1
|
Datta D, Bandi SP, Venuganti VVK. Ionic Liquid-Mediated Transdermal Delivery of Organogel Containing Cyclosporine A for the Effective Treatment of Psoriasis. ACS OMEGA 2024; 9:41565-41582. [PMID: 39398161 PMCID: PMC11465456 DOI: 10.1021/acsomega.4c05346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024]
Abstract
The dermal delivery of peptide therapeutics that are of high molecular weight is a challenge. Cyclosporine A (CsA) is a cyclic undecapeptide with poor aqueous solubility and high molecular weight (1202 Da) indicated for psoriasis. The objective of the study was to evaluate the effect of ionic liquids mixed with the Pluronic F127 matrix in skin permeation of CsA and its efficacy in psoriasis treatment. Choline and geranic acid (CAGE) ionic liquids in a 1:2 molar ratio were mixed with Pluronic F127 (22.7%) and PEG 400 (45%) to prepare an organogel formulation. The CsA-loaded CAGE (CsA-CAGE) and CAGE-Pluronic F127 gels (CsA-CAGE-P gel) were characterized for physical and rheological characteristics. The skin transport studies showed that free CsA did not permeate across the excised porcine skin after 48 h. The amount of CsA permeated across the oleic acid (0.25% v/v) and palmitic acid (0.25% w/v) cotreated skin was found to be 244 ± 4 and 1236 ± 17 μg/cm2, respectively. The application of CsA-CAGE and CsA-CAGE-P gel enhanced CsA flux by 110- and 135-fold, respectively, compared with the control. The thermal analysis and biophysical studies changed the barrier property of the skin significantly (p < 0.05) after incubation with CAGE and CAGE-P gel. The pharmacokinetic studies in the rat model showed that topical application of CsA-CAGE-P gel provided 2.6- and 1.9-fold greater C max and AUC0-t, respectively, compared to the control group. In vitro-in vivo level A correlations were established with R 2 values of 0.991 and 0.992 for both linear and polynomial equations for the CsA-CAGE-P gel formulation using the Wagner-Nelson method. The topical application of CsA-CAGE-P gel (10 mg/kg) on an imiquimod-induced plaque psoriatic model reduced the area of the psoriasis and severity index (PASI) score significantly for erythema and scaling, reversing the changes to skin thickness, blood flow rate, and transepidermal water loss. Together, CAGE-Pluronic F127 organogel was developed as an effective topical formulation for the local and systemic delivery of CsA for the treatment of psoriasis.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana State 500078, India
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Sony Priyanka Bandi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana State 500078, India
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal, Telangana 500078, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana State 500078, India
| |
Collapse
|
2
|
Amnuaikit T, Rajagopal RS, Nilsuwan K, Benjakul S. Enhancement of Physical Appearance, Skin Permeation, and Odor Reduction Using Liposome of Hydrolyzed Salmon Collagen for Cosmetic Products. SCIENTIFICA 2024; 2024:7843660. [PMID: 39262843 PMCID: PMC11390188 DOI: 10.1155/2024/7843660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 09/13/2024]
Abstract
Hydrolyzed collagen (HC) derived from salmon (Oncorhynchus nerka) skin possesses properties that can nourish the skin, and it is one of the active ingredients used in cosmeceutical products for moisturizing the facial skin. However, HC solution gives off a fishy odor and it is gray in color that makes the product unacceptable for cosmetic purposes. This study aimed to use liposome-encapsulated hydrolyzed salmon collagen to improve its physical appearance, skin permeation, and eliminate the fishy odor. Two percent of HC and vitamin B3 (VitB3) were used as active ingredients to incorporate into liposomes. Phosphatidylcholine, cholesterol, and Tween 80 at a suitable weight ratio of 8 : 2 : 1 produced nano-sized vesicles (170.6 ± 0.70 nm) with the highest percentage of entrapment efficiency (95.72 ± 2.00%) of VitB3 and (49.63 ± 1.74%) of HC. Skin permeation and odor detection of the HC-VitB3 liposome were studied using Franz's diffusion cell and gas chromatography, respectively, and compared with HC-VitB3 solution. Subsequently, facial serums were formulated using HC-VitB3 liposomes and HC-VitB3 solutions, and a product satisfaction test was conducted with 100 volunteers to determine their preferred product. The results of the studies of HC-VitB3 liposome serum showed improved formulation appearance, enhanced skin permeation, and better odor elimination compared to the HC-VitB3 serum. Furthermore, seventy-three volunteers in the product satisfaction test preferred and selected the liposomal serum for its superior scent. From all the experimental results, it could be seen that liposomes can help increase skin penetration, and undesirable odors and colors can be masked by the appropriate lipid bilayer structure of liposomes.
Collapse
Affiliation(s)
- Thanaporn Amnuaikit
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rajeev Shankar Rajagopal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
3
|
Donadon LGF, Salata GC, Gonçalves TP, Matos LDC, Evangelista MCP, da Silva NS, Martins TS, Machado-Neto JA, Lopes LB, Garcia MTJ. Monoolein-based nanodispersions for cutaneous co-delivery of methylene blue and metformin: Thermal and structural characterization and effects on the cutaneous barrier, skin penetration and cytotoxicity. Int J Pharm 2023; 633:122612. [PMID: 36642349 DOI: 10.1016/j.ijpharm.2023.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
This study evaluated the potential of monoolein (MO)-based nanodispersions to promote the cutaneous co-delivery of metformin (MET) and methylene blue (MB) for the treatment of non-melanoma skin cancer. MO-based nanodispersions were obtained using Kolliphor® P407 (KP) and/or sodium cholate (CH), and characterized concerning the structure, thermal stability, ability to disrupt the skin barrier, cutaneous permeation and retention of MB and MET. Additionally, the cytotoxic effect of MO nanodispersions-mediated combination therapy using MET and MB in A431 cells was evaluated. The nanodispersions exhibited nanometric size (<200 nm) and thermal and physical stability. Small angle X-ray scattering studies revealed multiple structures depending on composition. They were able to interact with stratum corneum lipid structure, increasing its fluidity. The effect of MO-nanodispersions on topical/transdermal delivery of MB and MET was composition-dependent. Nanodispersions with low MO content (5 %) and stabilized with KP and CH (0.05-0.10 %) were the most promising, enhancing the cutaneous delivery of MB and MET by 1.9 to 2.2-fold and 1.4 to 1.7-fold, respectively, compared to control. Cytotoxic studies revealed that the most promising MO nanodispersion-mediated combination therapy using MET and MB (1:1) reduced the IC50 by 24-fold, compared to MB solution, and a further reduction (1.5-fold) was observed by MB photoactivation.
