1
|
Kapoor D, Chilkapalli SC, Prajapati BG, Rodriques P, Patel R, Singh S, Bhattacharya S. The Astonishing Accomplishment of Biological Drug Delivery using Lipid Nanoparticles: An Ubiquitous Review. Curr Pharm Biotechnol 2024; 25:1952-1968. [PMID: 38265380 DOI: 10.2174/0113892010268824231122041237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 01/25/2024]
Abstract
Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.
Collapse
Affiliation(s)
- Devesh Kapoor
- Department of Pharmaceutical Technology, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Shirisha C Chilkapalli
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Paul Rodriques
- Department of Pharmaceutical Technology, Krishna School of Pharmacy and Research, KPGU, Vadodara, Mumbai NH#8, Varnama, Vadodara, Gujarat, India
| | - Ravish Patel
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
2
|
Silvestre ALP, Oshiro-Júnior JA, Garcia C, Turco BO, da Silva Leite JM, de Lima Damasceno BPG, Soares JCM, Chorilli M. Monoclonal Antibodies Carried in Drug Delivery Nanosystems as a Strategy for Cancer Treatment. Curr Med Chem 2021; 28:401-418. [PMID: 31965938 DOI: 10.2174/0929867327666200121121409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Monoclonal antibodies carried in nanosystems have been extensively studied and reported as a promising tool for the treatment of various types of cancers. Monoclonal antibodies have great advantages for the treatment of cancer because their protein structure can bind to the target tissue; however, it has some challenges such as denaturation following heat exposure and extreme values of pH, temperature and solvents, the ability to undergo hydrolysis, oxidation and deamination and the formation of non-native aggregates, which compromise drug stability to a large extent. In addition to these characteristics, they suffer rapid elimination when in the blood, which results in a short half-life and the production of neutralizing antibodies, rendering the doses ineffective. These challenges are overcome with encapsulation in nanosystems (liposomes, polymer nanoparticles, cyclodextrins, solid lipid nanoparticles, nanostructured lipid carriers, dendrimers and micelles) due to the characteristics of improving solubility, permeability, and selectivity only with tumor tissue; with that, there is a decrease in side effects beyond controlled release, which is critical to improving the therapeutic efficacy of cancer treatment. The article was divided into different types of nanosystems, with a description of their definitions and applications in various types of cancers. Therefore, this review summarizes the use of monoclonal antibodies encapsulated in nanosystems and the description of clinical studies with biosimilars. Biosimilars are defined as products that are similar to monoclonal antibodies which are produced when the patent for the monoclonal antibodies expires.
Collapse
Affiliation(s)
- Amanda Letícia Polli Silvestre
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | - Joáo Augusto Oshiro-Júnior
- Graduation Program in Pharmaceutical Sciences, State University of Paraiba, Campina Grande, Joao Pessoa, Brazil
| | - Camila Garcia
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | - Bruna Ortolani Turco
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | | | | | - Jonas Corsino Maduro Soares
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| |
Collapse
|
3
|
Man A, Luo H, Levitskaya SV, Macapagal N, Newell KJ. Optimization of a platform process operating space for a monoclonal antibody susceptible to reversible and irreversible aggregation using a solution stability screening approach. J Chromatogr A 2019; 1597:100-108. [DOI: 10.1016/j.chroma.2019.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023]
|
4
|
Abed HS, Al-Ghobashy MA, Fathalla FA, Salem MY. Evaluation of the combined effects of pegylation and glycosylation on the stability of erythropoietin using a stability-indicating SE-HPLC. Biologicals 2017; 50:129-136. [PMID: 28958787 DOI: 10.1016/j.biologicals.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022] Open
Abstract
Recombinant human erythropoietin (rhEPO) is a commonly used biopharmaceutical for the treatment of anemia-associated disorders. Epogen; glycosylated erythropoietin (G-EPO) has short half-life and poor stability. Pegylated Epogen (Peg-G-EPO) was introduced to the market to overcome these limitations. The combined effects of pegylation and glycosylation on the stability of Peg-G-EPO was studied. Determination of Peg-G-EPO in the presence of its degradation products was achieved using SE-HPLC. The assay was validated according to ICH guidelines over concentration range of 50.00-320.00 μg/mL (r 0.9999). A mobile phase of 50 mM phosphate buffer (pH 6.5) with 300 mM sodium chloride and 20% ethanol was employed. Isocratic elution was carried out at 0.5 mL/min over run time of 30 min. Peg-G-EPO was found stable towards mechanical agitation only at low concentrations while it was stable towards repeated freeze/thaw; regardless of the concentration. Effect of temperature and pH were also investigated and Peg-G-EPO was found stable within narrow ranges. Results indicated formation of small molecular weight and very high molecular weight aggregates that have been filtered-off the column. Although Peg-G-EPO was found relatively more stable than its non-pegylated but glycosylated version, results indicated the need for careful stability-assessment of Peg-G-EPO.
