1
|
Bakhrushina EO, Afonina AM, Mikhel IB, Demina NB, Plakhotnaya ON, Belyatskaya AV, Krasnyuk II, Krasnyuk II. Role of Sterilization on In Situ Gel-Forming Polymer Stability. Polymers (Basel) 2024; 16:2943. [PMID: 39458771 PMCID: PMC11510731 DOI: 10.3390/polym16202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, stimulus-sensitive drug delivery systems have been developed for parenteral administration as a depot system. In situ systems incorporate smart polymers that undergo a phase transition at the site of administration. All parenteral and ocular dosage forms must meet sterility requirements. Careful selection of the sterilization method is required for any type of stimuli-sensitive system. Current sterilization methods are capable of altering the conformation of polymers or APIs to a certain extent, ultimately causing the loss of pharmacological and technological properties of the drug. Unfortunately, the issues of risk assessment and resolution regarding the sterilization of stimuli-sensitive systems, along with ways to stabilize such compositions, are insufficiently described in the scientific literature to date. This review provides recommendations and approaches, formulated on the basis of published experimental data, that allow the effective management of risks arising during the development of in situ systems requiring sterility.
Collapse
Affiliation(s)
| | | | - Iosif B. Mikhel
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (A.M.A.); (N.B.D.); (O.N.P.); (A.V.B.); (I.I.K.J.); (I.I.K.)
| | | | | | | | | | | |
Collapse
|
2
|
Badie MA, Teaima MH, El-Nabarawi MA, Badawi NM. Formulation and optimization of surfactant-modified chitosan nanoparticles loaded with cefdinir for novel topical drug delivery: Elevating wound healing efficacy with enhanced antibacterial properties. Int J Pharm 2024; 666:124763. [PMID: 39332464 DOI: 10.1016/j.ijpharm.2024.124763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Burn wounds remain a significant global health concern, frequently exacerbated by bacterial infections that hinder healing and raise morbidity rates. Cefdinir, a third-generation cephalosporin antibiotic, is used to treat various conditions, but it has limitations such as low water solubility, limited bioavailability, and a short biological half-life. This study aimed to fabricate and optimize novel surfactant-based Cefdinir-loaded chitosan nanoparticles (CFD-CSNPs) for enhancing topical CFD delivery and efficacy in burn healing. Box-Behnken Design (BBD) was employed to develop optimized CFD-CSNPs using Design Expert® software, where the independent factors were chitosan concentration, chitosan: sodium tripolyphosphate ratio, pH, and surfactant type. Particle size PS, zeta potential ZP, Polydispersity index PDI, and entrapment efficiency EE% were evaluated as dependent factors. CFD-CSNPs were produced using the ionic gelation method. The optimized formula was determined and then examined for further in vitro and in vivo assessments. The optimized CFD-CSNPs exhibited acceptable PS, PDI, and ZP values. The EE% of CFD from CSNPs reached 57.89 % ± 1.66. TEM analysis revealed spherical morphology. In vitro release studies demonstrated a biphasic release profile up to (75.5 % ± 3.8) over 48 hrs. The optimized CFD-CSNPs showed improved antimicrobial efficacy against the tested microorganisms, exhibiting superior performance for both biofilm prevention and eradication. Enhanced wound healing activity was achieved by the optimized CFD-CSNPs in both in vitro and in vivo studies as confirmed by scratch wound assay and skin burn mice model. The current study advocates the efficacy of the innovative topical application of CFD-CSNPs for wound healing purposes and treatment of wound infections.
Collapse
Affiliation(s)
- Merna A Badie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt.
| |
Collapse
|
3
|
Makled S, Abbas H, Ali ME, Zewail M. Melatonin hyalurosomes in collagen thermosensitive gel as a potential repurposing approach for rheumatoid arthritis management via the intra-articular route. Int J Pharm 2024; 661:124449. [PMID: 38992734 DOI: 10.1016/j.ijpharm.2024.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Despite the fact that several rheumatoid arthritis treatments have been utilized, none of them achieved complete joint healing and has been accompanied by several side effects that compromise patient compliance. This study aims to provide an effective safe RA treatment with minimum side effects through the encapsulation of melatonin (MEL) in hyalurosomes and loading these hyalurosomes in collagen thermos-sensitive poloxamer 407 (PCO) hydrogels, followed by their intra-articular administration in AIA model rats. In vitro characterization of MEL-hyalurosomes and PCO hydrogel along with in vivo evaluation of the selected formulation were conducted. Particle size, PDI and EE % of the selected formulation were 71.5 nm, 0.09 and 90 %. TEM micrographs demonstrated that the particles had spherical shape with no aggregation signs. Loading PCO hydrogels with MEL-hyalurosomes did not cause significant changes in pH although it increased its viscosity and injection time. FTIR analysis showed that no interactions were noted among the delivery system components. In vivo results revealed the superior effect of MEL-hyalurosomes PCO hydrogel over MEL-PCO hydrogel and blank PCO hydrogels in improving joint healing, cartilage repair, pannus formation and cell infiltrations. Also, MEL-hyalurosomes PCO hydrogel group showed comparable levels of TNF-α, IL1, MDA, NRF2 and HO-1 with the negative control group. These findings highlight the MEL encapsulation role in augmenting its pharmacological effects along with the synergistic effect of hyaluronic acid in hyalurosomes and collagen in PCO hydrogel in promoting joint healing.
Collapse
Affiliation(s)
- Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt.
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt
| |
Collapse
|
4
|
Spennacchio A, Lopalco A, Racaniello GF, Cutrignelli A, la Forgia FM, Fontana S, Cristofori F, Francavilla R, Lopedota AA, Denora N. Mucoadhesive Budesonide Solution for the Treatment of Pediatric Eosinophilic Esophagitis. Pharmaceuticals (Basel) 2024; 17:550. [PMID: 38794121 PMCID: PMC11124118 DOI: 10.3390/ph17050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024] Open
Abstract
Eosinophilic Esophagitis is an antigen-mediated inflammatory disease characterized by thickening of the esophageal wall, leading to dysphagia, vomiting, reflux, and abdominal pain. This disease can be treated with a therapeutic approach ranging from diet to pharmacological therapy. Jorveza® (budesonide) and Dupixent® (dupilumab) are treatments for Eosinophilic Esophagitis approved by the European Medicines Agency in adults but not in children. Budesonide-based extemporaneous oral liquid suspensions could be prepared for pediatric use. The main limit of this formulation is that budesonide needs a longer residence time on the esophageal mucosa to solubilize and diffuse in it to exert its local anti-inflammatory effect. Herein, we propose the development of an extemporaneous mucoadhesive oral budesonide solution for the pediatric population. A liquid vehicle containing hydroxypropyl-beta-cyclodextrin as a complexing agent and carboxymethylcellulose sodium as a mucoadhesive excipient was used to prepare budesonide-based formulations. A stable solution at a concentration of 0.7 mg/mL was successfully prepared and characterized. The formulation showed rheological and mucoadhesive properties suitable for an Eosinophilic Esophagitis local prolonged treatment. In this way, pharmacists can prepare stable budesonide-based mucoadhesive solutions, providing both patients and physicians with a new therapeutic option for Eosinophilic Esophagitis pediatric treatment.