Collapse
Affiliation(s)
| | | | - Thalita Pedralino Gonçalves
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema/SP, Brazil
| | - Lisa de Carvalho Matos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema/SP, Brazil
| | | | - Nicole Sampaio da Silva
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema/SP, Brazil
| | - Tereza Silva Martins
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema/SP, Brazil
| | | | | | | |
Collapse
|
4
|
Cyclosporine and Pentoxifylline laden Tailored Niosomes for the effective management of Psoriasis: In-vitro Optimization, Ex-vivo and Animal Study. Int J Pharm 2022; 626:122143. [PMID: 36037986 DOI: 10.1016/j.ijpharm.2022.122143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Psoriasis is a chronic skin inflammatory auto-immune disorder. Cyclosporine is the drug of choice in severe cases of psoriasis for systemic administration. But its systemic administration leads to some serious side effects like nephrotoxicity and cardiovascular disorders. Pentoxifylline is reported to reduce such side effects of cyclosporine and also it is found useful in the management of psoriasis. In this study, Box-Behnken design was used to prepare and optimize Cyclosporine and Pentoxifylline loaded niosomes. The optimized niosomes were prepared using cholesterol and surfactant (7:3), a total of 500µmol. Ratio of Tween 80 to span 80 for the preparation of optimized niosome was 0.503 (tween80:span80), and hydration and sonication time were kept at 60 minutes and 10 minutes, respectively. Size, Poly Dispersity Index, zeta potential, and % entrapment efficiency of Pentoxifylline and cyclosporine, for optimized niosomes were found to be 179nm, 0.285, -37.5mV, 84.6%, and 75.3%, respectively. The optimized niosomes were further studied for in-vitro skin permeation and skin deposition. Though niosomes significantly influenced the permeation of both drugs, only a small amount of drug (both cyclosporine and Pentoxifylline) was permeated through the skin. In comparison with the permeation, the quantity of drug retained in the stratum corneum and viable epidermis (SC and VED) was very high. In the in-vivo studies conducted on mice induced with psoriasis using imiquimod, both the histopathology and psoriasis area severity index has shown marked improvement in the skin condition of mice treated with niosomes loaded with Pentoxifylline and cyclosporine, in comparison with the solution/suspension of individual drugs. The study shows that niosomes could be effectively used for the simultaneous delivery of cyclosporine and Pentoxifylline for the better management of psoriasis.
Collapse
|
5
|
Improved dermal delivery of pentoxifylline niosomes for the management of psoriasis: Development, optimization and in-vivo studies in imiquimod induced psoriatic plaque model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Utilization of solid in oil nanodispersion to prepare a topical vemurafenib as potential delivery system for skin melanoma. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Zhang C, Duan J, Huang Y, Chen M. Enhanced Skin Delivery of Therapeutic Peptides Using Spicule-Based Topical Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13122119. [PMID: 34959402 PMCID: PMC8709454 DOI: 10.3390/pharmaceutics13122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
This study reports two therapeutic peptides, insulin (INS, as a hydrophilic model peptide) and cyclosporine A (CysA, as a hydrophobic one), that can be administrated through a transdermal or dermal route by using spicule-based topical delivery systems in vitro and in vivo. We obtained a series of spicules with different shapes and sizes from five kinds of marine sponges and found a good correlation between the skin permeability enhancement induced by these spicules and their aspect ratio L/D. In the case of INS, Sponge Haliclona sp. spicules (SHS) dramatically increased the transdermal flux of INS (457.0 ± 32.3 ng/cm2/h) compared to its passive penetration (5.0 ± 2.2 ng/cm2/h) in vitro. Further, SHS treatment slowly and gradually reduced blood glucose to 13.1 ± 6.3% of the initial level in 8 h, while subcutaneous injection resulted in a rapid blood glucose reduction to 15.9 ± 1.4% of the initial level in 4 h, followed by a rise back to 75.1 ± 24.0% of the initial level in 8 h. In the case of CysA, SHS in combination with ethosomes (SpEt) significantly (p < 0.05) increased the accumulation of CysA in viable epidermis compared to other groups. Further, SpEt reduced the epidermis thickness by 41.5 ± 9.4% in 7 days, which was significantly more effective than all other groups. Spicule-based topical delivery systems offer promising strategies for delivering therapeutic peptides via a transdermal or dermal route.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (C.Z.); (J.D.)
| | - Jiwen Duan
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (C.Z.); (J.D.)
| | - Yongxiang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Ming Chen
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (C.Z.); (J.D.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
- Pingtan Research Institute of Xiamen University, Pingtan 350400, China
- Correspondence:
| |
Collapse
|
8
|
Pandey S, Tripathi P, Gupta A, Yadav JS. A comprehensive review on possibilities of treating psoriasis using dermal cyclosporine. Drug Deliv Transl Res 2021; 12:1541-1555. [PMID: 34550552 DOI: 10.1007/s13346-021-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
Psoriasis is an autoimmune, chronic proliferative, inflammatory skin disease with high comorbidity. Psoriasis is not a curable disease; it can only be managed. Cyclosporine A (CyA) is one of the FDA-approved immunosuppressant drug used in severe Psoriasis. Till date only oral route is used for its administration. Administration of CyA by this route causes serious side effects such as hypertension and renal toxicity. Due to these side effects, a number of researches have been done and taking place in the current times for the dermal delivery of CyA for the management of psoriasis. Dermal delivery of CyA is not an easy task because of its physiochemical properties like high molecular weight, lipophilicity and resistance offered by stratum corneum (SC). Because of the above problems in the dermal delivery a number of new approaches such as nanolipid carriers, microemulsion, liposomes, niosomes etc. are explored. To those deep findings for psoriasis management with dermal delivery of CyA have not been discussed. This comprehensive review includes all the studies, advancements and their critical findings which took place in the recent times for the dermal delivery of CyA and along with the suitable modification needed for the efficient dermal delivery of CyA are also suggested.
Collapse
Affiliation(s)
- Sonia Pandey
- Sakshi College of Pharmacy, Kalyanpur, UP, 208017, Kanpur, India.
| | - Purnima Tripathi
- Department of Pharmaceutics, Bundelkhand University, Jhansi, UP, India
| | - Arti Gupta
- Department of Pharmacy, Institute of Technology and Management, Gorakhpur, UP, 273209, India
| | - Jitendra Singh Yadav
- Department of Pharmacy, Institute of Technology and Management, Gorakhpur, UP, 273209, India
| |
Collapse
|
9
|
Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Shete A, Nadaf S, Doijad R, Killedar S. Liquid Crystals: Characteristics, Types of Phases and Applications in Drug Delivery. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02396-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Kitaoka M, Nguyen TC, Goto M. Water-in-oil microemulsions composed of monoolein enhanced the transdermal delivery of nicotinamide. Int J Cosmet Sci 2021; 43:302-310. [PMID: 33566391 DOI: 10.1111/ics.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Nicotinamide, also known as niacinamide, is a water-soluble vitamin that is used to prevent and treat acne and pellagra. It is often found in water-based skin care cosmetics because of its high water solubility. Nicotinamide is a small molecule with a molar mass of 122.1 g/mol. However, it has a hydrophilic nature that becomes an obstacle when it penetrates through the skin. The topmost layer of the skin, the stratum corneum, acts as a strong hydrophobic barrier for such hydrophilic molecules. The oil-based formulations are expected to enhance the transdermal delivery efficiency of nicotinamide. METHODS We have developed oil-based microemulsion formulations composed of a squalane vehicle. Monoolein was used as an emulsifier that has a potential to enhance the nicotinamide delivery through the stratum corneum. RESULTS Because the mean size of the emulsions measured by dynamic light scattering was 20.9 ± 0.4 nm, the microemulsion formulation was stable under the long-term storage. Monoolein acted as a skin penetration enhancer, and it effectively enabled the penetration of nicotinamide through human abdominal skin, compared with nicotinamide in a phosphate-buffered saline solution. The flux was increased 25-fold. Microscopic imaging revealed that the hydrophilic bioactive compounds penetrated through the intercellular spaces in the epidermis. CONCLUSION The monoolein-based microemulsion was transparent and stable, suggesting that it is a promising formulation for a transdermal nicotinamide delivery.
