1
|
Qiu Q, Chew JCJ, Irwin MG. Opioid MOP receptor agonists in late-stage development for the treatment of postoperative pain. Expert Opin Pharmacother 2022; 23:1831-1843. [DOI: 10.1080/14656566.2022.2141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Qiu Qiu
- Department of Anaesthesiology, Queen Mary Hospital, Hong Kong, Special Administrative Region, China
| | - Joshua CJ Chew
- Department of Anaesthesiology, Queen Mary Hospital, Hong Kong, Special Administrative Region, China
- Department of Anaesthesiology, The University of Hong Kong, Special Administrative Region, China
| | - Michael G Irwin
- Department of Anaesthesiology, The University of Hong Kong, Special Administrative Region, China
| |
Collapse
|
2
|
Model-Informed Bayesian Estimation Improves the Prediction of Morphine Exposure in Neonates and Infants. Ther Drug Monit 2021; 42:778-786. [PMID: 32427759 DOI: 10.1097/ftd.0000000000000763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pain control in infants is an important clinical concern, with potential long-term adverse neurodevelopmental effects. Intravenous morphine is routinely administered for postoperative pain management; however, its dose-concentration-response relationship in neonates and infants has not been well characterized. Although the current literature provides dosing guidelines for the average infant, it fails to control for the large unexplained variability in morphine clearance and response in individual patients. Bayesian estimation can be used to control for some of this variability. The authors aimed to evaluate morphine pharmacokinetics (PKs) and exposure in critically ill neonates and infants receiving standard-of-care morphine therapy and compare a population-based approach to the model-informed Bayesian techniques. METHODS The PKs and exposure of morphine and its active metabolites were evaluated in a prospective opportunistic PK study using 221 discarded blood samples from 57 critically ill neonates and infants in the neonatal intensive care unit. Thereafter, a population-based PK model was compared with a Bayesian adaptive control strategy to predict an individual's PK profile and morphine exposure over time. RESULTS Among the critically ill neonates and infants, morphine clearance showed substantial variability with a 40-fold range (ie, 2.2 to 87.1, mean 23.7 L/h/70 kg). Compared with the observed morphine concentrations, the population-model based predictions had an R of 0.13, whereas the model-based Bayesian predictions had an R of 0.61. CONCLUSIONS Model-informed Bayesian estimation is a better predictor of morphine exposure than PK models alone in critically ill neonates and infants. A large variability was also identified in morphine clearance. A further study is warranted to elucidate the predictive covariates and precision dosing strategies that use morphine concentration and pain scores as feedbacks.
Collapse
|
3
|
Araya EI, Barroso AR, Turnes JDM, Radulski DR, Jaganaught JRA, Zampronio AR, Chichorro JG. Toll-like receptor 4 (TLR4) signaling in the trigeminal ganglion mediates facial mechanical and thermal hyperalgesia in rats. Physiol Behav 2020; 226:113127. [DOI: 10.1016/j.physbeh.2020.113127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
|
4
|
Mazák K, Noszál B, Hosztafi S. Advances in the Physicochemical Profiling of Opioid Compounds of Therapeutic Interest. ChemistryOpen 2019; 8:879-887. [PMID: 31312587 PMCID: PMC6610444 DOI: 10.1002/open.201900115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/24/2019] [Indexed: 01/27/2023] Open
Abstract
This review focuses on recent developments in the physicochemical profiling of morphine and other opioids. The acid-base properties and lipophilicity of these compounds is discussed at the microscopic, species-specific level. Examples are provided where this type of information can reveal the mechanism of pharmacokinetic processes at the submolecular level. The role of lipophilicity in quantitative structure-activity relationship (QSAR) studies of opioids is reviewed. The physicochemical properties and pharmacology of the main metabolites of morphine are also discussed. Recent studies indicate that the active metabolite morphine-6-glucuronide (M6G) can contribute to the analgesic activity of systemically administered morphine. The unexpectedly high lipophilicity of M6G partly accounts for its analgesic activity. When administered parenterally, another suspected minor metabolite, morphine-6-sulfate (M6S) has superior antinociceptive effects to those of morphine. However, because sulfate esters of morphine derivatives cannot cross the blood-brain barrier these esters may be good candidates to develop peripheral analgesic drugs.