Collapse
Affiliation(s)
- Heba S Abed
- National Organization for Research and Control of Biologicals, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, School of Pharmacy, New Giza University, Egypt.
| | - Faten A Fathalla
- National Organization for Research and Control of Biologicals, Egypt
| | - Maissa Y Salem
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
5
|
Hadadian S, Shamassebi DN, Mirzahoseini H, Shokrgozar MA, Bouzari S, Sepahi M. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor. Adv Biomed Res 2015; 4:176. [PMID: 26605215 PMCID: PMC4616999 DOI: 10.4103/2277-9175.164001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/11/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. MATERIALS AND METHODS In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD polyethylene glycol. The PEGylated form was separated by size exclusion chromatography. Structural, biological activity, and stability evaluations were performed using Fourier transform infrared (FITR) spectroscopy, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and effect denaturing agent, respectively. RESULTS FITR spectroscopy revealed that both PEGylated and native forms had the same structures. MTT assay showed that PEGyalated form had a 30% reduced biological activity. Fluorescence spectrophotometry indicated that the PEGylated form denatured at higher concentrations of guanidine HCl (1.2 M) compared with native, which denatured at 0.8 M guanidine HCl. CONCLUSIONS PEGylation of hBFGF makes it more stable against denaturing agent but reduces its bioactivity up to 30%.
Collapse
Affiliation(s)
- Shahin Hadadian
- Department of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| | | | - Hasan Mirzahoseini
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Sepahi
- Department of Recombinant Biopharmaceutical Production, Research and Production Complex, Pasteur Institute of Iran, Karaj, Iran
| |
Collapse
|
6
|
Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants. J Chromatogr A 2015; 1381:64-73. [PMID: 25595534 DOI: 10.1016/j.chroma.2014.12.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 11/20/2022]
Abstract
The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load.
Collapse
|
7
|
|
8
|
Abed HS, Al-Ghobashy MA, Fathalla FA, Salem MY. Assessment of the Degradation Pattern and Extent of PEG Interferon α-2b Using a Stability-Indicating SE-HPLC Assay. Chromatographia 2014. [DOI: 10.1007/s10337-014-2760-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhou L, Xu N, Sun Y, Liu XM. Targeted biopharmaceuticals for cancer treatment. Cancer Lett 2014; 352:145-51. [PMID: 25016064 DOI: 10.1016/j.canlet.2014.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/21/2014] [Accepted: 06/29/2014] [Indexed: 01/02/2023]
Abstract
Cancer is a complex invasive genetic disease that causes significant mortality rate worldwide. Protein-based biopharmaceuticals have significantly extended the lives of millions of cancer patients. This article reviews the biological function and application of targeted anticancer biopharmaceuticals. We first discuss the specific antigens and core pathways that are used in the development of targeted cancer therapy. The innovative monoclonal antibodies, non-antibody proteins, and small molecules targeting these antigens or pathways are then reviewed. Finally, the current challenges in anticancer biopharmaceuticals development and the potential solutions to address these challenges are discussed.
Collapse
Affiliation(s)
- Lufang Zhou
- Departments of Medicine and Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ningning Xu
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Yan Sun
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoguang Margaret Liu
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
10
|
Justo Jacomini DL, Gomes Moreira SM, Campos Pereira FD, Zollner RDL, Brochetto Braga MR. Reactivity of IgE to the allergen hyaluronidase from Polybia paulista (Hymenoptera, Vespidae) venom. Toxicon 2014; 82:104-11. [DOI: 10.1016/j.toxicon.2014.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 11/15/2022]
|
11
|
Biosimilar medicines - their use in the treatment of inflammatory bowel diseases. Position statement of the Working Group of the Polish National Consultant in Gastroenterology. GASTROENTEROLOGY REVIEW 2014; 9:1-3. [PMID: 24868291 PMCID: PMC4027845 DOI: 10.5114/pg.2014.40842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 12/30/2022]
Abstract
Biological medical products are drugs whose active components are produced only by living, genetically modified organisms or live cell cultures. Patents and exclusivity for most biopharmaceuticals has either expired or will expire soon, which enables biotechnological companies to introduce similar biological products. The problem of replacing a biological medicine with a biosimilar in the course of therapy remains open. In this statement, the Working Group of the Polish National Consultant in Gastroenterology, in the absence of data regarding bioequivalence in patients with inflammatory bowel disease, does not recommend switching from original biological medicine to its biosimilar analogue in the course of treatment in inflammatory disease patients; however, this may change after receiving the results of controlled studies regarding bioequivalence in this group.