Collapse
Affiliation(s)
- Antonio Spennacchio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Giuseppe Francesco Racaniello
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Annalisa Cutrignelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Flavia Maria la Forgia
- Centro Studi e Ricerche “Dr. S. Fontana 1900–1982”, Farmalabor s.r.l., 76012 Canosa di Puglia, Italy; (F.M.l.F.); (S.F.)
| | - Sergio Fontana
- Centro Studi e Ricerche “Dr. S. Fontana 1900–1982”, Farmalabor s.r.l., 76012 Canosa di Puglia, Italy; (F.M.l.F.); (S.F.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Paediatric Section, University of Bari Aldo Moro, Paediatric Hospital Giovanni XXIII, 70125 Bari, Italy; (F.C.); (R.F.)
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Paediatric Section, University of Bari Aldo Moro, Paediatric Hospital Giovanni XXIII, 70125 Bari, Italy; (F.C.); (R.F.)
| | - Angela Assunta Lopedota
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (A.S.); (A.L.); (G.F.R.); (A.C.); (A.A.L.)
| |
Collapse
|
5
|
Che X, Zhao T, Hu J, Yang K, Ma N, Li A, Sun Q, Ding C, Ding Q. Application of Chitosan-Based Hydrogel in Promoting Wound Healing: A Review. Polymers (Basel) 2024; 16:344. [PMID: 38337233 DOI: 10.3390/polym16030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Chitosan is a linear polyelectrolyte with active hydroxyl and amino groups that can be made into chitosan-based hydrogels by different cross-linking methods. Chitosan-based hydrogels also have a three-dimensional network of hydrogels, which can accommodate a large number of aqueous solvents and biofluids. CS, as an ideal drug-carrying material, can effectively encapsulate and protect drugs and has the advantages of being nontoxic, biocompatible, and biodegradable. These advantages make it an ideal material for the preparation of functional hydrogels that can act as wound dressings for skin injuries. This review reports the role of chitosan-based hydrogels in promoting skin repair in the context of the mechanisms involved in skin injury repair. Chitosan-based hydrogels were found to promote skin repair at different process stages. Various functional chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Xueyan Che
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Jing Hu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Kaicheng Yang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Nan Ma
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Dunhua 133000, China
| | - Qi Sun
- Jilin Zhengrong Pharmaceutical Development Co., Ltd., Dunhua 133700, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Heydari SR, Ghahremani MH, Atyabi F, Bafkary R, Jaafari MR, Dinarvand R. Aptamer-modified chitosan-capped mesoporous silica nanoparticles for co-delivery of cytarabine and daunorubicin in leukemia. Int J Pharm 2023; 646:123495. [PMID: 37806507 DOI: 10.1016/j.ijpharm.2023.123495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
In this study, surface modified mesoporous silica nanoparticles (MSNs) were prepared for the targeted delivery of the anticancer agents, daunorubicin (DNR) and cytarabine (CTR), against K562 leukemia cancer cell lines. The MSNs were surface-modified with pH-sensitive chitosan (CS) to prevent the burst release of anticancer agents at the physiological pH of 7.4 and to enable a higher drug release at lower pH and higher concentration of glutathione. Finally, the MSNs were surface modified with KK1B10 aptamer (Apt) to enhance their uptake by K562 cells through ligand-receptor interactions. The MSNs were characterized using different methods and both in vitro and in vivo experiments were utilized to demonstrate their suitability as targeted anticancer agents. The resultant MSNs exhibited an average particle size of 295 nm, a surface area of 39.06 m2/g, and a cumulative pore volume of 0.09 cm3/g. Surface modification of MSNs with chitosan (CS) resulted in a more regulated and acceptable continuous release rate of DNR. The drug release rate was significantly higher at pH 5 media enriched with glutathione, compared to pH 7.4. Furthermore, MSNs coated with CS and conjugated with aptamer (MSN-DNR + CTR@CS-Apt) exhibited a lower IC50 value of 2.34 µg/ml, compared to MSNs without aptamer conjugation, which displayed an IC50 value of 12.27 µg/ml. The results of the cell cycle analysis indicated that the administration of MSN-DNR + CTR@CS-Apt led to a significant increase in the population of apoptotic cells in the sub-G1 phase. Additionally, the treatment arrested the remaining cells in various other phases of the cell cycle. Furthermore, the interactions between Apt-receptors were found to enhance the uptake of MSNs by cancer cells. The results of in vivo studies demonstrated that the administration of MSN-DNR + CTR@CS-Apt led to a significant reduction in the expression levels of CD71 and CD235a markers, as compared to MSN-DNR + CTR@CS (p < 0.001). In conclusion, the surface modified MSNs prepared in this study showed lower IC50 against cancer cell lines and higher anticancer activity in animal models.
Collapse
Affiliation(s)
- Seyed Reza Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology-Toxicology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Bafkary
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
7
|
Volova LT, Kotelnikov GP, Shishkovsky I, Volov DB, Ossina N, Ryabov NA, Komyagin AV, Kim YH, Alekseev DG. 3D Bioprinting of Hyaline Articular Cartilage: Biopolymers, Hydrogels, and Bioinks. Polymers (Basel) 2023; 15:2695. [PMID: 37376340 DOI: 10.3390/polym15122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The musculoskeletal system, consisting of bones and cartilage of various types, muscles, ligaments, and tendons, is the basis of the human body. However, many pathological conditions caused by aging, lifestyle, disease, or trauma can damage its elements and lead to severe disfunction and significant worsening in the quality of life. Due to its structure and function, articular (hyaline) cartilage is the most susceptible to damage. Articular cartilage is a non-vascular tissue with constrained self-regeneration capabilities. Additionally, treatment methods, which have proven efficacy in stopping its degradation and promoting regeneration, still do not exist. Conservative treatment and physical therapy only relieve the symptoms associated with cartilage destruction, and traditional surgical interventions to repair defects or endoprosthetics are not without serious drawbacks. Thus, articular cartilage damage remains an urgent and actual problem requiring the development of new treatment approaches. The emergence of biofabrication technologies, including three-dimensional (3D) bioprinting, at the end of the 20th century, allowed reconstructive interventions to get a second wind. Three-dimensional bioprinting creates volume constraints that mimic the structure and function of natural tissue due to the combinations of biomaterials, living cells, and signal molecules to create. In our case-hyaline cartilage. Several approaches to articular cartilage biofabrication have been developed to date, including the promising technology of 3D bioprinting. This review represents the main achievements of such research direction and describes the technological processes and the necessary biomaterials, cell cultures, and signal molecules. Special attention is given to the basic materials for 3D bioprinting-hydrogels and bioinks, as well as the biopolymers underlying the indicated products.