Collapse
Affiliation(s)
- Károly Mazák
- Semmelweis UniversityDepartment of Pharmaceutical Chemistry, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences Hőgyes E. u. 9.H-1092BudapestHungary
| | - Béla Noszál
- Semmelweis UniversityDepartment of Pharmaceutical Chemistry, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences Hőgyes E. u. 9.H-1092BudapestHungary
| | - Sándor Hosztafi
- Semmelweis UniversityDepartment of Pharmaceutical Chemistry, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences Hőgyes E. u. 9.H-1092BudapestHungary
| |
Collapse
|
5
|
Borisov AS, Malov AA, Kolesnikov SV, Lomivorotov VV. Renal Replacement Therapy in Adult Patients After Cardiac Surgery. J Cardiothorac Vasc Anesth 2019; 33:2273-2286. [PMID: 30871949 DOI: 10.1053/j.jvca.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Alexander S Borisov
- Department of Anaesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Andrey A Malov
- Department of Anaesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Sergey V Kolesnikov
- Department of Anaesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Vladimir V Lomivorotov
- Department of Anaesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
6
|
Averitt DL, Eidson LN, Doyle HH, Murphy AZ. Neuronal and glial factors contributing to sex differences in opioid modulation of pain. Neuropsychopharmacology 2019; 44:155-165. [PMID: 29973654 PMCID: PMC6235988 DOI: 10.1038/s41386-018-0127-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022]
Abstract
Morphine remains one of the most widely prescribed opioids for alleviation of persistent and/or severe pain; however, multiple preclinical and clinical studies report that morphine is less efficacious in females compared to males. Morphine primarily binds to the mu opioid receptor, a prototypical G-protein coupled receptor densely localized in the midbrain periaqueductal gray. Anatomical and physiological studies conducted in the 1960s identified the periaqueductal gray, and its descending projections to the rostral ventromedial medulla and spinal cord, as an essential descending inhibitory circuit mediating opioid-based analgesia. Remarkably, the majority of studies published over the following 30 years were conducted in males with the implicit assumption that the anatomical and physiological characteristics of this descending inhibitory circuit were comparable in females; not surprisingly, this is not the case. Several factors have since been identified as contributing to the dimorphic effects of opioids, including sex differences in the neuroanatomical and neurophysiological characteristics of the descending inhibitory circuit and its modulation by gonadal steroids. Recent data also implicate sex differences in opioid metabolism and neuroimmune signaling as additional contributing factors. Here we cohesively present these lines of evidence demonstrating a neural basis for sex differences in opioid modulation of pain, with a focus on the PAG as a sexually dimorphic core of descending opioid-induced inhibition and argue for the development of sex-specific pain therapeutics.
Collapse
Affiliation(s)
- Dayna L Averitt
- Department of Biology, Texas Woman's University, Denton, TX, 76204, USA
| | - Lori N Eidson
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
7
|
Abstract
INTRODUCTION Opioids are the oldest and most potent drugs for the treatment of severe pain, but they are burdened by detrimental side effects such as respiratory depression, addiction, sedation, nausea, and constipation. Their clinical application is undisputed in acute (e.g. perioperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny and has contributed to the current 'opioid crisis.' AREAS COVERED This article reviews pharmacological principles and research strategies aiming at novel opioids with reduced side effects. Basic mechanisms underlying pain, opioid analgesia, and other opioid actions are outlined. To illustrate the clinical situation and medical needs, plasticity of opioid receptors, intracellular signaling pathways, endogenous and exogenous opioid receptor ligands, central and peripheral sites of analgesic, and side effects are discussed. EXPERT OPINION The epidemic of opioid misuse has taught us that there is a lack of fundamental knowledge about the characteristics and management of chronic pain, that conflicts of interest and validity of models must be considered in the context of drug development, and that novel analgesics with less abuse liability are badly needed. Currently, the most promising perspectives appear to be augmenting endogenous opioid actions and selectively targeting pathological conformations of peripheral opioid receptors.
Collapse
Affiliation(s)
- Christoph Stein
- a Department of Anesthesiology and Intensive Care Medicine Campus Benjamin Franklin , Charité Universitätsmedizin , Berlin , Germany
| |
Collapse
|
8
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vollmer G, Wallace H, Benford D, Calò G, Dahan A, Dusemund B, Mulder P, Németh-Zámboriné É, Arcella D, Baert K, Cascio C, Levorato S, Schutte M, Vleminckx C. Update of the Scientific Opinion on opium alkaloids in poppy seeds. EFSA J 2018; 16:e05243. [PMID: 32625895 PMCID: PMC7009406 DOI: 10.2903/j.efsa.2018.5243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Poppy seeds are obtained from the opium poppy (Papaver somniferum L.). They are used as food and to produce edible oil. The opium poppy plant contains narcotic alkaloids such as morphine and codeine. Poppy seeds do not contain the opium alkaloids, but can become contaminated with alkaloids as a result of pest damage and during harvesting. The European Commission asked EFSA to provide an update of the Scientific Opinion on opium alkaloids in poppy seeds. The assessment is based on data on morphine, codeine, thebaine, oripavine, noscapine and papaverine in poppy seed samples. The CONTAM Panel confirms the acute reference dose (ARfD) of 10 μg morphine/kg body weight (bw) and concluded that the concentration of codeine in the poppy seed samples should be taken into account by converting codeine to morphine equivalents, using a factor of 0.2. The ARfD is therefore a group ARfD for morphine and codeine, expressed in morphine equivalents. Mean and high levels of dietary exposure to morphine equivalents from poppy seeds considered to have high levels of opium alkaloids (i.e. poppy seeds from varieties primarily grown for pharmaceutical use) exceed the ARfD in most age groups. For poppy seeds considered to have relatively low concentrations of opium alkaloids (i.e. primarily varieties for food use), some exceedance of the ARfD is also seen at high levels of dietary exposure in most surveys. For noscapine and papaverine, the available data do not allow making a hazard characterisation. However, comparison of the dietary exposure to the recommended therapeutical doses does not suggest a health concern for these alkaloids. For thebaine and oripavine, no risk characterisation was done due to insufficient data. However, for thebaine, limited evidence indicates a higher acute lethality than for morphine and the estimated exposure could present a health risk.
