1
|
Chandler L, Harford AJ, Hose GC, Humphrey CL, Chariton A, Greenfield P, Davis J. Saline mine water influences eukaryote life in shallow groundwater of a tropical sandy stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174101. [PMID: 38906296 DOI: 10.1016/j.scitotenv.2024.174101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Eukaryotic communities in groundwater may be particularly sensitive to disturbance because they are adapted to stable environmental conditions and often have narrow spatial distributions. Traditional methods for characterising these communities, focussing on groundwater-inhabiting macro- and meiofauna (stygofauna), are challenging because of limited taxonomic knowledge and expertise (particularly in less-explored regions), and the time and expense of morphological identification. The primary objective of this study was to evaluate the vulnerability of eukaryote communities in shallow groundwater to mine water discharge containing elevated concentrations of magnesium (Mg) and sulfate (SO4). The study was undertaken in a shallow sand bed aquifer within a wet-dry tropical setting. The aquifer, featuring a saline mine water gradient primarily composed of elevated Mg and SO4, was sampled from piezometers in the creek channel upstream and downstream of the mine water influence during the dry season when only subsurface water flow was present. Groundwater communities were characterised using both morphological assessments of stygofauna from net samples and environmental DNA (eDNA) targeting the 18S rDNA and COI mtDNA genes. eDNA data revealed significant shifts in community composition in response to mine waters, contrasting with findings from traditional morphological composition data. Changes in communities determined using eDNA data were notably associated with concentrations of SO42-, Mg2+ and Na+, and water levels in the piezometers. This underscores the importance of incorporating molecular approaches in impact assessments, as relying solely on traditional stygofauna sampling methods in similar environments may lead to inaccurate conclusions about the responses of the assemblage to studied impacts.
Collapse
Affiliation(s)
- Lisa Chandler
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Darwin, Northern Territory, Australia; Office of the Supervising Scientist, Department of Climate Change, Energy, the Environment and Water, Darwin, Northern Territory, Australia
| | - Andrew J Harford
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Darwin, Northern Territory, Australia; Office of the Supervising Scientist, Department of Climate Change, Energy, the Environment and Water, Darwin, Northern Territory, Australia
| | - Grant C Hose
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Chris L Humphrey
- Office of the Supervising Scientist, Department of Climate Change, Energy, the Environment and Water, Darwin, Northern Territory, Australia
| | - Anthony Chariton
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul Greenfield
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; Energy Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, New South Wales, Australia
| | - Jenny Davis
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
2
|
Zhang J, Chen X, Soetaert K, Xu Y. The relative roles of multiple drivers on benthic ciliate communities in an intertidal zone. MARINE POLLUTION BULLETIN 2023; 187:114510. [PMID: 36577240 DOI: 10.1016/j.marpolbul.2022.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Intertidal biodiversity is being severely disrupted as a result of increased anthropogenic activity. However, our knowledge about how natural gradients, human induced disturbance and biotic interactions affect biodiversity is limited. So, we investigated how three facets of alpha diversity and community composition of benthic ciliates responded to environmental and biological gradients in the intertidal zone of Zhejiang, China. The key determinants and their relative effects on ciliate communities were identified using structural equation modeling, distance-based redundancy analysis and variation partitioning analysis. Our results revealed that sediment grain size was the most important factor affecting alpha diversity and community composition. Human induced eutrophication had significant effects on phylogenetic alpha diversity and community composition. However, the effects of biotic interactions on ciliate communities were relatively small. Moreover, we found community composition was more sensitive to human disturbance than alpha diversity, thus, more suitable for indicating human-induced eutrophication.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xinyi Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Karline Soetaert
- Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 140, 4400AC Yerseke, the Netherlands
| | - Yuan Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 202162, China.