Collapse
|
12
|
Forstenlehner IC, Holzmann J, Scheffler K, Wieder W, Toll H, Huber CG. A direct-infusion- and HPLC-ESI-Orbitrap-MS approach for the characterization of intact PEGylated proteins. Anal Chem 2013; 86:826-34. [PMID: 24308604 DOI: 10.1021/ac403390y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The characterization of proteins modified with poly(ethylene glycol) (PEG), such as recombinant human granulocyte-colony stimulating factor (PEGylated rhG-CSF or pegfilgrastim), by electrospray ionization-mass spectrometry (ESI-MS) constitutes a challenge due to the overlapping protein charge state pattern and PEG polydispersity. In order to minimize spectral overlaps, charge reduction by means of the addition of amine was applied. Method development for direct-infusion measurements, carried out on an ESI-time-of-flight (ESI-TOF) instrument, demonstrated the potential of triethylamine (TEA) for shifting the charge state pattern toward lower-charged species and of formic acid (FA) for causing higher charging. After successful method transfer to the LTQ Orbitrap XL instrument, isotopically resolved mass spectra could be acquired. With a median mass accuracy of 1.26 ppm, a number-average monoisotopic molecular mass of 40074.64 Da was determined for pegfilgrastim. The direct comparison of three Orbitrap mass spectrometers, namely the LTQ Orbitrap XL, the Exactive, and the Q Exactive, demonstrated that online interfacing to high performance liquid chromatography (HPLC) was only feasible with the Q Exactive, which offers adequate spectral quality on a time scale compatible with chromatographic separation (i.e., 0.2 min acquisition time per chromatographic peak). Finally, the applicability of both direct-infusion Orbitrap MS and HPLC interfaced to Orbitrap MS was demonstrated for the detection of methionine oxidation in pegfilgrastim. Singly, doubly, and triply oxidized species were readily resolved in the chromatogram, while their oxidation status was easily determined from the mass shifts observed in the deconvoluted mass spectra.
Collapse
Affiliation(s)
- Ines C Forstenlehner
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg , Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
13
|
Amin L, Md Jahi J, Md Nor AR. Stakeholders' attitude to genetically modified foods and medicine. ScientificWorldJournal 2013; 2013:516742. [PMID: 24381520 PMCID: PMC3872016 DOI: 10.1155/2013/516742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Public acceptance of genetically modified (GM) foods has to be adequately addressed in order for their potential economic and social benefits to be realized. The objective of this paper is to assess the attitude of the Malaysian public toward GM foods (GM soybean and GM palm oil) and GM medicine (GM insulin). A survey was carried out using self-constructed multidimensional instrument measuring attitudes towards GM products. The respondents (n = 1017) were stratified according to stakeholders' groups in the Klang Valley region. Results of the survey show that the overall attitude of the Malaysian stakeholders towards GM products was cautious. Although they acknowledged the presence of moderate perceived benefits associated with GM products surveyed and were moderately encouraging of them, they were also moderately concerned about the risks and moral aspects of the three GM products as well as moderately accepting the risks. Attitudes towards GM products among the stakeholders were found to vary not according to the type of all GM applications but rather depend on the intricate relationships between the attitudinal factors and the type of gene transfers involved. Analyses of variance showed significant differences in the six dimensions of attitude towards GM products across stakeholders' groups.