Collapse
|
9
|
Doyle HH, Murphy AZ. Sex-dependent influences of morphine and its metabolites on pain sensitivity in the rat. Physiol Behav 2017; 187:32-41. [PMID: 29199028 DOI: 10.1016/j.physbeh.2017.11.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Preclinical studies report that the effective dose for morphine is approximately 2-fold higher in females than males. Following systemic administration, morphine is metabolized via Phase II glucuronidation in the liver and brain into two active metabolites: morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), each possessing distinct pharmacological profiles. M6G binds to μ opioid receptors and acts as a potent analgesic. In contrast, M3G binds to toll-like receptor 4 (TLR4), initiating a neuroinflammatory response that directly opposes the analgesic effects of morphine and M6G. M3G serum concentrations are 2-fold higher in females than males, however, sex-specific effects of morphine metabolites on analgesia and glial activation in vivo remain unknown. The present studies test the hypothesis that increased M3G, and subsequent TLR4-mediated activation of glia, is a primary mechanism driving the attenuated response to morphine in females. We demonstrate that intra-PAG M6G results in a greater analgesic response in females than morphine alone. M6G analgesia was reversed with co-administration of (-)-naloxone, but not (+)-naloxone, suggesting that this effect is μ opioid receptor mediated. In contrast, intra-PAG administration of M3G significantly attenuated the analgesic effects of systemic morphine in males only, increasing the 50% effective dose of morphine two-fold (5.0 vs 10.3mg/kg) and eliminating the previously observed sex difference. An increase in IL-1β, IL-6 and TNF was observed in females following intra-PAG morphine or M6G. In males, only IL-1β levels increased following morphine. Changes in cytokine levels following M3G were limited to TNF in females. Together, these data implicate sex differences in morphine metabolism, specifically M3G, as a contributing factor in the attenuated response to morphine observed in females.
Collapse
Affiliation(s)
- H H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | - A Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
10
|
Kanda H, Hirasaki Y, Iida T, Kanao-Kanda M, Toyama Y, Chiba T, Kunisawa T. Perioperative Management of Patients With End-Stage Renal Disease. J Cardiothorac Vasc Anesth 2017; 31:2251-2267. [DOI: 10.1053/j.jvca.2017.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 12/17/2022]
|
11
|
Strand MC, Arnestad M, Fjeld B, Mørland J. Acute impairing effects of morphine related to driving: A systematic review of experimental studies to define blood morphine concentrations related to impairment in opioid-naïve subjects. TRAFFIC INJURY PREVENTION 2017; 18:788-794. [PMID: 28481682 DOI: 10.1080/15389588.2017.1326595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE The objective of this study was to look for dose- and concentration-effect relationships in experimental studies on single-dose administration of morphine on traffic-relevant behavioral tests by a systematic literature review and possibly to see whether a dose/concentration could be defined below which few or no tests would be affected. METHODS Searches for corresponding literature were conducted using MEDLINE, EMBASE, and PsycINFO, throughout March of 2016. The search strategy consisted of words colligated to cognitive and psychomotor functions of relevance to driving, in relation to morphine administration. The tests were arranged in main groups, and tests showing impairment were categorized by doses as well as calculated plasma concentrations. RESULTS Fifteen studies were included in the review. Impairment after the administration of a single intravenously dose of morphine was found in some of the tests on reaction time, attention, and visual functions. No impairment was observed in tests on psychomotor skills and en-/decoding. Tests on reaction time appeared to be less sensitive to the morphine administration, whereas tests on visual functions and attention appeared to be the most sensitive to the morphine administration. Single-dose administration of morphine with dosages up to 5 mg appeared to cause very few effects on traffic-relevant performance tasks. At higher dosages, impairment was found on various tasks but with no clear dose-effect relationship. Plasma morphine concentrations less than 50 nmol/L are most probably accompanied by few effects on traffic-relevant performance tasks. CONCLUSIONS A plasma morphine concentration of 50 nmol/L (approximately 14.3 ng/mL) could represent an upper level, under which there is little accompanying road traffic risk. A single dose of 5 mg morphine IV and analgetic equivalence doses of fentanyl, hydromorphone, oxycodone, and oxymorphone are presented with the suggestion that few traffic-relevant effects will appear after such doses.
Collapse
Affiliation(s)
- Maren Cecilie Strand
- a Department of Forensic Sciences , Oslo University Hospital , Nydalen, Oslo , Norway
| | - Marianne Arnestad
- a Department of Forensic Sciences , Oslo University Hospital , Nydalen, Oslo , Norway
| | - Bente Fjeld
- b Department of Medical Biochemistry , Oslo University Hospital , Nydalen, Oslo , Norway
| | - Jørg Mørland
- c Division of Health Data and Digitalization , Norwegian Institute of Public Health , Nydalen, Oslo , Norway
| |
Collapse
|
12
|
Long B, Koyfman A, Lee CM. Emergency medicine evaluation and management of the end stage renal disease patient. Am J Emerg Med 2017; 35:1946-1955. [PMID: 28893450 DOI: 10.1016/j.ajem.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND End stage renal disease (ESRD) is increasing in the U.S., and these patients demonstrate greater all-cause mortality, cardiovascular events, and hospitalization rates when compared to those with normal renal function. These patients may experience significant complications associated with loss of renal function and dialysis. OBJECTIVE This review evaluates complications of ESRD including cardiopulmonary, neurologic, infectious disease, vascular, and access site complications, as well as medication use in this population. DISCUSSION ESRD incidence is rapidly increasing, and patients commonly require renal replacement therapy including hemodialysis (HDS) or peritoneal dialysis (PD), each type with specific features. These patients possess greater risk of neurologic complications, cardiopulmonary pathology, infection, and access site complications. Focused history and physical examination are essential. Neurologic issues include uremic encephalopathy, cerebrovascular pathology, and several others. Cardiopulmonary complications include pericarditis, pericardial effusion/tamponade, acute coronary syndrome, sudden cardiac death, electrolyte abnormalities, pulmonary edema, and air embolism. Infections are common, with patients more commonly presenting in atypical fashion. Access site infections and metastatic infections must be treated aggressively. Access site complications include bleeding, aneurysm/pseudoaneurysm, thrombosis/stenosis, and arterial steal syndrome. Specific medication considerations are required for analgesics, sedatives, neuromuscular blocking agents, antimicrobials, and anticoagulants. CONCLUSIONS Consideration of renal physiology with complications in ESRD can assist emergency providers in the evaluation and management of these patients. ESRD affects many organ systems, and specific pharmacologic considerations are required.