| |
Collapse
|
3
|
Maurya S, Abraham JS, Somasundaram S, Toteja R, Gupta R, Makhija S. Indicators for assessment of soil quality: a mini-review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:604. [PMID: 32857216 DOI: 10.1007/s10661-020-08556-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/16/2020] [Indexed: 05/20/2023]
Abstract
Soil quality is the competence of soil to perform necessary functions that are able to maintain animal and plant productivity of the soil. Soil consists of various physical, chemical, and biological parameters, and all these parameters are involved in the critical functioning of soil. There is a need for continuous assessment of soil quality as soil is a complex and dynamic constituent of Earth's biosphere that is continuously changing by natural and anthropogenic disturbances. Any perturbations in the soil cause disturbances in the physical (soil texture, bulk density, etc.), chemical (pH, salinity, organic carbon, etc.), and biological (microbes and enzymes) parameters. These physical, chemical, and biological parameters can serve as indicators for soil quality assessment. However, soil quality assessment cannot be possible by evaluating only one parameter out of physical, chemical, or biological. So, there is an emergent need to establish a minimum dataset (MDS) which shall include physical, chemical, and biological parameters to assess the quality of the given soil. This review attempts to describe various physical, chemical, and biological parameters, combinations of which can be used in the establishment of MDS.
Collapse
Affiliation(s)
- Swati Maurya
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Jeeva Susan Abraham
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Sripoorna Somasundaram
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Ravi Toteja
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Renu Gupta
- Department of Zoology, Maitreyi College, University of Delhi, Bapu dham, Chanakyapuri, New Delhi, 110021, India
| | - Seema Makhija
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
4
|
Tucker SJ, McManus GB, Katz LA, Grattepanche JD. Distribution of Abundant and Active Planktonic Ciliates in Coastal and Slope Waters Off New England. Front Microbiol 2017; 8:2178. [PMID: 29250036 PMCID: PMC5715329 DOI: 10.3389/fmicb.2017.02178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/23/2017] [Indexed: 11/18/2022] Open
Abstract
Despite their important role of linking microbial and classic marine food webs, data on biogeographical patterns of microbial eukaryotic grazers are limited, and even fewer studies have used molecular tools to assess active (i.e., those expressing genes) community members. Marine ciliate diversity is believed to be greatest at the chlorophyll maximum, where there is an abundance of autotrophic prey, and is often assumed to decline with depth. Here, we assess the abundant (DNA) and active (RNA) marine ciliate communities throughout the water column at two stations off the New England coast (Northwest Atlantic)—a coastal station 43 km from shore (40 m depth) and a slope station 135 km off shore (1,000 m). We analyze ciliate communities using a DNA fingerprinting technique, Denaturing Gradient Gel Electrophoresis (DGGE), which captures patterns of abundant community members. We compare estimates of ciliate communities from SSU-rDNA (abundant) and SSU-rRNA (active) and find complex patterns throughout the water column, including many active lineages below the photic zone. Our analyses reveal (1) a number of widely-distributed taxa that are both abundant and active; (2) considerable heterogeneity in patterns of presence/absence of taxa in offshore samples taken 50 m apart throughout the water column; and (3) three distinct ciliate assemblages based on position from shore and depth. Analysis of active (RNA) taxa uncovers biodiversity hidden to traditional DNA-based approaches (e.g., clone library, rDNA amplicon studies).
Collapse
Affiliation(s)
- Sarah J Tucker
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, United States.,Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, United States
| | | |
Collapse
|
5
|
Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group. Sci Rep 2017; 7:9918. [PMID: 28855561 PMCID: PMC5577237 DOI: 10.1038/s41598-017-09472-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/26/2017] [Indexed: 01/30/2023] Open
Abstract
Ciliates are a suitable microbial model to investigate trait-dependent diversification because of their comparatively complex morphology and high diversity. We examined the impact of seven intrinsic traits on speciation, extinction, and net-diversification of rhynchostomatians, a group of comparatively large, predatory ciliates with proboscis carrying a dorsal brush (sensoric structure) and toxicysts (organelles used to kill the prey). Bayesian estimates under the binary-state speciation and extinction model indicate that two types of extrusomes and two-rowed dorsal brush raise diversification through decreasing extinction. On the other hand, the higher number of contractile vacuoles and their dorsal location likely increase diversification via elevating speciation rate. Particular nuclear characteristics, however, do not significantly differ in their diversification rates and hence lineages with various macronuclear patterns and number of micronuclei have similar probabilities to generate new species. Likelihood-based quantitative state diversification analyses suggest that rhynchostomatians conform to Cope’s rule in that their diversity linearly grows with increasing body length and relative length of the proboscis. Comparison with other litostomatean ciliates indicates that rhynchostomatians are not among the cladogenically most successful lineages and their survival over several hundred million years could be associated with their comparatively large and complex bodies that reduce the risk of extinction.
Collapse
|