1137025. [PMID: 37006257 PMCID: PMC10050519 DOI: 10.3389/fimmu.2023.1137025] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundHepatocellular carcinoma (HCC), the third most prevalent cause of cancer-related death, is a frequent primary liver cancer with a high rate of morbidity and mortality. T-cell depletion (TEX) is a progressive decline in T-cell function due to continuous stimulation of the TCR in the presence of sustained antigen exposure. Numerous studies have shown that TEX plays an essential role in the antitumor immune process and is significantly associated with patient prognosis. Hence, it is important to gain insight into the potential role of T cell depletion in the tumor microenvironment. The purpose of this study was to develop a trustworthy TEX-based signature using single-cell RNA-seq (scRNA-seq) and high-throughput RNA sequencing, opening up new avenues for evaluating the prognosis and immunotherapeutic response of HCC patients.MethodsThe International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) databases were used to download RNA-seq information for HCC patients. The 10x scRNA-seq. data of HCC were downloaded from GSE166635, and UMAP was used for clustering descending, and subgroup identification. TEX-related genes were identified by gene set variance analysis (GSVA) and weighted gene correlation network analysis (WGCNA). Afterward, we established a prognostic TEX signature using LASSO-Cox analysis. External validation was performed in the ICGC cohort. Immunotherapy response was assessed by the IMvigor210, GSE78220, GSE79671, and GSE91061cohorts. In addition, differences in mutational landscape and chemotherapy sensitivity between different risk groups were investigated. Finally, the differential expression of TEX genes was verified by qRT-PCR.Result11 TEX genes were thought to be highly predictive of the prognosis of HCC and substantially related to HCC prognosis. Patients in the low-risk group had a greater overall survival rate than those in the high-risk group, according to multivariate analysis, which also revealed that the model was an independent predictor of HCC. The predictive efficacy of columnar maps created from clinical features and risk scores was strong.ConclusionTEX signature and column line plots showed good predictive performance, providing a new perspective for assessing pre-immune efficacy, which will be useful for future precision immuno-oncology studies.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xinrui Gao
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Shi Chen, ; Jinqiu Zhao, ; Zhijia Xia,
| | - Shi Chen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Shi Chen, ; Jinqiu Zhao, ; Zhijia Xia,
| | - Jinqiu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Shi Chen, ; Jinqiu Zhao, ; Zhijia Xia,
| |
Collapse
|
17
|
Bodard S, Liu Y, Guinebert S, Kherabi Y, Asselah T. Performance of Radiomics in Microvascular Invasion Risk Stratification and Prognostic Assessment in Hepatocellular Carcinoma: A Meta-Analysis. Cancers (Basel) 2023; 15:cancers15030743. [PMID: 36765701 PMCID: PMC9913680 DOI: 10.3390/cancers15030743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in phenomenal imaging are paving the way for application in diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of imaging phenomics for risk stratification and prognostication of HCC. METHODS We performed a meta-analysis of manuscripts published to January 2023 on MEDLINE addressing the value of imaging phenomics for HCC risk stratification and prognostication. Publication information for each were collected using a standardized data extraction form. RESULTS Twenty-seven articles were analyzed. Our study shows the importance of imaging phenomics in HCC MVI prediction. When the training and validation datasets were analyzed separately by the random-effects model, in the training datasets, radiomics had good MVI prediction (AUC of 0.81 (95% CI 0.76-0.86)). Similar results were found in the validation datasets (AUC of 0.79 (95% CI 0.72-0.85)). Using the fixed effects model, the mean AUC of all datasets was 0.80 (95% CI 0.76-0.84). CONCLUSIONS Imaging phenomics is an effective solution to predict microvascular invasion risk, prognosis, and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- CNRS, INSERM, UMR 7371, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, 75006 Paris, France
- Correspondence: ; Tel.: +33-6-18-81-62-10
| | - Yan Liu
- Faculty of Life Science and Medicine, King’s College London, London WC2R 2LS, UK
- Median Technologies, 1800 Route des Crêtes, 06560 Valbonne, France
| | - Sylvain Guinebert
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Yousra Kherabi
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Tarik Asselah
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- Service d’Hépatologie, INSERM, UMR1149, Hôpital Beaujon, AP-HP.Nord, 92110 Clichy, France
| |
Collapse
|
18
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
19
|
Wong PK, Chan IN, Yan HM, Gao S, Wong CH, Yan T, Yao L, Hu Y, Wang ZR, Yu HH. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview. World J Gastroenterol 2022; 28:6363-6379. [PMID: 36533112 PMCID: PMC9753055 DOI: 10.3748/wjg.v28.i45.6363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal (GI) cancers are the major cause of cancer-related mortality globally. Medical imaging is an important auxiliary means for the diagnosis, assessment and prognostic prediction of GI cancers. Radiomics is an emerging and effective technology to decipher the encoded information within medical images, and traditional machine learning is the most commonly used tool. Recent advances in deep learning technology have further promoted the development of radiomics. In the field of GI cancer, although there are several surveys on radiomics, there is no specific review on the application of deep-learning-based radiomics (DLR). In this review, a search was conducted on Web of Science, PubMed, and Google Scholar with an emphasis on the application of DLR for GI cancers, including esophageal, gastric, liver, pancreatic, and colorectal cancers. Besides, the challenges and recommendations based on the findings of the review are comprehensively analyzed to advance DLR.