Collapse
Affiliation(s)
- Larisa T Volova
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Gennadiy P Kotelnikov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Igor Shishkovsky
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitriy B Volov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Natalya Ossina
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Nikolay A Ryabov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Aleksey V Komyagin
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Yeon Ho Kim
- RokitHealth Care Ltd., 9, Digital-ro 10-gil, Geumcheon-gu, Seoul 08514, Republic of Korea
| | - Denis G Alekseev
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| |
Collapse
|
8
|
Le HV, Le Cerf D. Colloidal Polyelectrolyte Complexes from Hyaluronic Acid: Preparation and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204283. [PMID: 36260830 DOI: 10.1002/smll.202204283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide which has been extensively exploited in biomedical fields owing to its outstanding biocompatibility. Self-assembly of HA and polycations through electrostatic interactions can generate colloidal polyelectrolyte complexes (PECs), which can offer a wide range of applications while being relatively simple to prepare with rapid and "green" processes. The advantages of colloidal HA-based PECs stem from the combined benefits of nanomedicine, green chemistry, and the inherent properties of HA, namely high biocompatibility, biodegradability, and biological targeting capability. Accordingly, colloidal PECs from HA have received increasing attention in the recent years as high-performance materials for biomedical applications. Considering their potential, this review is aimed to provide a comprehensive understanding of colloidal PECs from HA in complex with polycations, from the most fundamental aspects of the preparation process to their various biomedical applications, notably as nanocarriers for delivering small molecule drugs, nucleic acids, peptides, proteins, and bioimaging agents or the construction of multifunctional platforms.
Collapse
Affiliation(s)
- Huu Van Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| |
Collapse
|
9
|
Abbas MA, Abbas A, Rizwan M, Bashir F, Kressler J. Synthesis, Characterization, Isoconversional Analysis and Degradation Kinetics of Novel Acetate Coated Hydroxyethyl Starch: a New Candidate as a Drug Carrier. STARCH-STARKE 2022. [DOI: 10.1002/star.202100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Azhar Abbas
- Institute of Chemistry University of Sargodha Punjab 40100 Pakistan
| | - Muhammad Rizwan
- Institute of Chemistry University of Sargodha Punjab 40100 Pakistan
| | - Faheem Bashir
- Institute of Chemistry University of Sargodha Punjab 40100 Pakistan
| | - Joerg Kressler
- Department of Chemistry Institute of Physical Chemistry Martin Luther University Halle(Saale) Germany
| |
Collapse
|
10
|
Xu Y, Chen H, Fang Y, Wu J. Hydrogel Combined with Phototherapy in Wound Healing. Adv Healthc Mater 2022; 11:e2200494. [PMID: 35751637 DOI: 10.1002/adhm.202200494] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/17/2022] [Indexed: 01/24/2023]
Abstract
Wound healing is a complex biological process that involves tissue regeneration. Traditional wound dressings are dry, cannot provide a moist environment for wound healing, and do not have high antibacterial properties. Hydrogels, which are capable of retaining large amounts of water, can create a moist healing environment. Currently, phototherapies have exhibited a high potential for the treatment of bacterial infections. Therefore, combining hydrogels with phototherapy can adequately overcome the shortcomings of traditional wound treatment methods and show great potential for wound healing owing to their high efficiency, low irritation, and good antibacterial performance. In this review, the application of hydrogels combined with phototherapy in wound healing is summarized. First, the basic principles of photodynamic therapy and photothermal therapy are briefly introduced. In addition, the progress of the application of hydrogel combined with phototherapy in wound healing is systematically investigated. Finally, the challenges and prospects of combining hydrogel with phototherapy in wound healing are discussed.
Collapse
Affiliation(s)
- Yinglin Xu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haolin Chen
- Department of Haematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510006, China
| | - Jun Wu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
11
|
Kim JY, Kim SH, Choi MH, Lee SH, Cha M, Park JU. Novel Chitosan Dermal Filler with Enhanced Moldability and Elasticity. Macromol Biosci 2022; 22:e2200081. [PMID: 35698278 DOI: 10.1002/mabi.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Currently, dermal fillers are largely based on commercialized cross-linked hyaluronic acid (HA) injections, which require a large injection force. Additionally, HA can be easily decomposed by enzymes, and HA-treated tissues present a risk of developing granuloma. In this study, a chitosan-based dermal filler is presented that operates on a liquid-to-gel transition and allows the injection force to be kept ≈4.7 times lower than that required for HA injections. Evaluation of the physical properties of the chitosan filler indicates high viscoelasticity and recovery rate after gelation at 37 °C. Furthermore, in an in vivo evaluation, the liquid injection-type chitosan filler transitions to a gel state within 5 min after injection into the body, and exhibits a compressive strength that is ≈2.4 times higher than that of cross-linked HA. The filler also exhibits higher moldability and maintains a constant volume in the skin for a longer time than the commercial HA filler. Therefore, it is expected that the chitosan filler will be clinically applicable as a novel material for dermal tissue restoration and supplementation.