Collapse
Affiliation(s)
- Brit Long
- San Antonio Military Medical Center, Department of Emergency Medicine, 3841 Roger Brooke Dr, Fort Sam Houston, TX 78234, United States.
| | - Alex Koyfman
- The University of Texas Southwestern Medical Center, Department of Emergency Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States
| | - Courtney M Lee
- Joint Base Elmendorf Richardson Medical Center, Department of Emergency Medicine, 5955 Zeamer Ave, JBER, AK, 99506, United States
| |
Collapse
|
13
|
Abstract
Opioids are the oldest and most potent drugs for the treatment of severe pain. Their clinical application is undisputed in acute (e.g., postoperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny. This article reviews mechanisms underlying opioid analgesia and other opioid actions. It discusses the structure, function, and plasticity of opioid receptors; the central and peripheral sites of analgesic actions and side effects; endogenous and exogenous opioid receptor ligands; and conventional and novel opioid compounds. Challenging clinical situations, such as the tension between chronic pain and addiction, are also illustrated.
Collapse
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Freie Universität Berlin, Charité Campus Benjamin Franklin, 12200 Berlin, Germany; .,Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, 14513 Teltow, Germany
| |
Collapse
|
14
|
Jagla C, Martus P, Stein C. Peripheral opioid receptor blockade increases postoperative morphine demands--a randomized, double-blind, placebo-controlled trial. Pain 2014; 155:2056-62. [PMID: 25046272 DOI: 10.1016/j.pain.2014.07.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/11/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022]
Abstract
Experimental studies suggest that a large proportion of opioid analgesia can be mediated by peripheral opioid receptors. This trial examined the contribution of such receptors to clinical analgesia induced by intravenous morphine. We hypothesized that the selective blockade of peripheral opioid receptors by methylnaltrexone (MNX) would increase the patients' demand for morphine to achieve satisfactory postoperative pain relief. In a double-blind, placebo-controlled, sequential 2-center trial, 50 patients undergoing knee replacement surgery were randomized (1:1) to receive either subcutaneous MNX (0.9 mg/kg) (hospital I: n=14; hospital II: n=11) or saline (hospital I: n=13; hospital II: n=12) at the end of surgery. The primary endpoint was the cumulative amount of intravenous morphine administered during the first 8 hours. Secondary endpoints were pain scores at rest and during movement (by numerical rating scale and McGill Questionnaire), vital signs, adverse side effects, and withdrawal symptoms. After MNX, demands for morphine were strongly (by about 40%) increased (hospital I: 35.31 ± 12.99 mg vs 25.51 ± 7.92 mg, P=0.03; hospital II: 35.42 ± 11.73 mg vs 24.80 ± 7.84 mg, P=0.02; pooled data: P<.001; means ± SD). Secondary endpoints were similar in all groups (P>.05). Thus, a significant proportion of analgesia produced by systemically administered morphine is mediated by peripheral opioid receptors. Drugs that selectively activate such receptors should have the potential to produce powerful clinical pain relief.
Collapse
Affiliation(s)
- Christina Jagla
- Klinik für Anaesthesiologie und Operative Intensivmedizin, Charité, Campus Benjamin Franklin, Freie Universität Berlin, Berlin, Germany; Helmholtz Virtual Institute Multifunctional Biomaterials for Medicine, Teltow, Germany
| | - Peter Martus
- Institut für Klinische Epidemiologie und Angewandte Biometrie, Universität Tübingen, Tübingen, Germany
| | - Christoph Stein
- Klinik für Anaesthesiologie und Operative Intensivmedizin, Charité, Campus Benjamin Franklin, Freie Universität Berlin, Berlin, Germany; Helmholtz Virtual Institute Multifunctional Biomaterials for Medicine, Teltow, Germany.
| |
Collapse
|
15
|
Abstract
INTRODUCTION Centrally acting opioids are well established in the treatment of acute, surgical and cancer pain. However, their use in chronic noncancer pain (CNCP) is controversial because of side effects such as tolerance, somnolence, respiratory depression, confusion, constipation and addiction. Chronic arthritis and other musculoskeletal diseases are among the leading causes of CNCP. AREAS COVERED This manuscript will discuss the role of conventional opioids in chronic arthritis. In addition, future developments and strategies exploiting peripheral effects of opioids on pain and inflammation will be outlined. EXPERT OPINION Aims in drug development include the design of peripherally restricted opioid agonists, selective targeting of endogenous opioids to sites of painful injury and the augmentation of peripheral ligand and receptor synthesis, for example, by gene therapy. Although a large number of peripherally acting opioid compounds have been developed, clinical Phase III studies have not been published so far. Another strategy is to augment the effects of endogenously released opioid peptides by the inhibition of their degrading enzymes. Technology-oriented research is needed to find novel ways of peripheral restriction of opioids. Such analgesics would be desirable for their lack of central side effects and of adverse effects typical of nonsteroidal anti-inflammatory drugs (gastrointestinal ulcers, bleeding, myocardial infarction and stroke).