Collapse
Affiliation(s)
- Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Trung Cong Nguyen
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, Japan.,Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
de Araújo PR, Calixto GMF, Araújo VHS, Sato MR, Rodero CF, Oshiro-Junior JA, Bauab TM, Chorilli M. In vivo study of hypericin-loaded poloxamer-based mucoadhesive in situ gelling liquid crystalline precursor system in a mice model of vulvovaginal candidiasis. Med Mycol 2021; 59:821-827. [PMID: 33626136 DOI: 10.1093/mmy/myab006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 02/17/2021] [Indexed: 01/03/2023] Open
Abstract
The present study reports the performance of the pigment hypericin (HYP)-loaded poloxamer-based mucoadhesive in situ gelling liquid crystalline precursor system (LCPS) for the treatment of vulvovaginal candidiasis (VVC) in mice. LCPS composed of 40% of ethoxylated and propoxylated cetyl alcohol, 30% of oleic acid and cholesterol (7:1), 30% of a dispersion of 16% poloxamer 407 and 0.05% of HYP (HYP-LCPS) was prepared and characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS) and ex vivo permeation and retention studies across vaginal porcine mucosa were performed. In addition, the antifungal properties of the HYP-LCPS were evaluated in a murine in vivo model; for this, infected C57BL female mice groups were treated with both HYP in solution and HYP-LCPS, and after 6 days colony forming unit (CFU)/ml count was performed. PLM and SAXS confirmed that HYP-LCPS is a microemulsion situated in boundary transition region confirming its action as an LCPS. When in contact with simulated vaginal fluid, HYP-LCPS became rigid and exhibited maltase crosses and bragg peaks characteristics of lamellar phase. Ex vivo permeation and retention studies showed that HYP-LCPS provides a localized treatment on the superficial layers of porcine vaginal mucosa. HYP-LCPS induced a significant reduction in the number of CFU/ml in the mice; thus this formulation indicated it is as effective as a commercial dosage form. It was concluded that LCPS maintains the biological activity of HYP and provides an adequate drug delivery system for this lipophilic molecule at the vaginal mucosa, being a promising option in cases of VVC.
Collapse
Affiliation(s)
- Patricia Rocha de Araújo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903, Araraquara, São Paulo, Brazil
| | - Giovana Maria Fioramonti Calixto
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903, Araraquara, São Paulo, Brazil.,Department of Biosciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, 13414-903, Brazil
| | - Victor Hugo Sousa Araújo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903, Araraquara, São Paulo, Brazil
| | - Mariana Rillo Sato
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903, Araraquara, São Paulo, Brazil
| | - Camila Fernanda Rodero
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903, Araraquara, São Paulo, Brazil
| | | | - Taís Maria Bauab
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903, Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903, Araraquara, São Paulo, Brazil
| |
Collapse
|
13
|
Silvestrini AVP, Caron AL, Viegas J, Praça FG, Bentley MVLB. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv 2020; 17:1781-1805. [DOI: 10.1080/17425247.2020.1819979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Angelo Luis Caron
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
14
|
Kitaoka M, Oka A, Goto M. Monoolein Assisted Oil-Based Transdermal Delivery of Powder Vaccine. Pharmaceutics 2020; 12:E814. [PMID: 32867263 PMCID: PMC7558954 DOI: 10.3390/pharmaceutics12090814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
An increasing number of protein vaccines have been researched for cancer, inflammation, and allergy therapies. Most of the protein therapeutics are administered through injection because orally-administered proteins are metabolized by the digestive system. Although transdermal administration has received increasing attention, the natural barrier formed by the skin is an obstacle. Monoolein is a common skin penetration enhancer that facilitates topical and transdermal drug delivery. Conventionally, it has been used in an aqueous vehicle, often with polyhydric alcohols. In the current study, monoolein was dissolved in an oil vehicle, isopropyl myristate, to facilitate the skin permeation of powder proteins. The skin permeabilities of the proteins were examined in-vivo and ex-vivo. Monoolein concentration-dependently enhanced the skin permeation of proteins. The protein permeability correlated with the zeta potential of the macromolecules. Dehydration of the stratum corneum (SC), lipid extraction from the SC, and disordering of ceramides caused by monoolein were demonstrated through Fourier transform infrared spectroscopic analysis and small-angle X-ray scattering analysis. An antigen model protein, ovalbumin from egg white, was delivered to immune cells in living mice, and induced antigen-specific IgG antibodies. The patch system showed the potential for transdermal vaccine delivery.
Collapse
Affiliation(s)
- Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (M.K.); (A.O.)
| | - Atsushi Oka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (M.K.); (A.O.)
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (M.K.); (A.O.)
- Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Fernandes B, Matamá T, Andreia C. Gomes, Cavaco-Paulo A. Cyclosporin A-loaded poly(d,l-lactide) nanoparticles: a promising tool for treating alopecia. Nanomedicine (Lond) 2020; 15:1459-1469. [DOI: 10.2217/nnm-2020-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Alopecia treatments are scarce and lack efficacy. Cyclosporin A (CsA) has hair growth-inducing properties but its poor cutaneous absorption undermines its use in topical treatments. Aim: Development of a new potential topical treatment of alopecia with CsA. Materials & methods: CsA-loaded poly(d,l-lactide) (PLA) nanoparticles were obtained and characterized. Skin permeation was evaluated in ex vivo porcine skin. Results: Nanoparticles with good physicochemical stability increased CsA skin permeation/hair follicles accumulation, compared with a noncolloidal formulation. CsA biocompatibility in NCTC2455 keratinocytes (reference skin cell line) was clearly improved when encapsulated in PLA nanoparticles. Conclusion: This work fosters further in vivo investigation of CsA-loaded PLA nanoparticles as a promising new strategy to treat alopecia, a very traumatic, possibly autoimmune, disease.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB – Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Teresa Matamá
- CEB – Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Andreia C. Gomes
- CBMA – Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB – Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
16
|
Freeze-Dried Softisan ® 649-Based Lipid Nanoparticles for Enhanced Skin Delivery of Cyclosporine A. NANOMATERIALS 2020; 10:nano10050986. [PMID: 32455668 PMCID: PMC7279451 DOI: 10.3390/nano10050986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory skin diseases, including psoriasis and atopic dermatitis, affect around one quarter to one third of the world population. Systemic cyclosporine A, an immunosuppressant agent, is included in the current therapeutic armamentarium of these diseases. Despite being highly effective, it is associated with several side effects, and its topical administration is limited by its high molecular weight and poor water solubility. To overcome these limitations, cyclosporine A was incorporated into solid lipid nanoparticles obtained from Softisan® 649, a commonly used cosmetic ingredient, aiming to develop a vehicle for application to the skin. The nanoparticles presented sizes of around 200 nm, low polydispersity, negative surface charge, and stability when stored for 8 weeks at room temperature or 4 °C. An effective incorporation of 88% of cyclosporine A within the nanoparticles was observed, without affecting its morphology. After the freeze-drying process, the Softisan® 649-based nanoparticles formed an oleogel. Skin permeation studies using pig ear as a model revealed low permeation of the applied cyclosporine A in the freeze-dried form of the nanoparticles in relation to free drug and the freshly prepared nanoparticles. About 1.0 mg of cyclosporine A was delivered to the skin with reduced transdermal permeation. These results confirm local delivery of cyclosporine A, indicating its promising topical administration.