Collapse
Affiliation(s)
- Jie Young Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae-Road, Dongjak-Gu, Seoul, 07061, Republic of Korea
| | - Su Hee Kim
- R&D Center, Medifab Co. Ltd., 70 Dusan-ro, Geumcheon-gu, Seoul, 08584, Republic of Korea
| | - Min-Ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae-Road, Dongjak-Gu, Seoul, 07061, Republic of Korea
| | - Soo Hee Lee
- R&D Center, Medifab Co. Ltd., 70 Dusan-ro, Geumcheon-gu, Seoul, 08584, Republic of Korea
| | - Misun Cha
- R&D Center, Medifab Co. Ltd., 70 Dusan-ro, Geumcheon-gu, Seoul, 08584, Republic of Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 5 Gil 20, Boramae-Road, Dongjak-Gu, Seoul, 07061, Republic of Korea
| |
Collapse
|
12
|
Gong X, Qiao Z, Liao Y, Zhu S, Shi L, Kim M, Chen YC. Enzyme-Programmable Microgel Lasers for Information Encoding and Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107809. [PMID: 34918404 DOI: 10.1002/adma.202107809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.
Collapse
Affiliation(s)
- Xuerui Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhen Qiao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yikai Liao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Song Zhu
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lei Shi
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Munho Kim
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
13
|
Yu Y, Kim DH, Suh EY, Jeong SH, Kwon HC, Le TP, Kim Y, Shin SA, Park YH, Huh KM. Injectable glycol chitosan thermogel formulation for efficient inner ear drug delivery. Carbohydr Polym 2022; 278:118969. [PMID: 34973784 DOI: 10.1016/j.carbpol.2021.118969] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023]
Abstract
We prepared a new injectable thermogel to enhance the efficiency of inner ear delivery of dexamethasone (DEX). Hexanoyl glycol chitosan (HGC) was synthesized and evaluated as an amphiphilic thermogel (Tgel ~ 32 °C) for use as a solubilizing agent as well as an injectable carrier for intratympanic delivery of the hydrophilic and hydrophobic forms of DEX. Various thermogel formulations with different drug types and concentrations were prepared, and their physicochemical and thermogelling properties were characterized by 1H NMR, ATR-FTIR, and rheometer. They exhibited versatile release kinetics from several hours to more than 2 weeks, depending on drug type and concentration. Our formulations further showed good residual stability for more than 21 days without any cytotoxicity or inflammation in the middle and inner ear and could deliver a considerably high drug concentration into the inner ear. Therefore, HGC thermogel has great potential as an effective and safe formulation for inner ear drug delivery.
Collapse
Affiliation(s)
- Yang Yu
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Da Hae Kim
- Polymer Science and Engineering, Chungnam National University, 99 Daehakro, Yuseonggu, Daejeon 34134, South Korea
| | - Eun Yeong Suh
- Polymer Science and Engineering, Chungnam National University, 99 Daehakro, Yuseonggu, Daejeon 34134, South Korea
| | - Seong-Hun Jeong
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Hyuk Chan Kwon
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Thi Phuc Le
- Polymer Science and Engineering, Chungnam National University, 99 Daehakro, Yuseonggu, Daejeon 34134, South Korea
| | - Yugyeong Kim
- Polymer Science and Engineering, Chungnam National University, 99 Daehakro, Yuseonggu, Daejeon 34134, South Korea
| | - Sun-Ae Shin
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.
| | - Kang Moo Huh
- Polymer Science and Engineering, Chungnam National University, 99 Daehakro, Yuseonggu, Daejeon 34134, South Korea.
| |
Collapse
|
14
|
Zewail M, Nafee N, Helmy MW, Boraie N. Synergistic and receptor-mediated targeting of arthritic joints via intra-articular injectable smart hydrogels containing leflunomide-loaded lipid nanocarriers. Drug Deliv Transl Res 2021; 11:2496-2519. [PMID: 34013458 DOI: 10.1007/s13346-021-00992-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
Intra-articular drug delivery represents a tempting strategy for local treatment of rheumatoid arthritis. Targeting drugs to inflamed joints bypasses systemic-related side effects. Albeit, rapid drug clearance and short joint residence limit intra-articular administration. Herein, injectable smart hydrogels comprising free/nanoencapsulated leflunomide (LEF) were developed. Nanostructured lipid carriers (NLCs), 200-300 nm, were coated with either chondroitin sulfate (CHS), hyaluronic acid (HA), or chitosan (CS) to provide joint targetability. Coated NLCs were incorporated in either hyaluronic/pluronic (HP) or chitosan/β-glycerophosphate (CS/βGP) hydrogels. Optimized systems ensured convenient gelation time (14-100 s), injectability (5-15 s), formulation-dependent mechanical strength, and extended LEF release up to 51 days. In vivo intra-articular injection in induced arthritis rat model revealed that rats treated with HA-coated NLCs showed the fastest recovery. Histopathological examination demonstrated perfect joint healing in case of HA-coated LEF-NLCs in CS/βGP thermogel manifested as minor erosion of subchondral bone, improved intensity of extracellular matrix, cartilage thickness, and chondrocyte number. Both HA- and CHS-coated NLCs reduced TNF-α level 4-5-fold relative to positive control. The feat would be achieved via active targeting to CD44 receptors overexpressed in the articular tissue, limiting chondrocyte apoptosis together with innate synergistic targetability by promoting chondrocyte proliferation and neovascularization, inhibiting the production of pro-inflammatory cytokines, thus enhancing cartilaginous tissue repair.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, POB 24923, 13110, Safat, Kuwait.
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Stanzione A, Polini A, La Pesa V, Quattrini A, Romano A, Gigli G, Moroni L, Gervaso F. Thermosensitive chitosan-based hydrogels supporting motor neuron-like NSC-34 cell differentiation. Biomater Sci 2021; 9:7492-7503. [PMID: 34642708 DOI: 10.1039/d1bm01129d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Motor neuron diseases are neurodegenerative diseases that predominantly affect the neuromuscular system. To date, there are no valid therapeutic treatments for such diseases, and the classical experimental models fail in faithfully reproducing the pathological mechanisms behind them. In this regard, the use of three-dimensional (3D) culture systems, which more closely reproduce the native in vivo environment, can be a promising approach. Hydrogel-based systems are among the most used materials to reproduce the extracellular matrix, featuring an intrinsic similarity with its physiological characteristics. In this study, we developed a thermosensitive chitosan-based hydrogel combined with β-glycerophosphate (βGP) and sodium hydrogen carbonate (SHC), which give the system optimal mechanical properties and injectability, inducing the hydrogel sol-gel transition at 37 °C. An ad hoc protocol for the preparation of the hydrogel was established in order to obtain a highly homogeneous system, leading to reproducible physicochemical characteristics and easy cell encapsulation. All formulations supported the viability of a neuroblastoma/spinal cord hybrid cell line (NSC-34) beyond two weeks of culture and enabled cell differentiation towards a motor neuron-like morphology, characterized by the presence of extended neurites. Based on our results, these hydrogels represent excellent candidates for establishing 3D in vitro models of motor neuron diseases.