Collapse
Affiliation(s)
- Latifah Amin
- Centre for General Studies, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Jamaluddin Md Jahi
- Institute of Malay World and Civilization, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Abd Rahim Md Nor
- Faculty of Social Sciences & Humanities, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
14
|
The hidden potential of small synthetic molecules and peptides as affinity ligands for bioseparations. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
DFT and docking studies of rhodostreptomycins A and B and their interactions with solvated/nonsolvated Mg²⁺ and Ca²⁺ ions. J Mol Model 2013; 19:4823-36. [PMID: 24026575 DOI: 10.1007/s00894-013-1952-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 07/17/2013] [Indexed: 12/17/2022]
Abstract
The interactions of L-aminoglucosidic stereoisomers such as rhodostreptomycins A (Rho A) and B (Rho B) with cations (Mg(2+), Ca(2+), and H(+)) were studied by a quantum mechanical method that utilized DFT with B3LYP/6-311G. Docking studies were also carried out in order to explore the surface recognition properties of L-aminoglucoside with respect to Mg(2+) and Ca(2+) ions under solvated and nonsolvated conditions. Although both of the stereoisomers possess similar physicochemical/antibiotic properties against Helicobacter pylori, the thermochemical values for these complexes showed that its high affinity for Mg(2+) cations caused the hydration of Rho B. According to the results of the calculations, for Rho A-Ca(2+)(H2O)6, ΔH = -72.21 kcal mol(-1); for Rho B-Ca(2+)(H2O)6, ΔH = -72.53 kcal mol(-1); for Rho A-Mg(2+)(H2O)6, ΔH = -72.99 kcal mol(-1) and for Rho B-Mg(2+)(H2O)6, ΔH = -95.00 kcal mol(-1), confirming that Rho B binds most strongly with hydrated Mg(2+), considering the energy associated with this binding process. This result suggests that Rho B forms a more stable complex than its isomer does with magnesium ion. Docking results show that both of these rhodostreptomycin molecules bind to solvated Ca(2+) or Mg(2+) through hydrogen bonding. Finally, Rho B is more stable than Rho A when protonation occurs.
Collapse
|
16
|
Nakai T, Hirakura T, Sakurai Y, Shimoboji T, Ishigai M, Akiyoshi K. Injectable hydrogel for sustained protein release by salt-induced association of hyaluronic acid nanogel. Macromol Biosci 2012; 12:475-83. [PMID: 22606703 DOI: 10.1002/mabi.201100352] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A hyaluronic acid-based anionic nanogel formed by self-assembly of cholesteryl-group-bearing HA is designed for protein delivery. The HA nanogel spontaneously binds various types of proteins without denaturation, such as recombinant human growth hormone, erythropoietin, exendin-4, and lysozyme. The HA nanogel shows unique colloidal properties, in particular that an injectable hydrogel is formed by salt-induced association of the HA nanogel. A pharmacokinetic study in rats shows that an in situ gel formulation, prepared by simply mixing rhGH and HA nanogel in phosphate buffer, maintains plasma rhGH levels within a narrow range over one week. Therefore, HA nanogels offer a simple method for easy formulation of therapeutic proteins and are effective for sustained protein release systems.
Collapse
Affiliation(s)
- Takashi Nakai
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Tokyo, 101-0062, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Hapuarachchi S, Fodor S, Apostol I, Huang G. Use of capillary electrophoresis–sodium dodecyl sulfate to monitor disulfide scrambled forms of an Fc fusion protein during purification process. Anal Biochem 2011; 414:187-95. [DOI: 10.1016/j.ab.2011.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 12/13/2022]
|
18
|
Site-specific protein modifications through pyrroline-carboxy-lysine residues. Proc Natl Acad Sci U S A 2011; 108:10437-42. [PMID: 21670250 DOI: 10.1073/pnas.1105197108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pyrroline-carboxy-lysine (Pcl) is a demethylated form of pyrrolysine that is generated by the pyrrolysine biosynthetic enzymes when the growth media is supplemented with D-ornithine. Pcl is readily incorporated by the unmodified pyrrolysyl-tRNA/tRNA synthetase pair into proteins expressed in Escherichia coli and in mammalian cells. Here, we describe a broadly applicable conjugation chemistry that is specific for Pcl and orthogonal to all other reactive groups on proteins. The reaction of Pcl with 2-amino-benzaldehyde or 2-amino-acetophenone reagents proceeds to near completion at neutral pH with high efficiency. We illustrate the versatility of the chemistry by conjugating Pcl proteins with poly(ethylene glycol)s, peptides, oligosaccharides, oligonucleotides, fluorescence, and biotin labels and other small molecules. Because Pcl is genetically encoded by TAG codons, this conjugation chemistry enables enhancements of the pharmacology and functionality of proteins through site-specific conjugation.
Collapse
|
19
|
Pinholt C, Hartvig RA, Medlicott NJ, Jorgensen L. The importance of interfaces in protein drug delivery – why is protein adsorption of interest in pharmaceutical formulations? Expert Opin Drug Deliv 2011; 8:949-64. [DOI: 10.1517/17425247.2011.577062] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Bullous AJ, Alonso CMA, Boyle RW. Photosensitiser–antibody conjugates for photodynamic therapy. Photochem Photobiol Sci 2011; 10:721-50. [DOI: 10.1039/c0pp00266f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Burkitt W, Domann P, O'Connor G. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci 2010; 19:826-35. [PMID: 20162626 DOI: 10.1002/pro.362] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxidation of methionine residues in biopharmaceuticals is a common and often unwanted modification that frequently occurs during their manufacture and storage. It often results in a lack of stability and biological function of the product, necessitating continuous testing for the modification throughout the product shelf life. A major class of biopharmaceutical products are monoclonal antibodies (mAbs), however, techniques for their detailed structural analysis have until recently been limited. Hydrogen/deuterium exchange mass spectrometry (HXMS) has recently been successfully applied to the analysis of mAbs. Here we used HXMS to identify and localise the structural changes that occurred in a mAb (IgG1) after accelerated oxidative stress. Structural alterations in a number of segments of the Fc region were observed and these related to oxidation of methionine residues. These included a large change in the hydrogen exchange profile of residues 247-253 of the heavy chain, while smaller changes in hydrogen exchange profile were identified for peptides that contained residues in the interface of the C(H)2 and C(H)3 domains.