Collapse
|
17
|
Cyclosporine laden tailored microemulsion-gel depot for effective treatment of psoriasis: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2020; 186:110681. [DOI: 10.1016/j.colsurfb.2019.110681] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/02/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022]
|
18
|
Badihi A, Frušić-Zlotkin M, Soroka Y, Benhamron S, Tzur T, Nassar T, Benita S. Topical nano-encapsulated cyclosporine formulation for atopic dermatitis treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102140. [DOI: 10.1016/j.nano.2019.102140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
|
19
|
|
20
|
Hyun S, Li L, Yoon KC, Yu J. An amphipathic cell penetrating peptide aids cell penetration of cyclosporin A and increases its therapeutic effect in an in vivo mouse model for dry eye disease. Chem Commun (Camb) 2019; 55:13657-13660. [PMID: 31595891 DOI: 10.1039/c9cc05960a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell penetrating peptide (CPP), LK-3, causes a ca. 10-fold increase in the cell penetration of cyclosporin A (CsA) at nanomolar concentrations. The results of an in vivo dry eye mouse model demonstrated that a 100-fold lower dose of the CsA/LK-3 complex than that of Restasis® is sufficient to cause the same therapeutic effect.
Collapse
Affiliation(s)
- Soonsil Hyun
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Jaehoon Yu
- Department of Chemistry and Education, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
21
|
Essaghraoui A, Belfkira A, Hamdaoui B, Nunes C, Lima SAC, Reis S. Improved Dermal Delivery of Cyclosporine A Loaded in Solid Lipid Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1204. [PMID: 31461853 PMCID: PMC6780175 DOI: 10.3390/nano9091204] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022]
Abstract
Cyclosporine A (CsA) is an immunosuppressant frequently used in the therapy of autoimmune disorders, including skin-related diseases. Aiming towards topical delivery, CsA was successfully incorporated into lipid nanoparticles of Lipocire DM and Pluronic F-127 using the hot homogenization method. Two different nanocarriers were optimized: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) where oleic acid was the liquid lipid. The developed nanoparticles showed mean sizes around 200 nm, a negative surface charge, and drug entrapment efficiencies around 85% and 70% for SLNs and NLCs, respectively. The spherical CsA-loaded lipid nanoparticles were stable for 9 weeks when stored at room temperature, and exhibited in vitro pH-dependent release under skin mimetic conditions, following the Peppas-Korsmeyer model. CsA, when loaded in SLNs, was safe to be used up to 140 μg mL-1 in fibroblasts and keratinocytes, while CsA-loaded NLCs and free drug exhibited IC50 values of 55 and 95 μg mL-1 (fibroblasts) and 28 and 30 μg mL-1 (keratinocytes), respectively. The developed SLNs were able to retain the drug in pork skin with a reduced permeation rate in relation to NLCs. These findings suggest that SLNs are a potential alternative to produce stable and safe CsA nanocarriers for topical administration.
Collapse
Affiliation(s)
- Abderrazzaq Essaghraoui
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Laboratory of Bioorganic and Macromolecular Chemistry (LBMC), Faculty of Sciences and Technologies, Cadi Ayyad University, Av. Abdelkarim Elkhattabi, BP 549 Guéliz, Marrakesh 40000, Morocco
| | - Ahmed Belfkira
- Laboratory of Bioorganic and Macromolecular Chemistry (LBMC), Faculty of Sciences and Technologies, Cadi Ayyad University, Av. Abdelkarim Elkhattabi, BP 549 Guéliz, Marrakesh 40000, Morocco
| | - Bassou Hamdaoui
- Laboratory of Bioorganic and Macromolecular Chemistry (LBMC), Faculty of Sciences and Technologies, Cadi Ayyad University, Av. Abdelkarim Elkhattabi, BP 549 Guéliz, Marrakesh 40000, Morocco
| | - Cláudia Nunes
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
22
|
Patel D, Wairkar S. Recent advances in cyclosporine drug delivery: challenges and opportunities. Drug Deliv Transl Res 2019; 9:1067-1081. [DOI: 10.1007/s13346-019-00650-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Mojeiko G, de Brito M, Salata GC, Lopes LB. Combination of microneedles and microemulsions to increase celecoxib topical delivery for potential application in chemoprevention of breast cancer. Int J Pharm 2019; 560:365-376. [DOI: 10.1016/j.ijpharm.2019.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/23/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
|
24
|
Solid lipid nanoparticles made of trehalose monooleate for cyclosporin-A topic release. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Alvarez-Figueroa MJ, Abarca-Riquelme JM, González-Aramundiz JV. Influence of protamine shell on nanoemulsions as a carrier for cyclosporine-A skin delivery. Pharm Dev Technol 2018; 24:630-638. [DOI: 10.1080/10837450.2018.1550789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - José María Abarca-Riquelme
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Monoolein liquid crystalline phases for topical delivery of crocetin. Colloids Surf B Biointerfaces 2018; 171:67-74. [DOI: 10.1016/j.colsurfb.2018.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
|
27
|
El-Enin HA, AL-Shanbari AH. Nanostructured liquid crystalline formulation as a remarkable new drug delivery system of anti-epileptic drugs for treating children patients. Saudi Pharm J 2018; 26:790-800. [PMID: 30202219 PMCID: PMC6128721 DOI: 10.1016/j.jsps.2018.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/02/2018] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Development of a new dosage-form of antiepileptic-drugs appropriated for children. METHODS Clonazepam (Cl) was formulated as cubosomal-gel (cub-gel) to be used as a patch reservoir through transdermal-route. Cubosomes prepared using glycerol-mono-oleate(GMO)/Pluronic-F127(PF127) mixture. An actual-statistical design was used to investigate the effect of different stabilizing agents (Ethanol and PVA) and surfactant concentration on cubosomes' particle size and entrapping-efficiency. The selected formulae were evaluated by testing particle-morphology, in vitro drug release and stability. Cub-gel was prepared using selected cubosome formulae. The optimal cub-gel subjected to in vitro dissolution, ex-vivo permeation and skin deposition studies followed by studying its pharmacological effect. RESULTS Using PVA or Et as stabilizers with PF127 significantly decreases the average cubosomes'PS (352 ± 2.8 and 264 ± 2.16 nm) and increases EE (58.97 ± 4.57% and 54.21 ± 3.89%). Cubosomes increase the initial release rate of Cl to ensure rapid therapeutic effect (37.39% and 46.04% in the first hour) followed by a prolonged release till 4 h. Cub-gel containing PVA showed significantly higher Cl-transdermal permeation when compared to Cl-suspension. Moreover, increases the retention-time (89.57% at 48 h) and skin-deposition up to 6-times. It also reduces the epileptic seizures and alters the behavioral parameters induced by pilocarpine. CONCLUSIONS Cubosomal-gel could be considered an innovative dosage-form for Cl through the transdermal route.