Collapse
Affiliation(s)
- Christoph Stein
- Freie Universitaet Berlin, Charite Campus Benjamin Franklin, Department of Anaesthesiology and Critical Care Medicine , Berlin , Germany
| | | |
Collapse
|
16
|
Stein C. Targeting pain and inflammation by peripherally acting opioids. Front Pharmacol 2013; 4:123. [PMID: 24068999 PMCID: PMC3779927 DOI: 10.3389/fphar.2013.00123] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/05/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Charité Campus Benjamin Franklin Freie Universitaet Berlin Berlin, Germany
| |
Collapse
|
17
|
Stein C, Küchler S. Targeting inflammation and wound healing by opioids. Trends Pharmacol Sci 2013; 34:303-12. [PMID: 23602130 DOI: 10.1016/j.tips.2013.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
Abstract
Opioid receptors are expressed on peripheral sensory nerve endings, cutaneous cells, and immune cells; and local application of opioids is used for the treatment of inflammatory pain in arthritis, burns, skin grafts, and chronic wounds. However, peripherally active opioids can also directly modulate the inflammatory process and wound healing. Here, we discuss the underlying mechanisms of opioid action and the conceivable therapeutic approaches for opioid treatment, as investigated in experimental and clinical studies. A large number of in vitro experiments and animal model investigations have produced evidence that peripherally active opioids can reduce plasma extravasation, vasodilation, proinflammatory neuropeptides, immune mediators, and tissue destruction. In contrast to currently available anti-inflammatory agents, opioids have not demonstrated organ toxicity, thus making them interesting candidates for drug development. Few clinical studies have tapped into this potential to date.
Collapse
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Freie Universität Berlin, 12200 Berlin, Germany.
| | | |
Collapse
|
18
|
Opioids, sensory systems and chronic pain. Eur J Pharmacol 2013; 716:179-87. [PMID: 23500206 DOI: 10.1016/j.ejphar.2013.01.076] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 11/20/2022]
Abstract
Opioids are the oldest and most potent drugs for the treatment of severe pain. Their clinical application is undisputed in acute pain (e.g. associated with trauma or surgery) but their long-term use in chronic pain has met increasing scrutiny. Therefore, this article will review sensory mechanisms related to opioid analgesia and side effects with a special emphasis on chronic pain. Central and peripheral sites of analgesic actions and side effects, as well as conventional and novel opioid compounds will be discussed. Since pain is a complex bio-psycho-social phenomenon, non-pharmacological considerations important for the understanding of opioid analgesic efficacy are also included. Finally, examples of challenging clinical situations such as the perioperative management of patients receiving long-term opioid treatment are illustrated.
Collapse
|
19
|
Martini C, Olofsen E, Yassen A, Aarts L, Dahan A. Pharmacokinetic-pharmacodynamic modeling in acute and chronic pain: an overview of the recent literature. Expert Rev Clin Pharmacol 2012; 4:719-28. [PMID: 22111858 DOI: 10.1586/ecp.11.59] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In acute and chronic pain, the objective of pharmacokinetic-pharmacodynamic (PKPD) modeling is the development and application of mathematical models to describe and/or predict the time course of the pharmacokinetics (PK) and pharmacodynamics (PD) of analgesic agents and link PK to PD. Performing population PKPD modeling using nonlinear mixed effects modeling allows, apart from the estimation of fixed effects (the PK and PD model estimates), the quantification of random effects as within- and between-subject variability. Effect-compartment models and mechanism-based biophase distribution models that incorporate drug-association and -dissociation kinetics are applied in PKPD modeling of pain treatment. Mechanism-based models enable the quantification of the rate-limiting factors in drug effect owing to drug distribution versus receptor kinetics (since receptor kinetics are nonlinear they are discernable from the linear effect-compartment kinetics). It is a helpful technique in understanding the complex behavior of specific analgesics, such as buprenorphine, but also morphine and its active metabolite morphine-6-glucuronide, especially with respect to the reversal of opioid-induced side effects, most importantly life-threatening respiratory depression. One approach in chronic pain studies is the application of mixture models. Mixture models do not necessarily need to take PK data into account and allow the objective differentiation of measured responses to analgesics into specific response subgroups, and as such, may play an important role in analyzing Phase I and II analgesia studies. Appropriate application of PKPD modeling leads to the improvement of current therapeutics with respect to dose design and outcome, understanding the interaction of analgesics within complex chronic pain disease processes and may play an important role in drug development. In the current article, novel observations using the aforementioned techniques on opioids, NSAIDs, epidural analgesia, ketamine and GABA-ergic drugs in acute and chronic pain are discussed.
Collapse
Affiliation(s)
- Christian Martini
- Department of Anesthesiology, Leiden University Medical Center, 2330 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Chung C, Carteret AF, McKelvy AD, Ringkamp M, Yang F, Hartke TV, Dong X, Raja SN, Guan Y. Analgesic properties of loperamide differ following systemic and local administration to rats after spinal nerve injury. Eur J Pain 2012; 16:1021-32. [PMID: 22508374 DOI: 10.1002/j.1532-2149.2012.00148.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND The analgesic properties and mechanisms of loperamide hydrochloride, a peripherally acting opioid receptor agonist, in neuropathic pain warrant further investigation. METHODS We examined the effects of systemic or local administration of loperamide on heat and mechanical hyperalgesia in rats after an L5 spinal nerve ligation (SNL). RESULTS (1) Systemic loperamide (0.3-10 mg/kg, subcutaneous in the back) dose dependently reversed heat hyperalgesia in SNL rats, but did not produce thermal analgesia. Systemic loperamide (3 mg/kg) did not induce thermal antinociception in naïve rats; (2) systemic loperamide-induced anti-heat hyperalgesia was blocked by pretreatment with intraperitoneal naloxone methiodide (5 mg/kg), but not by intraperitoneal naltrindole (5 mg/kg) or intrathecal naltrexone (20 μg/10 μL); (3) local administration of loperamide (150 μg), but not vehicle, into plantar or dorsal hind paw tissue induced thermal analgesia in SNL rats and thermal antinociception in naïve rats; (4) the analgesic effect of intraplantar loperamide (150 μg/15 μL) in SNL rats at 45 min, but not 10 min, post-injection was blocked by pretreatment with an intraplantar injection of naltrexone (75 μg/10 μL); (5) systemic (3.0 mg/kg) and local (150 μg) loperamide reduced the exaggerated duration of hind paw elevation to noxious pinprick stimuli in SNL rats. Intraplantar injection of loperamide also decreased the frequency of pinprick-evoked response in naïve rats. CONCLUSIONS These findings suggest that both systemic and local administration of loperamide induce an opioid receptor-dependent inhibition of heat and mechanical hyperalgesia in nerve-injured rats, but that local paw administration of loperamide also induces thermal and mechanical antinociception.
