2
|
Yanagisawa T, Fukuma R, Seymour B, Hosomi K, Kishima H, Shimizu T, Yokoi H, Hirata M, Yoshimine T, Kamitani Y, Saitoh Y. Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nat Commun 2016; 7:13209. [PMID: 27807349 PMCID: PMC5095287 DOI: 10.1038/ncomms13209] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/12/2016] [Indexed: 12/02/2022] Open
Abstract
The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. Pain in a phantom limb after limb deafferentation may be due to maladaptive sensorimotor representation. Here the authors find that sensorimotor plasticity induced by BMI training with the phantom hand, contrary to expectation, increased pain while dissociating prosthetic movements from the phantom arm relieved the pain.
Collapse
Affiliation(s)
- Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan.,Department of Neuroinformatics, CiNet Computational Neuroscience Laboratories, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,JST PRESTO, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Clinical Neuroengineering, Osaka University, Global Center for Medical Engineering and Informactics, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryohei Fukuma
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan.,Department of Neuroinformatics, CiNet Computational Neuroscience Laboratories, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Ben Seymour
- Department of Engineering, University of Cambridge, Computational and Biological Learning Laboratory, Trumpington Street, Cambridge CB2 1PZ, UK.,National Institute for Information and Communications Technology, Center for Information and Neural Networks, 1-3 Suita, Osaka 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Shimizu
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Yokoi
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuroinformatics, CiNet Computational Neuroscience Laboratories, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Clinical Neuroengineering, Osaka University, Global Center for Medical Engineering and Informactics, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiki Yoshimine
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuroinformatics, CiNet Computational Neuroscience Laboratories, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Division of Clinical Neuroengineering, Osaka University, Global Center for Medical Engineering and Informactics, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukiyasu Kamitani
- Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan.,Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan.,Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Youichi Saitoh
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Trevelyan EG, Turner WA, Robinson N. Perceptions of phantom limb pain in lower limb amputees and its effect on quality of life: a qualitative study. Br J Pain 2015; 10:70-7. [PMID: 27551416 DOI: 10.1177/2049463715590884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Phantom limb pain (PLP) is a prevalent complication post-amputation. Currently, qualitative literature exploring the experience of PLP in amputees is sparse, and little is known about whether the educational needs of amputees are being met. OBJECTIVES To explore lower limb amputees' descriptive lived experiences of PLP, to understand how PLP affects quality of life and to determine whether amputees feel they are provided with adequate information about PLP. METHODS A qualitative descriptive approach, situated under the constructivist paradigm was taken, consisting of cross-sectional semi-structured interviews. A purposive sample of 15 lower limb amputees, 1-3 months post-surgery with past or current experience of PLP were interviewed once about their experience of PLP. Interviews were audio-recorded, transcribed verbatim and analysed using Framework Analysis. Interviews were conducted while participants were inpatients at an amputee rehabilitation unit in London. RESULTS Six key themes were identified during analysis, of which three were related to PLP and are reported on in this article (real and physical phantoms, living with a phantom and being informed). PLP had numerous painful qualities. The phantom felt real, with kinetic and kinaesthetic properties. PLP had multiple meanings to amputees, was considered a reminder of circumstances and could affect quality of life. Information provided about PLP was inadequate. CONCLUSION PLP can be a severe and annoying experience acting as a reminder of amputees' circumstances. Information provided about PLP is inadequate, with some amputees still perceiving PLP as mental and imaginary. Education about PLP and awareness and accessibility to non-pharmacological interventions needs to be improved.
Collapse
Affiliation(s)
- Esmé G Trevelyan
- Faculty of Health and Social Care, London South Bank University, London, UK
| | - Warren A Turner
- Faculty of Health and Social Care, London South Bank University, London, UK
| | - Nicola Robinson
- Faculty of Health and Social Care, London South Bank University, London, UK
| |
Collapse
|