Collapse
Key Words
- Antiepileptic
- CNS, Central Nervous System
- Cl, Clonazepam
- Clonazepam
- Cubogels
- Cubosomes
- Cubs, cubosomes
- EE, entrapping efficiency
- Epilepsy
- Et, ethanol
- GMO, glycerol-mono-oleate
- I.P, Intraperitoneal injections
- PBS, phosphate buffer saline
- PCS, peripheral cholinergic signs
- PDI, polydispersity index
- PF127, Poloxamer 407
- PS, particle size
- PVA, polyvinyl alcohol
- SMS, stereotyped movements signs
- TDDS, Transdermal Drug Delivery System
Collapse
Affiliation(s)
- Hadel Abo El-Enin
- Pharmaceutics Department, National Organization of Drug Control and Research (NODCAR), Giza, Egypt
- Pharmaceutics Department, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia
| | | |
Collapse
|
28
|
Intarakumhaeng R, Shi Z, Wanasathop A, Stella QC, Wei KS, Styczynski PB, Li C, Smith ED, Li SK. In vitro skin penetration of petrolatum and soybean oil and effects of glyceryl monooleate. Int J Cosmet Sci 2018; 40:367-376. [PMID: 29876949 DOI: 10.1111/ics.12469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Petrolatum and soybean oil are common ingredients incorporated in topical skin formulations for skin protection and moisturization. However, the stratum corneum (SC) penetration kinetics of these two cosmetic ingredients has not been systematically studied. Glyceryl monooleate (GlyMOle) has been shown to enhance skin penetration of various compounds. It was hypothesized that GlyMOle could enhance skin penetration of petrolatum and soybean oil. This study aimed to examine the in vitro skin penetration of petrolatum and soybean oil in the presence or absence of GlyMOle. METHODS Skin permeation experiments were conducted using the in vitro Franz diffusion cell model with split-thickness human skin and human epidermal membrane (HEM). The effect of permeant dose and the kinetics of permeant penetration were examined with and without GlyMOle in vitro. RESULTS Petrolatum and soybean oil were found to permeate across HEM, and no effect of GlyMOle on skin permeation into the receptor chamber was observed. GlyMOle enhanced the penetration of petrolatum into the split-thickness skin at 50 μg dose (petrolatum:GlyMOle, 49 : 1, w/w). However, no effect of GlyMOle on petrolatum penetration was observed at 200 μg dose (of the same petrolatum:GlyMOle ratio), indicating a dose-dependent effect. GlyMOle at the level used in the study did not enhance the penetration of soybean oil with 50 and 200 μg doses at any timepoints. CONCLUSION GlyMOle was a skin penetration enhancer for petrolatum under the in vitro conditions identified in this study.
Collapse
Affiliation(s)
- R Intarakumhaeng
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Z Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - A Wanasathop
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Q C Stella
- Procter& Gamble Co. (P&G), Mason, OH, 45050, USA
| | - K S Wei
- Procter& Gamble Co. (P&G), Mason, OH, 45050, USA
| | | | - C Li
- Procter& Gamble Co. (P&G), Mason, OH, 45050, USA
| | - E D Smith
- Procter& Gamble Co. (P&G), Mason, OH, 45050, USA
| | - S K Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
29
|
Bazylińska U, Kulbacka J, Schmidt J, Talmon Y, Murgia S. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. J Colloid Interface Sci 2018; 522:163-173. [PMID: 29601958 DOI: 10.1016/j.jcis.2018.03.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 11/21/2022]
Abstract
We designed novel polymer-free cubic bicontinuous liquid crystalline dispersions (cubosomes) using monoolein as molecular building block, phospholipids as stabilizers, propylene glycol as hydrotrope. Their kinetic stability was evaluated by analysing the backscattering profiles upon ageing, and the most stable formulation was chosen as potential photosensitizers delivery vehicle for photodynamic therapy (PDT) of human skin melanoma cells. Morphological and topological features of such formulation alternatively loaded with Chlorin e6 or meso-Tetraphenylporphine-Mn(III) chloride photosensitizing dyes were investigated by cryo-TEM, DLS, and SAXS. Bioimaging studies demonstrated that Me45 and MeWo cell lines effectively internalized these cubosomes formulations. Particularly, photodynamic activity experiments proved both the very low cytotoxicity of the cubosomes formulation loaded with Chlorin e6 dye in the "dark" condition, and its significant cytotoxic effect after photoirradiation. The toxic effect recorded when the photosensitizer was encapsulated within the cubosomes was shown to be one order of magnitude higher than that caused by the free photosensitizer. This is the first report of biocompatible polymer-free cubosomes for potential application in both PDT and bioimaging of skin malignant melanoma.
Collapse
Affiliation(s)
- Urszula Bazylińska
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-367 Wroclaw, Poland; Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Judith Schmidt
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Sergio Murgia
- Department of Chemical and Geological Sciences, University of Cagliari and CSGI, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy.
| |
Collapse
|
30
|
Benigni M, Pescina S, Grimaudo MA, Padula C, Santi P, Nicoli S. Development of microemulsions of suitable viscosity for cyclosporine skin delivery. Int J Pharm 2018; 545:197-205. [PMID: 29698819 DOI: 10.1016/j.ijpharm.2018.04.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022]
Abstract
Psoriasis is a widespread chronic disease affecting 2-4% of the population in Western countries. Its mild-to-moderate form, representing approximately 80% of the total cases, is treated by topical application, with corticosteroid being the standard treatment. However, in case of psoriasis, no single treatment works for every patient and optimizing topical therapy is a key aspect. A possible alternative is represented by cyclosporine, an immunosuppressant cyclic peptide administered orally in the treatment of the severe form. Its topical application could avoid the problems related to systemic immunosuppression, but the unfavourable physico-chemical properties (MW: 1202 Da; LogP ≈ 3) hinder its permeation across the stratum corneum. The aim of the paper was the preparation, characterization and ex-vivo evaluation of cyclosporine loaded microemulsions using oleic acid as oil phase, either Tween®80 or a soluble derivative of vitamin E (TPGS) as surfactants and either Transcutol®, propylene glycol or 1,3 propanediol as co-surfactants. The issue of formulation viscosity was also addressed 1) by evaluating the thickening of Tween®80-based microemulsions by direct addition of different rheological modifiers, 2) by building pseudo-ternary phase diagrams using TPGS, to identify the water/oil/surfactants proportions resulting in viscous self-gelifying systems. Nine formulations (five Tween®80-based and four TPGS-based) were selected, characterized in terms of droplets size (low viscosity systems) or rheological properties (high viscosity systems), loaded with 6 mg/g cyclosporine and applied ex-vivo on porcine skin for 22 h. A relevant skin accumulation was obtained either with a low-viscosity Tween®80-based microemulsion (9.78 ± 3.86 µg/cm2), or with a high viscosity TPGS-based microemulsion (18.3 ± 5.69 µg/cm2), with an increase of about 3 and 6 times respectively for comparison with a control cyclosporine solution in propylene glycol. The role of water content, surfactant, co-surfactant and viscosity was also addressed and discussed. The kinetic of skin uptake from the best performing formulation was finally evaluated, highlighting a relatively quick skin uptake and the achievement, after 2 h of contact, of potentially therapeutic cyclosporine skin concentrations.