Collapse
Affiliation(s)
- Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - In Neng Chan
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
| | - Hao-Ming Yan
- School of Clinical Medicine, China Medical University, Shenyang 110013, Liaoning Province, China
| | - Shan Gao
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei Province, China
| | - Chi Hong Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Tao Yan
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Liang Yao
- Department of Electromechanical Engineering, University of Macau, Taipa 999078, Macau, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | - Zhong-Ren Wang
- School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau 999078, China
| |
Collapse
|
20
|
Celard P, Iglesias EL, Sorribes-Fdez JM, Romero R, Vieira AS, Borrajo L. A survey on deep learning applied to medical images: from simple artificial neural networks to generative models. Neural Comput Appl 2022; 35:2291-2323. [PMID: 36373133 PMCID: PMC9638354 DOI: 10.1007/s00521-022-07953-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Deep learning techniques, in particular generative models, have taken on great importance in medical image analysis. This paper surveys fundamental deep learning concepts related to medical image generation. It provides concise overviews of studies which use some of the latest state-of-the-art models from last years applied to medical images of different injured body areas or organs that have a disease associated with (e.g., brain tumor and COVID-19 lungs pneumonia). The motivation for this study is to offer a comprehensive overview of artificial neural networks (NNs) and deep generative models in medical imaging, so more groups and authors that are not familiar with deep learning take into consideration its use in medicine works. We review the use of generative models, such as generative adversarial networks and variational autoencoders, as techniques to achieve semantic segmentation, data augmentation, and better classification algorithms, among other purposes. In addition, a collection of widely used public medical datasets containing magnetic resonance (MR) images, computed tomography (CT) scans, and common pictures is presented. Finally, we feature a summary of the current state of generative models in medical image including key features, current challenges, and future research paths.
Collapse
Affiliation(s)
- P. Celard
- Computer Science Department, Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Universitario As Lagoas, 32004 Ourense, Spain
- CINBIO - Biomedical Research Centre, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - E. L. Iglesias
- Computer Science Department, Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Universitario As Lagoas, 32004 Ourense, Spain
- CINBIO - Biomedical Research Centre, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - J. M. Sorribes-Fdez
- Computer Science Department, Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Universitario As Lagoas, 32004 Ourense, Spain
- CINBIO - Biomedical Research Centre, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - R. Romero
- Computer Science Department, Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Universitario As Lagoas, 32004 Ourense, Spain
- CINBIO - Biomedical Research Centre, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - A. Seara Vieira
- Computer Science Department, Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Universitario As Lagoas, 32004 Ourense, Spain
- CINBIO - Biomedical Research Centre, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - L. Borrajo
- Computer Science Department, Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Universitario As Lagoas, 32004 Ourense, Spain
- CINBIO - Biomedical Research Centre, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
21
|
Niraula D, Cui S, Pakela J, Wei L, Luo Y, Ten Haken RK, El Naqa I. Current status and future developments in predicting outcomes in radiation oncology. Br J Radiol 2022; 95:20220239. [PMID: 35867841 PMCID: PMC9793488 DOI: 10.1259/bjr.20220239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Advancements in data-driven technologies and the inclusion of information-rich multiomics features have significantly improved the performance of outcomes modeling in radiation oncology. For this current trend to be sustainable, challenges related to robust data modeling such as small sample size, low size to feature ratio, noisy data, as well as issues related to algorithmic modeling such as complexity, uncertainty, and interpretability, need to be mitigated if not resolved. Emerging computational technologies and new paradigms such as federated learning, human-in-the-loop, quantum computing, and novel interpretability methods show great potential in overcoming these challenges and bridging the gap towards precision outcome modeling in radiotherapy. Examples of these promising technologies will be presented and their potential role in improving outcome modeling will be discussed.