Collapse
Affiliation(s)
- C Chung
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Binningl AR, Przesmyckil K, Sowinskil P, Morrisonl LM, Smithl TW, Marcusl P, Leesl JP, Dahanl A. A randomised controlled trial on the efficacy and side-effect profile (nausea/vomiting/sedation) of morphine-6-glucuronide versus
morphine for post-operative pain relief after major abdominal surgery*. Eur J Pain 2012; 15:402-8. [DOI: 10.1016/j.ejpain.2010.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/20/2010] [Indexed: 11/28/2022]
|
22
|
Smith T, Binning AR, Dahan A. Efficacy and safety of morphine-6-glucuronide (M6G) for postoperative pain relief: A randomized, double-blind study. Eur J Pain 2012; 13:293-9. [DOI: 10.1016/j.ejpain.2008.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 04/10/2008] [Accepted: 04/27/2008] [Indexed: 10/22/2022]
|
23
|
Arulkumaran N, Montero RM, Singer M. Management of the dialysis patient in general intensive care. Br J Anaesth 2012; 108:183-92. [PMID: 22218752 DOI: 10.1093/bja/aer461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The incidence of end-stage renal disease (ESRD) is rising and represents an important group of patients admitted to intensive care units (ICU). ESRD patients have significant co-morbidities and specific medical requirements. Renal replacement therapy (RRT), cardiovascular disease, disorders of electrolytes, drug metabolism, and sepsis are discussed. This review provides a practical approach to problems specific to the ESRD patient and common problems on ICU that require special consideration in ESRD patients. ESRD patients are at risk of hyperkalaemia. I.V. insulin and nebulized salbutamol lower serum potassium until definitive treatment with RRT is instituted. ESRD patients are prone to hypocalcaemia, which requires i.v. replacement if associated with complications. Midazolam has delayed metabolism and elimination in renal impairment and should be avoided. Morphine and its derivatives accumulate in renal failure and shorter-acting opiates are preferable. The use of diuretics is limited to patients with residual urine output. When required, therapeutic systemic anticoagulation should be achieved with unfractionated heparin as it is reversible and its metabolism and clearance are independent of renal function. The risk of sepsis is higher among ESRD patients when compared with patients with normal renal function. Empiric treatment should include both Gram-positive and Gram-negative cover, and methicillin-resistant Staphylococcus aureus cover if the patient has a dialysis catheter. Cardiovascular events account for the majority of deaths among ESRD patients. Troponin-I and CK-MB in combination should be used as markers of acute myocardial damage in the appropriate context, whereas B-type natriuretic peptide and troponin-T values are of less value.
Collapse
Affiliation(s)
- N Arulkumaran
- Department of Nephrology, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | |
Collapse
|
24
|
Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids 2011; 45:9-24. [PMID: 22170499 DOI: 10.1007/s00726-011-1163-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/15/2011] [Indexed: 12/13/2022]
Abstract
Endogenous opioids are synthesized in vivo to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abuser-based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid-mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review, we will discuss the role of opioid receptors and their ligands in mediating immune-suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system, as well as the role of opioids in exacerbation of certain disease states.
Collapse
|
25
|
Diatchenko L, Robinson JE, Maixner W. Elucidation of mu-Opioid Gene Structure: How Genetics Can Help Predict Responses to Opioids. EUROPEAN JOURNAL OF PAIN SUPPLEMENTS 2011; 5:433-438. [PMID: 22102848 PMCID: PMC3217294 DOI: 10.1016/j.eujps.2011.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Opioid drugs are among the most commonly used and effective human analgesics. To date, the clinical benefits of opioid analgesics have not been fully realized due to substantial individual variations in the responses to opioids, insufficient drug dosing, and a high rate (up to 66%) of adverse events. As such, there is a substantial need to identify the genetic and molecular biological mechanisms that mediate individual responses to opioid therapy. Recent discoveries show that genetic variations in the μ-opioid receptor (OPRM1) gene locus play an essential role in inter-individual responses. The majority of genetic association studies have focused on the A118G polymorphism, which codes for a non-synonymous change in OPRM1 exon 1. In addition to the A118G polymorphism, another functional SNP (rs563649), which is located within an alternatively-spliced OPRM1 isoform (MOR-1K), has been identified. The MOR-1k isoform codes for 6TM OPRM1 isoforms that display excitatory rather than the inhibitory cellular effects, which are characteristic of the canonical 7TM isoforms. Thus, stimulation of the 6TM isoforms may engage the molecular mechanisms mediating opioid-dependent hyperalgesia, tolerance and dependence. Future clinical and basic studies that seek to identify the functional genetic variants within OPRM1 locus, and associated molecular mechanisms, will result in a better understanding of individual responses to opioid therapy and ultimately to the development new pharmacotherapeutics and diagnostic tools.