Collapse
Affiliation(s)
- Marta Benigni
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Silvia Pescina
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | - Cristina Padula
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Patrizia Santi
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Sara Nicoli
- Food and Drug Department, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
31
|
Feasibility of transdermal delivery of Cyclosporine A using plasma discharges. Biointerphases 2017; 12:02B402. [DOI: 10.1116/1.4982826] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Akinshina A, Das C, Noro MG. Effect of monoglycerides and fatty acids on a ceramide bilayer. Phys Chem Chem Phys 2016; 18:17446-60. [PMID: 27302426 DOI: 10.1039/c6cp01238h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Monoglycerides and unsaturated fatty acids, naturally present in trace amounts in the stratum corneum (top layer of skin) lipid matrix, are commonly used in pharmaceutical, cosmetic and health care formulations. However, a detailed molecular understanding of how the oil additives get incorporated into the skin lipids from topical application and, once incorporated, how they affect the properties and integrity of the lipid matrix remains unexplored. Using ceramide 2 bilayers as skin lipid surrogates, we use a series of molecular dynamics simulations with six different natural oil ingredients at multiple concentrations to investigate the effect of the oils on the properties and stability of the bilayers. The six oils: monoolein, monostearin, monoelaidin, oleic acid, stearic acid and linoleic acid - all having the same length of the alkyl chain, C18, but a varying degree of saturation, allow us to systematically address the effect of unsaturation in the additives. Our results show that at low oil concentration (∼5%) the mixed bilayers containing any of the oils and ceramide 2 (CER2) become more rigid than pure CER2 bilayers due to more efficient lipid packing. Better packing also results in the formation of larger numbers of hydrogen bonds between the lipids, which occurs at the expense of the hydrogen bonds between lipids and water. The mixed bilayers with saturated or trans-unsaturated oils remain stable over the whole range of oil concentration. In contrast, the presence of the oils with at least one cis-double bond leads to bilayer instability and complete loss of bilayer structure at the oil content of about 50-65%. Two cis-double bonds in the lipid tail induce bilayer disruption at even lower concentration (∼30%). The mixed bilayers remain in the gel phase (without melting to a fluid phase) until the phase transition to a non-bilayer phase occurs. We also demonstrate that the stability of the bilayer strongly correlates with the order parameter of the lipid tails.
Collapse
Affiliation(s)
- Anna Akinshina
- Institute of Skin Integrity and Infection Prevention, School of Human and Health Sciences, University of Huddersfield, HD1 3DH, Huddersfield, UK.
| | | | | |
Collapse
|
33
|
Mohyeldin SM, Mehanna MM, Elgindy NA. Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence. Expert Opin Drug Deliv 2016; 13:1049-64. [PMID: 27167758 DOI: 10.1080/17425247.2016.1182490] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin. METHODS Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells. RESULTS Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10(-2) ± 0.7 µg/cm(2) h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers. CONCLUSION The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.
Collapse
Affiliation(s)
- Salma M Mohyeldin
- a Department of Industrial Pharmacy, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| | - Mohammed M Mehanna
- a Department of Industrial Pharmacy, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| | - Nazik A Elgindy
- a Department of Industrial Pharmacy, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| |
Collapse
|
34
|
Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery. Int J Pharm 2016; 501:167-79. [DOI: 10.1016/j.ijpharm.2016.01.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
35
|
Salim N, Ahmad N, Musa SH, Hashim R, Tadros TF, Basri M. Nanoemulsion as a topical delivery system of antipsoriatic drugs. RSC Adv 2016. [DOI: 10.1039/c5ra14946k] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoemulsion as a potential enhancer for the treatment of psoriasis.
Collapse
Affiliation(s)
- Norazlinaliza Salim
- Department of Chemistry
- Faculty of Science
- University Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Noraini Ahmad
- Department of Chemistry
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Siti Hajar Musa
- Department of Chemistry
- Faculty of Science
- University Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Rauzah Hashim
- Department of Chemistry
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | | | - Mahiran Basri
- Department of Chemistry
- Faculty of Science
- University Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| |
Collapse
|
36
|
Quintão WDSC, Matos BN, Reis TA, Barreto LCDS, Gratieri T, Gelfuso GM. Influence of monoolein on progesterone transdermal delivery. BRAZ J PHARM SCI 2015. [DOI: 10.1590/s1984-82502015000400018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
abstract This work aimed to investigate in vitro the influence of monoolein (MO) on progesterone (PG) transdermal delivery and skin retention. Information about the role of MO as an absorption enhancer for lipophilic molecules can help on innovative product development capable of delivering the hormone through the skin in a consistent manner, improving transdermal therapy of hormonal replacement. MO was dispersed in propylene glycol under heat at concentrations of 0% (control), 5% w/w, 10% w/w and 20% w/w. Then, 0.6% of PG (w/w) was added to each formulation. Permeation profile of the hormone was determined in vitro for 48 h using porcine skin in Franz diffusion cells. PG permeation doubled when 5% (w/w) of MO was present in formulation in comparison to both the control and higher MO concentrations (10% and 20% w/w). An equal trend was observed for PG retention in stratum corneum (SC) and reminiscent skin (E+D). PG release rates from the MO formulations, investigated using cellulose membranes, revealed that concentrations of MO higher than 5% (w/w) hindered PG release, which indeed negatively reflected on the hormone permeation through the skin. In conclusion, this work demonstrated the feasibility of MO addition (at 5% w/w) in formulations as a simple method to increase transdermal PG delivery for therapies of hormonal replacement. In contrast, higher MO concentrations (from 10% to 20% w/w) can control active release, and this approach could be extrapolated to other lipophilic, low-molecular-weight molecules.
Collapse
|
37
|
Meli V, Caltagirone C, Falchi AM, Hyde ST, Lippolis V, Monduzzi M, Obiols-Rabasa M, Rosa A, Schmidt J, Talmon Y, Murgia S. Docetaxel-Loaded Fluorescent Liquid-Crystalline Nanoparticles for Cancer Theranostics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9566-9575. [PMID: 26293620 DOI: 10.1021/acs.langmuir.5b02101] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Here, we describe a novel monoolein-based cubosome formulation engineered for possible theranostic applications in oncology. The Docetaxel-loaded nanoparticles were stabilized in water by a mixture of commercial Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer) F108 (PF108) and rhodamine- and folate-conjugated PF108 so that the nanoparticles possess targeting, therapeutic, and imaging properties. Nanoparticles were investigated by DLS, cryo-TEM, and SAXS to confirm their structural features. The fluorescent emission characterization of the proposed formulation indicated that the rhodamine conjugated to the PF108 experiences an environment less polar than water (similar to chloroform), suggesting that the fluorescent fragment is buried within the poly(ethylene oxide) corona surrounding the nanoparticle. Furthermore, these nanoparticles were successfully used to image living HeLa cells and demonstrated a significant short-term (4 h incubation) cytotoxicity effect against these cancer cells. Furthermore, given their analogy as nanocarriers for molecules of pharmaceutical interest and to better stress the singularities of these bicontinuous cubic nanoparticles, we also quantitatively evaluated the differences between cubosomes and multilamellar liposomes in terms of surface area and hydrophobic volume.