Collapse
Affiliation(s)
- Antonella Stanzione
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, 73100 Lecce, LE, Italy.,CNR-Nanotec, Institute of Nanotechnology, 73100 Lecce, Italy.
| | | | - Velia La Pesa
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, 20132 Milan, Italy.
| | - Angelo Quattrini
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, 20132 Milan, Italy.
| | - Alessandro Romano
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, 20132 Milan, Italy.
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, 73100 Lecce, LE, Italy.,CNR-Nanotec, Institute of Nanotechnology, 73100 Lecce, Italy.
| | - Lorenzo Moroni
- CNR-Nanotec, Institute of Nanotechnology, 73100 Lecce, Italy. .,Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | | |
Collapse
|
16
|
Patra S, Singh M, Wasnik K, Pareek D, Gupta PS, Mukherjee S, Paik P. Polymeric Nanoparticle Based Diagnosis and Nanomedicine for Treatment and Development of Vaccines for Cerebral Malaria: A Review on Recent Advancement. ACS APPLIED BIO MATERIALS 2021; 4:7342-7365. [PMID: 35006689 DOI: 10.1021/acsabm.1c00635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral malaria occurs due to Plasmodium falciparum infection, which causes 228 million infections and 450,000 deaths worldwide every year. African people are mostly affected with nearly 91% cases, of which 86% are pregnant women and infants. India and Brazil are the other two countries severely suffering from malaria endemicity. Commonly used drugs have severe side effects, and unfortunately no suitable vaccine is available in the market today. In this line, this review is focused on polymeric nanomaterials and nanocapsules that can be used for the development of effective diagnostic strategies, nanomedicines, and vaccines in the management of cerebral malaria. Further, this review will help scientists and medical professionals by updating the status on the development stages of polymeric nanoparticle based diagnostics, nanomedicines, and vaccines and strategies to eradicate cerebral malaria. In addition to this, the predominant focus of this review is antimalarial agents based on polymer nanomedicines that are currently in the preclinical and clinical trial stages, and potential developments are suggested as well. This review further will have an important social and commercial impact worldwide for the development of polymeric nanomedicines and strategies for the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Monika Singh
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| |
Collapse
|
17
|
Shivakumar P, Gupta MS, Jayakumar R, Gowda DV. Prospection of chitosan and its derivatives in wound healing: Proof of patent analysis (2010-2020). Int J Biol Macromol 2021; 184:701-712. [PMID: 34157330 DOI: 10.1016/j.ijbiomac.2021.06.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
Disruption in the normal anatomy and physiology of the skin often leads to wound formation. Its healing is a pretty complex and dynamic biological process with different phases. While there are many biopolymers (and their derivatives) for wound healing purposes. One of the most popular, promising, progressive and attention-grabbing biopolymers is 'chitosan'. It is a polysaccharide biopolymer that has tremendous potential in augmenting the process of wound healing. Most importantly, the derivatives of chitosan have heavily attracted the scientific community's attention to employing them in various formulations for wound healing applications. The prime focus of the present review is to provide scientific and technological prospection about chitosan and its derivatives for wound healing activity, starting from 2010 to 2020. Besides, the review also focuses about toxicity, different formulations and products of chitosan that are currently under clinical trials for wound healing purposes are described. Through this review, we present evidence that abundantly confirms that there is a growing interest in the domain of wound healing using novel, inventive, useful and patent protected chitosan derivatives. We speculate the possibility of more patent protected chitosan derivatives in the future for wound healing applications.
Collapse
Affiliation(s)
- Pradeep Shivakumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, India
| | - Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, India
| | - Rangasamy Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, India.
| |
Collapse
|
18
|
Govindaraj P, Subramanian S, Raghavachari D. Preparation of gels of chitosan through a hydrothermal reaction in the presence of malonic acid and cinnamaldehyde: characterization and antibacterial activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj04149e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The preparation of composite gels through the hydrothermal reaction of a mixture of chitosan (CH), malonic acid (MLA), urea (UR) and cinnamaldehyde (CA), all of which are sustainable materials, is reported.
Collapse
Affiliation(s)
- Prabha Govindaraj
- Department of Applied Science & Technology, Alagappa College of Technology, Anna University, Chennai 600 025, India
| | - Sivanesan Subramanian
- Department of Applied Science & Technology, Alagappa College of Technology, Anna University, Chennai 600 025, India
| | | |
Collapse
|
19
|
Shinde C, Venkatesh MP, Pramod Kumar T, Pai DR. Nanostructured lipid carrier-based smart gel: a delivery platform for intra-articular therapeutics. Autoimmunity 2020; 54:35-44. [PMID: 33183072 DOI: 10.1080/08916934.2020.1846184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The promising potential of nano-structured lipid carrier (NLC) polymeric gel of CUR as an effective treatment for rheumatoid arthritis by intra-articular route of administration was investigated. NLC composed of cetylpalmitate, Labrafac PG & Captex 200, Tween 80 and Labrasol. The hot homogenization method employed by melt ultrasonication was used. The formulated NLC dispersions were characterized and were suitably dispersed into the matrix of pluronic F-127(PLF-127) and pluronic F-68 (PLF-68). A two-factor three-level full factorial design was employed to deduce the optimal concentrations of PLF-127 and PLF-68. The optimized formulations were sterilized by gamma radiation. The formulated NLC smart gels were characterized and evaluated for various parameters. The efficacy evaluation by antigen-induced monoarthritis model and biocompatibility testing by histopathological studies was performed. Formulated NLCs exhibited an average particle size of 165.12 nm, entrapment efficiency of 72.15%, and zeta potential of -21.67 mV. The optimized CUR-NLC smart gel was demonstrated to have a sol-gel transformation at 33.21 °C and 94.32% drug release at 84 h. NLC's which were sterile and easily syringeable, continued to remain within the colloidal range. CUR-NLC smart gels were found to be biocompatible and showed a significant reduction in rat knee joint inflammation compared to free drug.