Collapse
Affiliation(s)
- William Burkitt
- Department of Mass Spectrometry, LGC, Queens Road, Teddington, London, TW11 0LY, United Kingdom.
| | | | | |
Collapse
|
22
|
Boutureira O, D'Hooge F, Fernández-González M, Bernardes GJL, Sánchez-Navarro M, Koeppe JR, Davis BG. Fluoroglycoproteins: ready chemical site-selective incorporation of fluorosugars into proteins. Chem Commun (Camb) 2010; 46:8142-4. [PMID: 20714547 DOI: 10.1039/c0cc01576h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tag-and-modify strategy allows the practical synthesis of homogenous fluorinated glyco-amino acids, peptides and proteins carrying a fluorine label in the sugar and allows access to first examples of directly radiolabelled ([(18)F]-glyco)proteins.
Collapse
Affiliation(s)
- Omar Boutureira
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Solá RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 2010; 24:9-21. [PMID: 20055529 DOI: 10.2165/11530550-000000000-00000] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During their development and administration, protein-based drugs routinely display suboptimal therapeutic efficacies due to their poor physicochemical and pharmacological properties. These innate liabilities have driven the development of molecular strategies to improve the therapeutic behavior of protein drugs. Among the currently developed approaches, glycoengineering is one of the most promising, because it has been shown to simultaneously afford improvements in most of the parameters necessary for optimization of in vivo efficacy while allowing for targeting to the desired site of action. These include increased in vitro and in vivo molecular stability (due to reduced oxidation, cross-linking, pH-, chemical-, heating-, and freezing-induced unfolding/denaturation, precipitation, kinetic inactivation, and aggregation), as well as modulated pharmacodynamic responses (due to altered potencies from diminished in vitro enzymatic activities and altered receptor binding affinities) and improved pharmacokinetic profiles (due to altered absorption and distribution behaviors, longer circulation lifetimes, and decreased clearance rates). This article provides an account of the effects that glycosylation has on the therapeutic efficacy of protein drugs and describes the current understanding of the mechanisms by which glycosylation leads to such effects.
Collapse
Affiliation(s)
- Ricardo J Solá
- Laboratory for Applied Biochemistry and Biotechnology, Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931-3346, USA.
| | | |
Collapse
|
24
|
Platis D, Maltezos A, Ma JKC, Labrou NE. Combinatorial de novo design and application of a biomimetic affinity ligand for the purification of human anti-HIV mAb 4E10 from transgenic tobacco. J Mol Recognit 2009; 22:415-24. [PMID: 19431140 DOI: 10.1002/jmr.954] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Monoclonal anti-HIV antibody 4E10 (mAb 4E10) is one of the most broadly neutralizing antibodies against HIV, directed against a specific epitope on envelope protein gp41. In the present study, a combinatorial de novo design approach was used for the development of a biomimetic ligand for the affinity purification of mAb 4E10 from tobacco transgenic extract in a single chromatographic step. The biomimetic ligand (4E10lig) was based on a L-Phe/beta-Ala bi-substituted 1,3,5-triazine (Trz) scaffold (beta-Ala-Trz-L-Phe, 4E10lig) which potentially mimics the more pronounced electrostatic and hydrophobic interactions of mAb 4E10-binding sequence determined by screening of a random peptide library. This library was comprised of Escherichia coli cells harboring a plasmid (pFlitrx) engineered to express a fusion protein containing random dodecapeptides that were inserted into the active loop of thioredoxin, which itself was inserted into the dispensable region of the flagellin gene. Adsorption equilibrium studies with this biomimetic ligand and mAb 4E10 determined a dissociation constant (K(D)) of 0.41 +/- 0.05 microM. Molecular modeling studies of the biomimetic ligand revealed that it can potentially occupy the same binding site as the natural binding core peptide epitope. The biomimetic affinity adsorbent was exploited in the development of a facile mAb 4E10 purification protocol, affording mAb 4E10 of high purity (approximately 95%) with good overall yield (60-80%). Analysis of the antibody preparation by SDS-PAGE, enzyme-linked immunosorbent assays (ELISA), and western blot showed that the mAb 4E10 was fully active and free of degraded variants, polyphenols, and alkaloids.