Collapse
Affiliation(s)
- Luda Diatchenko
- Centre for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - J. Elliott Robinson
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - William Maixner
- Centre for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
26
|
Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. Eur J Med Chem 2011; 46:4769-807. [DOI: 10.1016/j.ejmech.2011.07.057] [Citation(s) in RCA: 565] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 11/16/2022]
|
27
|
Abstract
Recent introduction of new analgesics into the clinic is best described as a slow process with activity classified into two main areas: improving analgesic efficacy/potency and reducing side-effect profile. This review article describes some of the recent advances with an emphasis on use in the acute setting. In this respect, opioids continue to be the mainstay (but not the only) analgesic and there have been important improvements in their clinical effect profile. For example, tapentadol has been introduced as a mixed opioid and norepinephrine uptake inhibitor which, unlike tramadol, does not require metabolic activation and does not suffer from isomer-dependent pharmacodynamics. Opioid antagonists have received much attention recently either used alone, methylnaltrexone (s.c) or alvimopan (p.o), or in combination, Targinact (oxycodone/naloxone), and appear to be effective in reducing opioid side-effects such as those in the gastrointestinal tract. Other agents where there has been recent development include the use of gabapentin, methylxanthines, and local anaesthetics. An interesting area of translation of basic research is in the inhibition of breakdown of endogenous opioids with opiorphin, targeting of the endocannabinoid system, and the use of ampakines to obtund opioid-induced side-effects. It is clear that there is still much work to be done, but the need for highly efficacious analgesics with good side-effect profile remains.
Collapse
Affiliation(s)
- I Power
- Royal Infirmary, University of Edinburgh-Anaesthesia, Critical Care and Pain Medicine, 51 Little France Crescent, Edinburgh EH16 4SA, UK.
| |
Collapse
|
28
|
Fan J, Brown SM, Tu Z, Kharasch ED. Chemical and enzyme-assisted syntheses of norbuprenorphine-3-β-D-glucuronide. Bioconjug Chem 2011; 22:752-8. [PMID: 21434652 DOI: 10.1021/bc100550u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Norbuprenorphine-3-β-d-glucuronide (nBPN-3-β-d-G, 1) is a major phase II metabolite of buprenorphine, a pharmaceutical used for the treatment of opioid addiction. The pharmacological activity of compound 1 is not clear because investigations have been limited by the lack of chemically pure, well characterized 1 in sufficient quantities for in vitro and in vivo experiments. This work describes two concise, new methods of synthesis of 1, a chemical and an enzyme-assisted synthesis. The chemical synthesis used a strategy based on a combination of Koenig-Knorr coupling and amino-silyl protection. The enzyme-assisted synthesis used dog liver to convert the substrate norbuprenorphine (nBPN, 2) to 1. Both methods provided 1, characterized by (1)H NMR and tandem mass spectrometry, with purity >96%. The fractional yield of the enzyme-assisted synthesis was greater than that of the chemical synthesis (67% vs 5.3%), but due to larger reaction volumes, the chemical synthesis afforded greater amounts of total 1.
Collapse
Affiliation(s)
- Jinda Fan
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| | | | | | | |
Collapse
|
29
|
Shbair M, Eljabour S, Bassyoni I, Lhermitte M. Drugs involved in drug-facilitated crimes – part II: Drugs of abuse, prescription and over-the-counter medications. A review. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:319-31. [DOI: 10.1016/j.pharma.2010.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 01/12/2023]
|
30
|
Pang KS, Morris ME, Sun H. Formed and preformed metabolites: facts and comparisons. J Pharm Pharmacol 2010; 60:1247-75. [DOI: 10.1211/jpp.60.10.0001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
The administration of metabolites arising from new drug entities is often employed in drug discovery to investigate their associated toxicity. It is expected that administration of metabolites can predict the exposure of metabolites originating from the administration of precursor drug. Whether exact and meaningful information can be obtained from this has been a topic of debate. This communication summarizes observations and theoretical relationships based on physiological modelling for the liver, kidney and intestine, three major eliminating organs/tissues. Theoretical solutions based on physiological modelling of organs were solved, and the results suggest that deviations are expected. Here, examples of metabolite kinetics observed mostly in perfused organs that did not match predictions are provided. For the liver, discrepancies in fate between formed and preformed metabolites may be explained by the heterogeneity of enzymes, the presence of membrane barriers and whether transporters are involved. For the kidney, differences have been attributed to glomerular filtration of the preformed but not the formed metabolite. For the intestine, the complexity of segregated flows to the enterocyte and serosal layers and differences in metabolism due to the route of administration are addressed. Administration of the metabolite may or may not directly reflect the toxicity associated with drug use. However, kinetic data on the preformed metabolite will be extremely useful to develop a sound model for modelling and simulations; in-vitro evidence on metabolite handling at the target organ is also paramount. Subsequent modelling and simulation of metabolite data arising from a combined model based on both drug and preformed metabolite data are needed to improve predictions on the behaviours of formed metabolites.