Collapse
Affiliation(s)
- Dipesh Niraula
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Sunan Cui
- Department of Radiation Oncology, Stanford Medicine, Stanford University, Stanford, USA
| | - Julia Pakela
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA
| | - Yi Luo
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | | | - Issam El Naqa
- Department of Machine Learning, H Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
22
|
Artificial Intelligence for Outcome Modeling in Radiotherapy. Semin Radiat Oncol 2022; 32:351-364. [DOI: 10.1016/j.semradonc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Mancosu P, Lambri N, Castiglioni I, Dei D, Iori M, Loiacono D, Russo S, Talamonti C, Villaggi E, Scorsetti M, Avanzo M. Applications of artificial intelligence in stereotactic body radiation therapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022]
Abstract
Abstract
This topical review focuses on the applications of artificial intelligence (AI) tools to stereotactic body radiation therapy (SBRT). The high dose per fraction and the limited number of fractions in SBRT require stricter accuracy than standard radiation therapy. The intent of this review is to describe the development and evaluate the possible benefit of AI tools integration into the radiation oncology workflow for SBRT automation. The selected papers were subdivided into four sections, representative of the whole radiotherapy process: ‘AI in SBRT target and organs at risk contouring’, ‘AI in SBRT planning’, ‘AI during the SBRT delivery’, and ‘AI for outcome prediction after SBRT’. Each section summarises the challenges, as well as limits and needs for improvement to achieve better integration of AI tools in the clinical workflow.
Collapse
|
24
|
Nam D, Chapiro J, Paradis V, Seraphin TP, Kather JN. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100443. [PMID: 35243281 PMCID: PMC8867112 DOI: 10.1016/j.jhepr.2022.100443] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022]
Abstract
Clinical routine in hepatology involves the diagnosis and treatment of a wide spectrum of metabolic, infectious, autoimmune and neoplastic diseases. Clinicians integrate qualitative and quantitative information from multiple data sources to make a diagnosis, prognosticate the disease course, and recommend a treatment. In the last 5 years, advances in artificial intelligence (AI), particularly in deep learning, have made it possible to extract clinically relevant information from complex and diverse clinical datasets. In particular, histopathology and radiology image data contain diagnostic, prognostic and predictive information which AI can extract. Ultimately, such AI systems could be implemented in clinical routine as decision support tools. However, in the context of hepatology, this requires further large-scale clinical validation and regulatory approval. Herein, we summarise the state of the art in AI in hepatology with a particular focus on histopathology and radiology data. We present a roadmap for the further development of novel biomarkers in hepatology and outline critical obstacles which need to be overcome.
Collapse
|
25
|
Chamseddine I, Kim Y, De B, El Naqa I, Duda DG, Wolfgang J, Pursley J, Paganetti H, Wo J, Hong T, Koay EJ, Grassberger C. Predictive Modeling of Survival and Toxicity in Patients With Hepatocellular Carcinoma After Radiotherapy. JCO Clin Cancer Inform 2022; 6:e2100169. [PMID: 35192402 PMCID: PMC8863122 DOI: 10.1200/cci.21.00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To stratify patients and aid clinical decision making, we developed machine learning models to predict treatment failure and radiation-induced toxicities after radiotherapy (RT) in patients with hepatocellular carcinoma across institutions. MATERIALS AND METHODS The models were developed using linear and nonlinear algorithms, predicting survival, nonlocal failure, radiation-induced liver disease, and lymphopenia from baseline patient and treatment parameters. The models were trained on 207 patients from Massachusetts General Hospital. Performance was quantified using Harrell's c-index, area under the curve (AUC), and accuracy in high-risk populations. Models' structures were optimized in a nested cross-validation approach to prevent overfitting. A study analysis plan was registered before external validation using 143 patients from MD Anderson Cancer Center. Clinical utility was assessed using net-benefit analysis. RESULTS The survival model stratified high-risk versus low-risk patients well in the external validation cohort (c-index = 0.75), better than existing risk scores. Predictions of 1-year survival and nonlocal failure were excellent (external AUC = 0.74 and 0.80, respectively), especially in the high-risk group (accuracy > 90%). Cause-of-death analysis showed differential modes of treatment failure in these cohorts and indicated that these models could be used to stratify RT patients for liver-sparing treatment regimen or combination approaches with systemic agents. Predictions of liver disease and lymphopenia were good but less robust (external AUC = 0.68 and 0.7, respectively), suggesting the need for more comprehensive consideration of dosimetry and better predictive biomarkers. The liver disease model showed excellent accuracy in the high-risk group (92%) and revealed possible interactions of platelet count with initial liver function. CONCLUSION Machine learning approaches can provide reliable outcome predictions in patients with hepatocellular carcinoma after RT in diverse cohorts across institutions. The excellent performance, particularly in high-risk patients, suggests novel strategies for patient stratification and treatment selection.