Collapse
Affiliation(s)
| | | | | | - Stephen T Hyde
- Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University , Canberra, A.C.T. 0200, Australia
| | | | | | - Marc Obiols-Rabasa
- Division of Physical Chemistry, Department of Chemistry, Lund University , Getingevägen 60, SE-22240 Lund, Sweden
| | | | - Judith Schmidt
- Department of Chemical Engineering, Technion - Israel Institute of Technology , Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering, Technion - Israel Institute of Technology , Haifa 3200003, Israel
| | | |
Collapse
|
38
|
Abstract
To achieve an efficient skin penetration of most compounds it is necessary to overcome the barrier function of the skin, provided mainly (but not only) by the stratum corneum. Among various strategies used or studied to date, chemical penetration enhancers are the most frequently employed with one of the longest histories of use. There is a multitude of agents described as penetration enhancers, and they present varying properties and structures. In this manuscript, we aim to provide a brief overview of traditional enhancers and some of their properties, focusing on the benefits of combination of chemical enhancers and on selected novel compounds that have shown promise to increase drug delivery into/across the skin.
Collapse
|
39
|
Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int J Pharm 2015; 478:569-87. [DOI: 10.1016/j.ijpharm.2014.11.072] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/20/2014] [Accepted: 11/29/2014] [Indexed: 12/13/2022]
|
40
|
Chen M, Kumar S, Anselmo AC, Gupta V, Slee DH, Muraski JA, Mitragotri S. Topical delivery of Cyclosporine A into the skin using SPACE-peptide. J Control Release 2014; 199:190-7. [PMID: 25481447 DOI: 10.1016/j.jconrel.2014.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 11/16/2022]
Abstract
Cyclosporine A (CsA) is used for the treatment of psoriasis; however systemic administration of CsA is potentially life threatening and there are long-term side effects. Topical application of CsA has the potential to overcome this hurdle; however, its use is limited by poor water solubility and low permeability. Here, we report the use of a physical mixture of SPACE-peptide and CsA in an aqueous ethanol solution to enhance the dermal absorption of the drug. The aqueous ethanol solution (hydroethanolic solution) containing 5mg/mL CsA and 50mg/mL of free SPACE-peptide (SP50) delivered about 30% of topically applied CsA into the porcine skin in vitro and led to an approximately 9-fold (p<0.01) increase in accumulation in viable epidermis compared to the hydroethanolic solution without SPACE-peptide (control group). In vivo biodistribution and pharmacokinetic studies performed using SKH1 hairless mice also confirmed the efficacy of SP50 in dermal delivery of CsA and also demonstrated its advantages over other routes in terms of minimizing its systemic absorption. Topical application of SP50 significantly increased the localization of CsA in the target skin (113.1±13.6(μg/g)/mg) compared to all other groups (p<0.01). In addition, SP50 led to significantly higher skin/blood ratio (443.4±181.5) and skin/liver ratio (1059.5±110.8) of CsA compared to all other groups (p<0.01). The SP50 formulation reported here offers a promising approach for the dermal delivery of CsA.
Collapse
Affiliation(s)
- Ming Chen
- Center for Bioengineering, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States
| | - Sunny Kumar
- Center for Bioengineering, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States
| | - Aaron C Anselmo
- Center for Bioengineering, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States
| | - Vivek Gupta
- Center for Bioengineering, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States
| | - Deborah H Slee
- Convoy Therapeutics, 405 W Cool Drive, Suite 107, Oro Valley, AZ 85704, United States
| | - John A Muraski
- Convoy Therapeutics, 405 W Cool Drive, Suite 107, Oro Valley, AZ 85704, United States.
| | - Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States; Convoy Therapeutics, 405 W Cool Drive, Suite 107, Oro Valley, AZ 85704, United States.
| |
Collapse
|
41
|
Lapteva M, Santer V, Mondon K, Patmanidis I, Chiriano G, Scapozza L, Gurny R, Möller M, Kalia YN. Targeted cutaneous delivery of ciclosporin A using micellar nanocarriers and the possible role of inter-cluster regions as molecular transport pathways. J Control Release 2014; 196:9-18. [PMID: 25278258 DOI: 10.1016/j.jconrel.2014.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Oral administration of ciclosporin A (CsA) is indicated in the treatment of severe recalcitrant plaque psoriasis. However, CsA is both nephro- and hepatotoxic and its systemic administration also exposes the patient to other severe side effects. Although topical delivery of CsA, targeted directly to psoriatic skin, would offer significant advantages, there are no topical formulations approved for dermatological use. The aim of this work was to formulate CsA loaded polymeric micelles using the biodegradable and biocompatible MPEG-dihexPLA diblock copolymer and to evaluate their potential for delivering the drug selectively into the skin without concomitant transdermal permeation. Micelle formulations were characterised with respect to drug content, size and morphology. Micelle and drug penetration pathways were subsequently visualised with confocal laser scanning microscopy (CLSM) using fluorescein labelled CsA (Fluo-CsA) and Nile-Red (NR) labelled copolymer. Visualisation studies typically use fluorescent dyes as "model drugs"; however, these may have different physicochemical properties to the drug molecule under investigation. Therefore, in this study it was decided to chemically modify CsA and to use this structurally similar fluorescent analogue to visualise molecular distribution and transport pathways. Molecular modelling techniques and experimental determination of log D served as molecular scale and macroscopic methods to compare the lipophilicity of CsA and Fluo-CsA. The spherical, homogeneous and nanometre-scale micelles (with Zav from 25 to 52 nm) increased the aqueous solubility of CsA by 518-fold. Supra-therapeutic amounts of CsA were delivered to human skin (1.4±0.6 μg/cm2, cf. a statistically equivalent 1.1±0.5 μg/cm2 for porcine skin) after application of the formulation with the lowest CsA and copolymer content (1.67±0.03 mg/ml of CsA and 5mg/ml of copolymer) for only 1h without concomitant transdermal permeation. Fluo-CsA was successfully synthesised, characterised and incorporated into fluorescent NR-MPEG-dihexPLA micelles; its conformation was not modified by the addition of fluorescein and its log D, measured from pH4 to 8, was equivalent to that of CsA. Fluo-CsA and NR-MPEG-dihexPLA copolymer were subsequently visualised in skin by CLSM. The images indicated that micelles were preferentially deposited between corneocytes and in the inter-cluster regions (i.e. between the clusters of corneocytes). Fluo-CsA skin penetration was deeper in these structures, suggesting that inter-cluster penetration is probably the preferred transport pathway responsible for the increased cutaneous delivery of CsA.