Collapse
Affiliation(s)
- Chetan Shinde
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Madhugiri Prakash Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Tegginmat Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Deeksha Ramananda Pai
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
20
|
β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydr Polym 2020; 248:116811. [DOI: 10.1016/j.carbpol.2020.116811] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
|
21
|
Venkatesh MP, Kumar TP, Pai DR. Targeted drug delivery of Methotrexate in situ gels for the treatment of Rheumatoid Arthritis. Saudi Pharm J 2020; 28:1548-1557. [PMID: 33424248 PMCID: PMC7783075 DOI: 10.1016/j.jsps.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is considered a debilitating disease that increases the risk of significant morbidity and premature mortality. To circumvent drug-related toxicity and ineffectiveness of anti-inflammatory drugs, there is a significant need for an advanced delivery system that increases bioavailability. The feasibility of in situ gel of methotrexate sodium (MTS) as an effective management for Rheumatoid arthritis was investigated. It was formulated with pluronic F-127 (PLF-127) as primary polymer, hydroxypropyl methylcellulose K4M (HK4M), and polycarbophil (PCL) as a copolymer and characterized by various parameters. The efficacy evaluation by Freund's complete adjuvant (FCA) model, biocompatibility assessment by histopathological studies conducted. The optimized in situ gel (M4) was thermoresponsive, released 93.26 ± 2.39% MTS at 96 hours. In addition, distribution of MTS was even in the optimized sterile and syringeable in situ gel. In vivo studies on wistar rats demonstrated a substantial reduction in paw oedema during the 28-day study period and were biocompatible with the tissues at the injection site. The study was successful in formulating, optimizing MTS in situ gel for effective management of RA.
Collapse
Affiliation(s)
- Madhugiri Prakash Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India
| | - Tegginmat Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India
| | - Deeksha Ramananda Pai
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India
| |
Collapse
|
22
|
Fei Liang, Zhao J, Deng C. Construction and Functional Properties of Multifunctional Chitosan Hydrogel. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20050120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Feng Z, Lin S, McDonagh A, Yu C. Natural Hydrogels Applied in Photodynamic Therapy. Curr Med Chem 2020; 27:2681-2703. [PMID: 31622196 DOI: 10.2174/0929867326666191016112828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 01/11/2023]
Abstract
Natural hydrogels are three-dimensional (3D) water-retaining materials with a skeleton consisting of natural polymers, their derivatives or mixtures. Natural hydrogels can provide sustained or controlled drug release and possess some unique properties of natural polymers, such as biodegradability, biocompatibility and some additional functions, such as CD44 targeting of hyaluronic acid. Natural hydrogels can be used with photosensitizers (PSs) in photodynamic therapy (PDT) to increase the range of applications. In the current review, the pertinent design variables are discussed along with a description of the categories of natural hydrogels available for PDT.
Collapse
Affiliation(s)
- Zhipan Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shiying Lin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | | | - Chen Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
24
|
Panchal N, Kaur M, Tharmatt A, Thakur S, Jain SK. Development, Characterization and Evaluation of Parenteral Formulation of Diclofenac Sodium. AAPS PharmSciTech 2020; 21:219. [PMID: 32748022 DOI: 10.1208/s12249-020-01729-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Diclofenac sodium is a potent NSAID, classified under BCS class II category having a poor aqueous solubility. Recently, its injectable formulation got banned and withdrawn from the market due to its severe nephrotoxicity caused by the use of synthetic surfactant, i.e. Transcutol-P as solubilizer. Therefore, the present study was aimed to prepare Transcutol-P free injectable using Vitamin E TPGS as a biosurfactant which is in list of inactive ingredients by US-FDA. Various cost effective aqueous injectable formulations were prepared by mixed solvency method that were characterized and optimized for different in vitro quality control parameters. Further, ex vivo hemolytic study showed the increased safety (23.4 ± 1.6%) of optimized formulation as compared with its commercial counterpart (100 ± 4.2%) at 75 mg/ml. Furthermore, in vivo acute and sub-acute toxicity study demonstrated an increase in LD50 to 123.75 ± 6.2 mg/kg to that of a commercial counterpart (109.96 ± 5.5 mg/kg). In addition, optimized formulation demonstrated better mean residence time and area under curve when compared with commercial test group, respectively. Moreover, optimized formulation was also evaluated for its therapeutic efficacy. The results obtained from acetic acid-induced writhing test in albino mice showed 78 ± 2.1% protection from writhes after 120 min, whereas the commercial formulation had only 48.3 ± 1.9% protection. Additionally, carrageenan-induced rat paw edema model also confirmed the better anti-inflammatory activity of optimized aqueous injectable formulation than its commercial counterpart. Thus, the developed aqueous injectable formulation of diclofenac is free from toxic Transcutol-P with enhanced safety and therapeutic efficacy.
Collapse
|
25
|
Thakur S, Singh H, Singh A, Kaur S, Sharma A, Singh SK, kaur S, Kaur G, Jain SK. Thermosensitive injectable hydrogel containing carboplatin loaded nanoparticles: A dual approach for sustained and localized delivery with improved safety and therapeutic efficacy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110999. [PMID: 32993979 DOI: 10.1016/j.msec.2020.110999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/27/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Organogels prepared with low molecular weight organogelators to structure liquid oils represent excellent matrices for the controlled delivery of a wide variety of drug molecules. Although studies on organogel systems are reported in the literature, relatively few investigate their potential as gels formed in situ intended for drug delivery. This study reports the development of injectable subcutaneous 12- hydroxystearic acid (12-HSA) organogels for the delivery of both lipophilic and hydrophilic drugs. The rheological characterization (flow, dynamic temperature ramp and amplitude oscillatory measurements) and physicochemical properties (syringeability, swelling and degradation studies), as well as permeability and cytotoxicity were analyzed to gain insights into the influence of the gel composition (surfactant addition, organogelator concentration) on the gelation process and organogel properties. Sol-gel phase transition temperature (Tgel) and gel-sol phase transition temperature (Tmelt) were determined by the tube-inverting method and complementary rheology studies. An increase in 12-HSA concentration led to an augmentation in gel strength and storage (G') and loss (G″) moduli values, evidencing the self-assembly of crystalline gelator structure entrapping the oil phase into a three-dimensional (3D) network. The addition of polysorbate 80 (Tween 80, T80) surfactant molecules in the system caused a weaker gel-like structure, with lower flow rate during syringeability assays, despite its lower apparent viscosity compared to those of 12-HSA organogels. In addition, the swelling studies of 12-HSA/12-HSA T80 organogels as a function of time in phosphate buffered saline (PBS) revealed that the erosion rates were modulated by the organogel compositions. The permeability of acyclovir (ACV) and clotrimazole (CTM), hydrophilic and lipophilic model drugs, respectively, loaded in 12-HSA-based organogels, was assessed in Franz diffusion cells. Organogel-loaded drugs presented lower in vitro release rates and ex vivo drug permeabilities compared to the corresponding drug solutions. Furthermore, 12-HSA T80 organogel could slow down the release of ACV by a factor of about 2.6-fold, up to 6 h, compared to CTM-loaded 12-HSA organogels. Finally, the cytotoxicity of 12-HSA-based organogels was evaluated through in vitro cell viability assays in human foreskin fibroblasts (HFF). Increased 12-HSA concentration resulted in higher cytotoxic effect, with a higher test sensitivity observed for the 3D collagen-embedded cell layer setup matrix versus 2-D cell cultures. Our results support the hypothesis that 12-HSA-based organogels are promising systems for controlled drug delivery as in situ-forming implants.