Collapse
Affiliation(s)
- Dimitris Platis
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | | | | | | |
Collapse
|
25
|
Grandori R, Santambrogio C, Brocca S, Invernizzi G, Lotti M. Electrospray-ionization mass spectrometry as a tool for fast screening of protein structural properties. Biotechnol J 2009; 4:73-87. [DOI: 10.1002/biot.200800250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Abstract
Interferons, IFNs, are among the most widely studied and clinically used biopharmaceuticals. Despite their invaluable therapeutic roles, the widespread use of IFNs suffers from some inherent limitations, mainly their relatively short circulation lifespan and their unwanted effects on some non-target tissues. Therefore, both these constraints have become the central focus points for the research efforts on the development of a variety of novel delivery systems for these therapeutic agents with the ultimate goal of improving their therapeutic end-points. Generally, the delivery systems currently under investigation for IFNs can be classified as particulate delivery systems, including micro- and nano-particles, liposomes, minipellets, cellular carriers, and non-particulate delivery systems, including PEGylated IFNs, other chemically conjugated IFNs, immunoconjugated IFNs, and genetically conjugated IFNs. All these strategies and techniques have their own possibilities and limitations, which should be taken into account when considering their clinical application. In this article, currently studied delivery systems/techniques for IFN delivery have been reviewed extensively, with the main focus on the pharmacokinetic consequences of each procedure.
Collapse
Affiliation(s)
- Mehrdad Hamidi
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | |
Collapse
|
27
|
Bobst CE, Abzalimov RR, Houde D, Kloczewiak M, Mhatre R, Berkowitz SA, Kaltashov IA. Detection and characterization of altered conformations of protein pharmaceuticals using complementary mass spectrometry-based approaches. Anal Chem 2008; 80:7473-81. [PMID: 18729476 DOI: 10.1021/ac801214x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Unlike small-molecule drugs, the conformational properties of protein biopharmaceuticals in solution are influenced by a variety of factors that are not solely defined by their covalent chemical structure. Since the conformation (or higher order structure) of a protein is a major modulator of its biological activity, the ability to detect changes in both the higher order structure and conformational dynamics of a protein, induced by an array of extrinsic factors, is of central importance in producing, purifying, and formulating a commercial biopharmaceutical with consistent therapeutic properties. In this study we demonstrate that two complementary mass spectrometry-based approaches (analysis of ionic charge-state distribution and hydrogen/deuterium exchange) can be a potent tool in monitoring conformational changes in protein biopharmaceuticals. The utility of these approaches is demonstrated by detecting and characterizing conformational changes in the biopharmaceutical product interferon beta-1a (IFN-beta-1a). The protein degradation process was modeled by inducing a single chemical modification of IFN-beta1a (alkylation of its only free cysteine residue with N-ethylmaleimide), which causes significant reduction in its antiviral activity. Analysis of IFN-beta1a ionic charge-state distributions unequivocally reveals a significant decrease of conformational stability in the degraded protein, while hydrogen/deuterium exchange measurements provide a clear indication that the higher order structure is affected well beyond the covalent modification site. Importantly, neither technique required that the location or indeed the nature of the chemical modification be known prior to or elucidated in the process of the analysis. In contrast, application of the standard armamentarium of biophysical tools, which are commonly employed for quality control of protein pharmaceuticals, met with very limited success in detection and characterization of conformational changes in the modified IFN-beta1a. This work highlights the role mass spectrometry can and should play in the biopharmaceutical industry beyond the presently assigned task of primary structure analysis.