Collapse
Affiliation(s)
- Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Verena Santer
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Karine Mondon
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Ilias Patmanidis
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Gianpaolo Chiriano
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Michael Möller
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
42
|
Zabara A, Mezzenga R. Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases. J Control Release 2014; 188:31-43. [DOI: 10.1016/j.jconrel.2014.05.052] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/28/2022]
|
43
|
Miller R, Schick AE, Boothe DM, Lewis TP. Absorption of Transdermal and Oral Cyclosporine in Six Healthy Cats. J Am Anim Hosp Assoc 2014; 50:36-41. [DOI: 10.5326/jaaha-ms-5970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyclosporine is commonly used orally to treat feline dermatoses. Due to difficulties administering oral medications, veterinarians sometimes prescribe compounded transdermal cyclosporine, despite studies showing limited absorption. The study objective was to compare cyclosporine blood concentrations after oral administration to concentrations after transdermal application of cyclosporine (prepared in pluronic lecithin organogel [PLO]) in six cats using a controlled, cross-over design with a 2 wk washout period. Cats were dosed at 5.1–7.4 mg/kg of cyclosporine q 24 hr either per os for 7 days or transdermally for 21 days. Cyclosporine blood concentrations were measured q 7 days and after the washout period. A monoclonal-based immunoassay (lower limit of quantitation was 25 ng/mL) was used. Median concentrations on the seventh day were 2,208 ng/mL (range, 1,357–3,419 ng/mL) 2 hr after orally administered cyclosporine and 37 ng/mL (range, 25–290 ng/mL) 2 hr after transdermally applied cyclosporine. Median concentration on day 21 was 58 ng/mL (range, 51–878 ng/mL) 2 hr after transdermally applied cyclosporine. Concentrations were quantifiable for transdermally applied cyclosporine, but considered therapeutic in only one of six cats. Based on those results, transdermally applied cyclosporine was not recommended in cats because of inconsistent absorption.
Collapse
Affiliation(s)
- Rose Miller
- Dermatology for Animals, Salt Lake City, UT, (R.M.); Dermatology for Animals, West Juniper, AZ (A.S., T.L.); and Clinical Pharmacology Laboratory (D.B.), College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Anthea E. Schick
- Dermatology for Animals, Salt Lake City, UT, (R.M.); Dermatology for Animals, West Juniper, AZ (A.S., T.L.); and Clinical Pharmacology Laboratory (D.B.), College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Dawn M. Boothe
- Dermatology for Animals, Salt Lake City, UT, (R.M.); Dermatology for Animals, West Juniper, AZ (A.S., T.L.); and Clinical Pharmacology Laboratory (D.B.), College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Thomas P. Lewis
- Dermatology for Animals, Salt Lake City, UT, (R.M.); Dermatology for Animals, West Juniper, AZ (A.S., T.L.); and Clinical Pharmacology Laboratory (D.B.), College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
44
|
Songkro S, Lo NL, Tanmanee N, Maneenuan D, Boonme P. In vitro release, skin permeation and retention of benzophenone-3 from microemulsions (o/w and w/o). J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50140-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Zabara A, Negrini R, Baumann P, Onaca-Fischer O, Mezzenga R. Reconstitution of OmpF membrane protein on bended lipid bilayers: perforated hexagonal mesophases. Chem Commun (Camb) 2014; 50:2642-5. [DOI: 10.1039/c3cc49590f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Quiñones OG, Mata dos Santos HA, Kibwila DM, Leitão Á, dos Santos Pyrrho A, Pádula MD, Rosas EC, Lara MG, Pierre MBR. In vitroandin vivoinfluence of penetration enhancers in the topical application of celecoxib. Drug Dev Ind Pharm 2013; 40:1180-9. [DOI: 10.3109/03639045.2013.809731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Carboni M, Falchi AM, Lampis S, Sinico C, Manca ML, Schmidt J, Talmon Y, Murgia S, Monduzzi M. Physicochemical, cytotoxic, and dermal release features of a novel cationic liposome nanocarrier. Adv Healthc Mater 2013. [PMID: 23184424 DOI: 10.1002/adhm.201200302] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel cationic liposome nanocarrier, having interesting performance in topical drug delivery, is here presented and evaluated for its features. Two penetration enhancers, namely monoolein and lauroylcholine chloride, are combined to rapidly formulate (15 min) a cationic liposome nanostructure endowed of excellent stability (>6 months) and skin penetration ability, along with low short-term cytotoxicity, as evaluated via the MTT test. Cytotoxicity tests and lipid droplet analysis give a strong indication that monoolein and lauroylcholine synergistically endanger long-term cells viability. The physicochemical features, investigated through SAXS, DLS, and cryo-TEM techniques, reveal that the nanostructure is retained after loading with diclofenac in its acid (hydrophobic) form. The drug release performances are studied using intact newborn pig skin. Analysis of the different skin strata proves that the drug mainly accumulates into the viable epidermis with almost no deposition into the derma. Indeed, the flux of the drug across the skin is exceptionally low, with only 1% release after 24 h. These results validate the use of this novel formulation for topical drug release when the delivery to the systemic circulation should be avoided.
Collapse
Affiliation(s)
- Maura Carboni
- Department of Chemical and Geological Sciences, University of Cagliari, CNBS and CSGI, s.s. 554, bivio Sestu, 09042 Monserrato (CA), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lapteva M, Kalia YN. Microstructured bicontinuous phase formulations: their characterization and application in dermal and transdermal drug delivery. Expert Opin Drug Deliv 2013; 10:1043-59. [DOI: 10.1517/17425247.2013.783008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Madheswaran T, Baskaran R, Thapa RK, Rhyu JY, Choi HY, Kim JO, Yong CS, Yoo BK. Design and in vitro evaluation of finasteride-loaded liquid crystalline nanoparticles for topical delivery. AAPS PharmSciTech 2013. [PMID: 23207960 DOI: 10.1208/s12249-012-9888-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study, liquid crystalline nanoparticles (LCN) have been proposed as new carrier for topical delivery of finasteride (FNS) in the treatment of androgenetic alopecia. To evaluate the potential of this nanocarrier, FNS-loaded LCN was prepared by ultrasonication method and characterized for size, shape, in vitro release, and skin permeation-retention properties. The particle size ranged from 153.8 to 170.2 nm with a cubical shape and exhibited controlled release profile with less than 20% of the drug released in the first 24 h. The release profile was significantly altered with addition of different additives. Formulation with lower monoolein exhibited higher skin permeation with a flux rate of 0.061±0.005 μg cm(-2) h(-1) in 24 h. The permeation however, significantly increased with glycerol, propylene glycol, and polyethylene glycol 400, while it declined for the addition of oleic acid. A similar trend was observed with skin retention study. In conclusion, FNS-loaded LCN could be advocated as a viable alternative for oral administration of the drug.
Collapse
|
50
|
Hong SK, Ma JY, Kim JC. Preparation and Characterization of Cubosomal KIOM-C Suspension and Investigation on In Vitro Small Intestinal Absorption of Baicalin. J DISPER SCI TECHNOL 2013. [DOI: 10.1080/01932691.2012.659108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|