Collapse
|
27
|
Dynamics and Rheological Behavior of Chitosan-Grafted-Polyacrylamide in Aqueous Solution upon Heating. Polymers (Basel) 2020; 12:polym12040916. [PMID: 32326596 PMCID: PMC7240601 DOI: 10.3390/polym12040916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
In this work, the transformation of chitosan-grafted-polyacrylamide (GPAM) aggregates in aqueous solution upon heating was explored by cryo-electron microscope (cryo-TEM) and dynamic light scattering (DLS), and larger aggregates were formed in GPAM aqueous solution upon heating, which were responsible for the thermo-thickening behavior of GPAM aqueous solution during the heating process. The heating initiates a transformation from H-bonding aggregates to a large-sized cluster formed by self-assembled hydrophobic chitosan backbones. The acetic acid (HAc) concentration has a significant effect on the thermo-thickening behavior of GPAM aqueous solution; there is a critical value of the concentration (>0.005 M) for the thermo-thickening of 10 mg/mL GPAM solution. The concentration of HAc will affect the protonation degree of GPAM, and affect the strength of the electrostatic repulsion between GPAM molecular segments, which will have a significant effect on the state of the aggregates in solution. Other factors that have an influence on the thermo-thickening behavior of GPAM aqueous solution upon heating were investigated and discussed in detail, including the heating rate and shear rate.
Collapse
|
28
|
SLN based alendronate in situ gel as an implantable drug delivery system – A full factorial design approach. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Taherian AR, Lacasse P, Bisakowski B, Lanctôt S, Fustier P. A comparative study on the rheological and thermogelling properties of chitosan/polyvinyl alcohol blends in dairy products. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Fujii S. Stimulus-responsive soft dispersed systems developed based on functional polymer particles: bubbles and liquid marbles. Polym J 2019. [DOI: 10.1038/s41428-019-0233-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Gholizadeh H, Cheng S, Pozzoli M, Messerotti E, Traini D, Young P, Kourmatzis A, Ong HX. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Deliv 2019; 16:453-466. [PMID: 30884987 DOI: 10.1080/17425247.2019.1597051] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The in-situ gelation of thermosensitive nasal formulations with desirable spray characteristics at room temperature and ability to undergo a phase change to a semi-solid state with mucoadhesive behavior at physiological temperature has the potential to efficiently deliver therapeutics to brain. However, their application in nasal spray generation with favorable characteristics has not been investigated. METHODS Thermosensitive chitosan (CS)-based formulations with different viscosities were prepared for intranasal delivery of ibuprofen using CS of various molecular weights. The formulation developed was optimized with regards to its physicochemical, rheological, biological properties and the generated aerosol characteristics. RESULTS The formulations showed rapid gelation (4-7 min) at 30-35°C, which lies in the human nasal cavity temperature spectrum. The decrease in CS molecular weight to 110-150 kDa led to generation of optimum spray with lower Dv50, wider spray area, and higher surface area coverage. This formulation also showed improved ibuprofen solubility that is approximately 100× higher than its intrinsic aqueous solubility, accelerated ibuprofen transport across human nasal epithelial cells and transient modulation of tight junctions. CONCLUSIONS A thermosensitive CS-based formulation has been successfully developed with suitable rheological properties, aerosol performance and biological properties that is beneficial for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Hanieh Gholizadeh
- a School of Engineering , Macquarie University , Sydney , Australia.,b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Shaokoon Cheng
- a School of Engineering , Macquarie University , Sydney , Australia
| | - Michele Pozzoli
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Elisa Messerotti
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia.,c Department of Drug Sciences , University of Pavia , Pavia , Italy
| | - Daniela Traini
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Paul Young
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| | - Agisilaos Kourmatzis
- d School of Aerospace, Mechanical and Mechatronic Engineering , The University of Sydney , Sydney , Australia
| | - Hui Xin Ong
- b Respiratory Technology, Woolcock Institute of Medical Research, Discipline of Pharmacology , Faculty of Medicine and Health , Sydney , Australia
| |
Collapse
|
32
|
Graham S, Marina PF, Blencowe A. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydr Polym 2018; 207:143-159. [PMID: 30599994 DOI: 10.1016/j.carbpol.2018.11.053] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/22/2023]
Abstract
Thermoresponsive polymers have been used extensively for various applications including food additives, pharmaceutical formulations, therapeutic delivery, cosmetics and environmental remediation, to mention a few. Many thermoresponsive polymers have the ability to form physical hydrogel networks in response to temperature changes, which are particularly useful for emerging biomedical applications, including cell therapies, drug delivery systems, tissue engineering, wound healing and 3D bioprinting. In particular, the use of polysaccharides with thermoresponsive properties has been of interest due to their wide availability, versatile functionality, biodegradability, and in many cases, inherent biocompatibility. Naturally thermoresponsive polysaccharides include agarose, carrageenans and gellan gum, which exhibit upper critical solution temperatures, transitioning from a solution to a gel state upon cooling. Arguably, this limits their use in biomedical applications, particularly for cell encapsulation as they require raised temperatures to maintain a solution state that may be detrimental to living systems. Conversely, significant progress has been made over recent years to develop synthetically modified polysaccharides, which tend to exhibit lower critical solution temperatures, transitioning from a solution to a gel state upon warming. Of particular interest are thermoresponsive polysaccharides with a lower critical solution temperature in between room temperature and physiological temperature, as their solutions can conveniently be manipulated at room temperature before gelling upon warming to physiological temperature, which makes them ideal candidates for many biological applications. Therefore, this review provides an introduction to the different types of thermoresponsive polysaccharides that have been developed, their resulting hydrogels and properties, and the exciting applications that have emerged as a result of these properties.