Collapse
Affiliation(s)
- K Sandy Pang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Huadong Sun
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| |
Collapse
|
31
|
White SM, Rashid N, Chakladar A. An analysis of renal dysfunction in 1511 patients with fractured neck of femur: the implications for peri-operative analgesia. Anaesthesia 2009; 64:1061-5. [PMID: 19735395 DOI: 10.1111/j.1365-2044.2009.06012.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SUMMARY Following two deaths from respiratory failure secondary to opioid toxicity in patients admitted for surgical repair of fractured neck of femur, we retrospectively studied the serum urea and electrolyte concentrations of 1511 consecutive patients requiring surgery for proximal femoral fracture, and calculated their glomerular filtration rate. Five hundred and forty-five (36.1%) patients had renal dysfunction on admission (glomerular filtration rate < 60 ml x min(-1).1.73 m(-2)); 435 (28.8%) had grade 3 chronic kidney disease (moderate; glomerular filtration rate 30-59 ml x min(-1).1.73 m(-2)), 82 (5.4%) had grade 4 disease (severe; glomerular filtration rate 15-29 ml x min(-1).1.73 m(-2)) and 28 (1.9%) had grade 5 (renal failure; glomerular filtration rate < 15 ml min(-1).1.73 m(-2)). The 30-day mortality for patients with renal dysfunction (62/536; 11.6%) was significantly greater (p = 0.004) than for patients with normal renal function (68/958; 7.1%), although median (IQR [range]) postoperative lengths of stay were similar 15 (10-22 [1-125]) vs 14 (9-22 [1-120]) days respectively; p = 0.06). Renal impairment is common in patients admitted for fixation of fractured neck of femur, who are consequently at risk of opioid toxicity.
Collapse
Affiliation(s)
- S M White
- Royal Sussex County Hospital, Brighton, East Sussex, UK.
| | | | | |
Collapse
|
32
|
Abstract
This chapter reviews the expression and regulation of opioid receptors in sensory neurons and the interactions of these receptors with endogenous and exogenous opioid ligands. Inflammation of peripheral tissues leads to increased synthesis and axonal transport of opioid receptors in dorsal root ganglion neurons. This results in opioid receptor upregulation and enhanced G protein coupling at peripheral sensory nerve terminals. These events are dependent on neuronal electrical activity, and on production of proinflammatory cytokines and nerve growth factor within the inflamed tissue. Together with the disruption of the perineurial barrier, these factors lead to an enhanced analgesic efficacy of peripherally active opioids. The major local source of endogenous opioid ligands (e.g. beta-endorphin) is leukocytes. These cells contain and upregulate signal-sequence-encoding messenger RNA of the beta-endorphin precursor proopiomelanocortin and the entire enzymatic machinery necessary for its processing into the functionally active peptide. Opioid-containing immune cells extravasate using adhesion molecules and chemokines to accumulate in inflamed tissues. Upon stressful stimuli or in response to releasing agents such as corticotropin-releasing factor, cytokines, chemokines, and catecholamines, leukocytes secrete opioids. Depending on the cell type, this release is contingent on extracellular Ca(2+) or on inositol triphosphate receptor triggered release of Ca(2+) from endoplasmic reticulum. Once secreted, opioid peptides activate peripheral opioid receptors and produce analgesia by inhibiting the excitability of sensory nerves and/or the release of proinflammatory neuropeptides. These effects occur without central untoward side effects such as depression of breathing, clouding of consciousness, or addiction. Future aims include the development of peripherally restricted opioid agonists, selective targeting of opioid-containing leukocytes to sites of painful injury, and the augmentation of peripheral opioid peptide and receptor synthesis.
Collapse
Affiliation(s)
- Christoph Stein
- Klinik für Anaesthesiologie und operative Intensivmedizin, Freie Universität Berlin, Charité - Campus Benjamin Franklin, 12200 Berlin, Germany.
| | | |
Collapse
|
33
|
van Dorp ELA, Morariu A, Dahan A. Morphine-6-glucuronide: potency and safety compared with morphine. Expert Opin Pharmacother 2008; 9:1955-61. [PMID: 18627332 DOI: 10.1517/14656566.9.11.1955] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND In contemporary medicine, morphine remains the drug of choice in the treatment of severe postoperative pain. Nevertheless, morphine has several side effects, which can seriously compromise its analgesic effectiveness and the patient safety/compliance. The search for opioid analgesics with a better side-effect profile than morphine has led to a morphine metabolites, morphine-6-glucuronide (M6G). OBJECTIVE The objectives of the current paper are to give an overview of the analgesic properties of M6G, assess the dose range at which it produces equianalgesia to morphine and explore its side-effect profile. METHODS A review of published clinical studies (Phase II - III) on M6G in the treatment of experimental and clinical pain is given. RESULTS/CONCLUSIONS M6G > 0.2 mg/kg is an effective analgesic with a slower onset but longer duration of action (> 12 h) compared with morphine. Side effects, most importantly postoperative nausea and vomiting, occur less frequent after M6G treatment. M6G is an attractive alternative to morphine in the treatment of severe postoperative pain.
Collapse
Affiliation(s)
- Eveline L A van Dorp
- Leiden University Medical Centre, Department of Anesthesiology, P5-Q, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
34
|
Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 2008; 25:475-516. [PMID: 18497896 DOI: 10.1039/b514294f] [Citation(s) in RCA: 520] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural product and natural product-derived compounds that are being evaluated in clinical trials or are in registration (as at 31st December 2007) have been reviewed, as well as natural product-derived compounds for which clinical trials have been halted or discontinued since 2005. Also discussed are natural product-derived drugs launched since 2005, new natural product templates and late-stage development candidates.
Collapse
Affiliation(s)
- Mark S Butler
- MerLion Pharmaceuticals, 1 Science Park Road, The Capricorn 05-01, Singapore Science Park II, Singapore 117528.
| |
Collapse
|