Collapse
Affiliation(s)
- Cedric E Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Sutter M, Siepmann J, Hennink WE, Jiskoot W. Recombinant gelatin hydrogels for the sustained release of proteins. J Control Release 2007; 119:301-12. [DOI: 10.1016/j.jconrel.2007.03.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/22/2007] [Accepted: 03/05/2007] [Indexed: 11/29/2022]
|
29
|
Srebalus Barnes CA, Lim A. Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. MASS SPECTROMETRY REVIEWS 2007; 26:370-88. [PMID: 17410555 DOI: 10.1002/mas.20129] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Therapeutic proteins produced using recombinant DNA technologies are generally complex, heterogeneous, and subject to a variety of enzymatic or chemical modifications during expression, purification, and long-term storage. The use of mass spectrometry (MS) for the evaluation of recombinant protein sequence and structure provides detailed information regarding amino acid modifications and sequence alterations that have the potential to affect the safety and activity of therapeutic protein products. General MS approaches for the characterization of recombinant therapeutic protein products will be reviewed with particular attention given to the standard MS tools available in most biotechnology laboratories. A number of recent examples will be used to illustrate the utility of MS strategies for evaluation of recombinant protein heterogeneity resulting from post-translational modifications (PTMs), sequence variations generated from proteolysis or transcriptional/translational errors, and degradation products which are formed during processing or final product storage. Specific attention will be given to the MS characterization of monoclonal antibodies as a model system for large, glycosylated, recombinant proteins. Detailed examples highlighting the use of MS for the analysis of monoclonal antibody glycosylation, deamidation, and disulfide mapping will be used to illustrate the application of these techniques to a wide variety of heterogeneous therapeutic protein products. The potential use of MS to support the selection of cell line/clone selection and formulation development for therapeutic antibody products will also be discussed.
Collapse
|
30
|
Sutter M, Oliveira S, Sanders NN, Lucas B, van Hoek A, Hink MA, Visser AJWG, De Smedt SC, Hennink WE, Jiskoot W. Sensitive spectroscopic detection of large and denatured protein aggregates in solution by use of the fluorescent dye Nile red. J Fluoresc 2007; 17:181-92. [PMID: 17294134 PMCID: PMC1915606 DOI: 10.1007/s10895-007-0156-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/02/2007] [Indexed: 11/09/2022]
Abstract
The fluorescent dye Nile red was used as a probe for the sensitive detection of large, denatured aggregates of the model protein β-galactosidase (E. coli) in solution. Aggregates were formed by irreversible heat denaturation of β-galactosidase below and above the protein’s unfolding temperature of 57.4°C, and the presence of aggregates in heated solutions was confirmed by static light scattering. Interaction of Nile red with β-galactosidase aggregates led to a shift of the emission maximum (λmax) from 660 to 611 nm, and to an increase of fluorescence intensity. Time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) measurements showed that Nile red detected large aggregates with hydrodynamic radii around 130 nm. By steady-state fluorescence measurements, it was possible to detect 1 nM of denatured and aggregated β-galactosidase in solution. The comparison with size exclusion chromatography (SEC) showed that native β-galactosidase and small aggregates thereof had no substantial effect on the fluorescence of Nile red. Large aggregates were not detected by SEC, because they were excluded from the column. The results with β-galactosidase demonstrate the potential of Nile red for developing complementary analytical methods that overcome the size limitations of SEC, and can detect the formation of large protein aggregates at early stages.
Collapse
Affiliation(s)
- Marc Sutter
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Griesbeck C, Kobl I, Heitzer M. Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol Biotechnol 2007; 34:213-23. [PMID: 17172667 DOI: 10.1385/mb:34:2:213] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Recombinant proteins have become more and more important for the pharmaceutical and chemical industry. Although various systems for protein expression have been developed, there is an increasing demand for inexpensive methods of large-scale production. Eukaryotic algae could serve as a novel option for the manufacturing of recombinant proteins, as they can be cultivated in a cheap and easy manner and grown to high cell densities. Being a model organism, the unicellular green alga Chlamydomonas reinhardtii has been studied intensively over the last decades and offers now a complete toolset for genetic manipulation. Recently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its ability for biotechnological applications.
Collapse
Affiliation(s)
- Christoph Griesbeck
- Center of Excellence for Fluorescent Bioanalysis, Josef-Engert-Str. 9, D-93053 Regensburg, Germany.
| | | | | |
Collapse
|
32
|
Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 2006; 24:1241-52. [PMID: 17033665 DOI: 10.1038/nbt1252] [Citation(s) in RCA: 644] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The majority of protein-based biopharmaceuticals approved or in clinical trials bear some form of post-translational modification (PTM), which can profoundly affect protein properties relevant to their therapeutic application. Whereas glycosylation represents the most common modification, additional PTMs, including carboxylation, hydroxylation, sulfation and amidation, are characteristic of some products. The relationship between structure and function is understood for many PTMs but remains incomplete for others, particularly in the case of complex PTMs, such as glycosylation. A better understanding of such structural-functional relationships will facilitate the development of second-generation products displaying a PTM profile engineered to optimize therapeutic usefulness.