Collapse
Affiliation(s)
- Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yejin Kim
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Korean Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Brian De
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Issam El Naqa
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Dan G. Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - John Wolfgang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jennifer Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Eugene J. Koay
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Bao L, Wang M, Fan Q. Hsa_circ_NOTCH3 regulates ZNF146 through sponge adsorption of miR-875-5p to promote tumorigenesis of hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:2388-2402. [PMID: 34790400 DOI: 10.21037/jgo-21-567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background To explore the specific mechanism of circular RNA (circRNA) in the occurrence and development of hepatocellular carcinoma (HCC), and provide new ideas for its diagnosis and treatment. Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was for evaluating the expression of circ_NOTCH3 in liver cancer tissues and matched normal tissues and related cell lines. After overexpression or co-expression of circ_NOTCH3 or microRNA (miRNA) in cells, the changes in cell function were analyzed. Bioinformatics analysis and dual luciferase report analysis were utilized to predict and verify the binding site between circ_NOTCH3 and miRNA. Western blotting was applied to detect gene expression alterations. Additionally, in vivo tumor growth was also utilized to further assess the influence of knocking-down circ_NOTCH3 on the progression of HCC. Results It was confirmed circ_NOTCH3 was highly expressed in HCC specimens and cells. The proliferation, migration, invasion, and oxaliplatin-resistance potential of HCC could be restrained by silencing circ_NOTCH3 or by ectopic expression of miR-875-5p in vitro. In terms of mechanism, circ_NOTCH3 directly binds to miR-875-5p, regulating its activity by targeting the 3'-UTR of ZNF146. Overexpression of circ_NOTCH3 evidently overturned the diminishing influence of miR-875-5p mimics on HCC cells. Conclusions As an oncogene, circ_NOTCH3 can trigger the proliferation, invasion, migration, and oxaliplatin resistance of HCC cells through the miR-875-5p/ZNF146 axis, and may be a promising target for the treatment of HCC.
Collapse
Affiliation(s)
- Lei Bao
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Min Wang
- Department of Pathology, Qishan (Infectious Disease) Hospital of Yantai, Yantai, China
| | - Qiqi Fan
- Department of Liver Disease, Qingdao No. 6 People's Hospital, Qingdao, China
| |
Collapse
|
27
|
Peng J, Huang J, Huang G, Zhang J. Predicting the Initial Treatment Response to Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma by the Integration of Radiomics and Deep Learning. Front Oncol 2021; 11:730282. [PMID: 34745952 PMCID: PMC8566880 DOI: 10.3389/fonc.2021.730282] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives We aimed to develop radiology-based models for the preoperative prediction of the initial treatment response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC) since the integration of radiomics and deep learning (DL) has not been reported for TACE. Methods Three hundred and ten intermediate-stage HCC patients who underwent TACE were recruited from three independent medical centers. Based on computed tomography (CT) images, recursive feature elimination (RFE) was used to select the most useful radiomics features. Five radiomics conventional machine learning (cML) models and a DL model were used for training and validation. Mutual correlations between each model were analyzed. The accuracies of integrating clinical variables, cML, and DL models were then evaluated. Results Good predictive accuracies were showed across the two cohorts in the five cML models, especially the random forest algorithm (AUC = 0.967 and 0.964, respectively). DL showed high accuracies in the training and validation cohorts (AUC = 0.981 and 0.972, respectively). Significant mutual correlations were revealed between tumor size and the five cML models and DL model (each P < 0.001). The highest accuracies were achieved by integrating DL and the random forest algorithm in the training and validation cohorts (AUC = 0.995 and 0.994, respectively). Conclusion The radiomics cML models and DL model showed notable accuracy for predicting the initial response to TACE treatment. Moreover, the integrated model could serve as a novel and accurate method for prediction in intermediate-stage HCC.
Collapse
Affiliation(s)
- Jie Peng
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China
| | - Jinhua Huang
- Department of Minimal Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Guijia Huang
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|