Collapse
Affiliation(s)
- Gary Walsh
- Industrial Biochemistry Program, University of Limerick, Castletroy, Limerick City, Ireland.
| | | |
Collapse
|
33
|
Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev 2006; 58:1009-29. [PMID: 17005293 DOI: 10.1016/j.addr.2006.07.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 07/25/2006] [Indexed: 12/23/2022]
Abstract
Formulation of biopharmaceuticals for pulmonary delivery is faced with the challenge of producing particles with the optimal properties for deep lung deposition without altering the native conformation of these molecules. Traditional techniques such as milling are continuously being improved while newer and more advanced techniques such as spray drying, spray freeze drying and supercritical fluid technology are being developed so as to optimize pulmonary delivery of biopharmaceuticals. While some of these techniques are quite promising, some are harsh and impracticable. Method scale up, cost-effectiveness and safety issues are important factors to be considered in the choice of a technique. This paper reviews the presently developed techniques for particle engineering biopharmaceuticals.
Collapse
|
34
|
Hey T, Fiedler E, Rudolph R, Fiedler M. Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 2006; 23:514-22. [PMID: 16054718 DOI: 10.1016/j.tibtech.2005.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/18/2005] [Accepted: 07/14/2005] [Indexed: 12/01/2022]
Abstract
Using combinatorial chemistry to generate novel binding molecules based on protein frameworks ('scaffolds') is a concept that has been strongly promoted during the past five years in both academia and industry. Non-antibody recognition proteins derive from different structural families and mimic the binding principle of immunoglobulins to varying degrees. In addition to the specific binding of a pre-defined target, these proteins provide favourable characteristics such as robustness, ease of modification and cost-efficient production. The broad spectrum of potential applications, including research tools, separomics, diagnostics and therapy, has led to the commercial exploitation of this technology by various small- and medium-sized companies. It is predicted that scaffold-based affinity reagents will broaden and complement applications that are presently covered by natural or recombinant antibodies. Here, we provide an overview on current approaches in the biotech industry, considering both scientific and commercial aspects.
Collapse
Affiliation(s)
- Thomas Hey
- Scil Proteins GmbH, Heinrich-Damerow-Str.1, 06120 Halle/Saale, Germany
| | | | | | | |
Collapse
|
35
|
|
36
|
Crommelin DJA. Delivery of biologicals: the wish list is long... Expert Opin Drug Deliv 2005; 1:3-5. [PMID: 16296716 DOI: 10.1517/17425247.1.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this editorial, a wish list is drawn up for future research and development activities regarding biologicals.
Collapse
|
37
|
Govardhan C, Khalaf N, Jung CW, Simeone B, Higbie A, Qu S, Chemmalil L, Pechenov S, Basu SK, Margolin AL. Novel long-acting crystal formulation of human growth hormone. Pharm Res 2005; 22:1461-70. [PMID: 16132358 DOI: 10.1007/s11095-005-6021-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 05/17/2005] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the study is to solve a significant challenge of extending the half-life of therapeutic proteins using crystalline biopharmaceuticals and without redesigning the molecules. METHODS Crystals of recombinant human growth hormone were coated with a monomolecular layer of positively charged poly(arginine). The pharmacokinetics and pharmacodynamics of this poly(arginine)-coated human growth hormone crystalline formulation were determined in hypophysectomized rats and monkeys. RESULTS Here we have demonstrated for the first time that crystals of human growth hormone coated with positively charged poly(arginine) allowed for in vivo pharmacokinetic release profiles of over several days in animal models. The efficacy of this crystalline formulation injected subcutaneously once a week was found to be equivalent to seven daily soluble injections in the standard weight gain assay using the hypophysectomized rat model and in measurement of serum insulin-like growth factor in monkeys. The nonviscous nature of the suspension facilitated easy administration through a fine, 30-gauge needle and should provide for improved patient convenience and compliance. CONCLUSIONS The approach described here offers an exciting possibility of being broadly applicable to other therapeutic proteins.
Collapse
Affiliation(s)
- Chandrika Govardhan
- Altus Pharmaceuticals Inc., 625 Putnam Ave., Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vielmetter J, Tishler J, Ary ML, Cheung P, Bishop R. Data management solutions for protein therapeutic research and development. Drug Discov Today 2005; 10:1065-71. [PMID: 16055023 DOI: 10.1016/s1359-6446(05)03495-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein therapeutics, including monoclonal antibodies, are a growing focus of drug discovery research organizations. High-throughput screening of large libraries of protein variants is therefore becoming increasingly important in R&D. As a result, there is a need to link large numbers of variant protein sequences with chemical and biological assay data. This integration will allow more efficient data mining and facilitate decision-making regarding hit identification, lead optimization and drug development. In this paper, we present an implementation in which a widely used small-molecule high-throughput screening data management system has been adapted to meet the unique needs of protein drug discovery and development.
Collapse
|