Collapse
Affiliation(s)
- Sarah Graham
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Paula Facal Marina
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Anton Blencowe
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
33
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr Polym 2018; 199:445-460. [DOI: 10.1016/j.carbpol.2018.06.114] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
|
34
|
Mhlwatika Z, Aderibigbe BA. Polymeric Nanocarriers for the Delivery of Antimalarials. Molecules 2018; 23:E2527. [PMID: 30279405 PMCID: PMC6222303 DOI: 10.3390/molecules23102527] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/15/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Malaria is an infectious disease caused by a protozoan parasite which is transmitted by female Anopheles mosquitoes around tropical and sub-tropical regions. Half of the world's population is at risk of being infected by malaria. This mainly includes children, pregnant women and people living with chronic diseases. The main factor that has contributed to the spread of this disease is the increase in the number of drug-resistant parasites. To overcome drug resistance, researchers have developed drug delivery systems from biodegradable polymers for the loading of antimalarials. The drug delivery systems were characterized by distinct features such as good biocompatibility, high percentage drug encapsulation, reduced drug toxicity and targeted drug delivery. In this review article, we highlight the various types of drug delivery systems developed from polymeric nanocarriers used for the delivery of antimalarials.
Collapse
Affiliation(s)
- Zandile Mhlwatika
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
35
|
Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov Today 2018; 23:1761-1775. [DOI: 10.1016/j.drudis.2018.05.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
|
36
|
Shangguan Y, Liu M, Jin L, Wang M, Wang Z, Wu Q, Zheng Q. Thermo-thickening behavior and its mechanism in a chitosan-graft-polyacrylamide aqueous solution. SOFT MATTER 2018; 14:6667-6677. [PMID: 30062334 DOI: 10.1039/c8sm00746b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel thermo-thickening behavior of a chitosan-g-polyacrylamide (CS-g-PAM, GPAM) aqueous solution is reported for the first time in this work. The viscosity of GPAM aqueous solutions significantly increases above a critical temperature upon heating, as observed in dynamic and steady rheological experiments. Differing from the widely reported hydrophobic modified CS, GPAM was prepared by grafting hydrophilic polyacrylamide side chains onto the CS backbone, therefore the thermo-thickening behavior of the GPAM aqueous solution could not be explained by the usual thermo-thickening mechanism induced by the additional hydrophobic moiety or LCST segment. The origin of the thermo-thickening in GPAM solutions was explored using transmission electron microscopy (TEM), dynamic light scattering (DLS), and nuclear magnetic resonance (NMR) tests of the GPAM solution. A transformation from a hydrogen bonding (H-bonding) aggregate to a hydrophobic aggregate upon heating was confirmed to be responsible for the thermo-thickening. The heating initiates a transformation of large loose H-bonding aggregates into abundant small compact ones formed by self-assembled hydrophobic chitosan backbones, resulting in aggregate associations and thus flocculated aggregate networks. Some factors of the thermo-thickening were investigated and discussed in detail, including the heating history, concentration, grafting ratio, and length of the PAM side chain. Besides the influence caused by the heating history, this thermo-thickening process is influenced by kinetic factors, including the mobility of the macromolecule chains and the formation of new aggregate networks that are dependent on the number of hydrophobic clusters.
Collapse
Affiliation(s)
- Yonggang Shangguan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Sacco P, Furlani F, De Marzo G, Marsich E, Paoletti S, Donati I. Concepts for Developing Physical Gels of Chitosan and of Chitosan Derivatives. Gels 2018; 4:E67. [PMID: 30674843 PMCID: PMC6209275 DOI: 10.3390/gels4030067] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
Chitosan macro- and micro/nano-gels have gained increasing attention in recent years, especially in the biomedical field, given the well-documented low toxicity, degradability, and non-immunogenicity of this unique biopolymer. In this review we aim at recapitulating the recent gelling concepts for developing chitosan-based physical gels. Specifically, we describe how nowadays it is relatively simple to prepare networks endowed with different sizes and shapes simply by exploiting physical interactions, namely (i) hydrophobic effects and hydrogen bonds-mostly governed by chitosan chemical composition-and (ii) electrostatic interactions, mainly ensured by physical/chemical chitosan features, such as the degree of acetylation and molecular weight, and external parameters, such as pH and ionic strength. Particular emphasis is dedicated to potential applications of this set of materials, especially in tissue engineering and drug delivery sectors. Lastly, we report on chitosan derivatives and their ability to form gels. Additionally, we discuss the recent findings on a lactose-modified chitosan named Chitlac, which has proved to form attractive gels both at the macro- and at the nano-scale.
Collapse
Affiliation(s)
- Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| | - Franco Furlani
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| | - Gaia De Marzo
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34125 Trieste, Italy.
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| |
Collapse
|
38
|
Carboxymethyl konjac glucomannan - crosslinked chitosan sponges for wound dressing. Int J Biol Macromol 2018; 112:1225-1233. [DOI: 10.1016/j.ijbiomac.2018.02.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/31/2018] [Accepted: 02/11/2018] [Indexed: 02/08/2023]
|
39
|
Vanparijs N, Nuhn L, De Geest BG. Transiently thermoresponsive polymers and their applications in biomedicine. Chem Soc Rev 2018; 46:1193-1239. [PMID: 28165097 DOI: 10.1039/c6cs00748a] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The focus of this review is on the class of transiently thermoresponsive polymers. These polymers are thermoresponsive, but gradually lose this property upon chemical transformation - often a hydrolysis reaction - in the polymer side chain or backbone. An overview of the different approaches used for the design of these polymers along with their physicochemical properties is given. Their amphiphilic properties and degradability into fully soluble compounds make this class of responsive polymers attractive for drug delivery and tissue engineering applications. Examples of these are also provided in this review.
Collapse
Affiliation(s)
- Nane Vanparijs
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
40
|
Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int J Pharm 2018; 541:224-233. [DOI: 10.1016/j.ijpharm.2018.02.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
41
|
Skwarczynska A, Kaminska M, Owczarz P, Bartoszek N, Walkowiak B, Modrzejewska Z. The structural (FTIR, XRD, and XPS) and biological studies of thermosensitive chitosan chloride gels with β-glycerophosphate disodium. J Appl Polym Sci 2018. [DOI: 10.1002/app.46459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Agata Skwarczynska
- Department of Civil, Environmental Engineering and Architecture; Rzeszow University of Technology, Powstancow Warszawy 6; Rzeszow 35-959 Poland
| | - Marta Kaminska
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15; Lodz 90-924 Poland
| | - Piotr Owczarz
- Faculty of Process and Environmental Engineering; Lodz University of Technology, Wolczanska 175; Lodz 90-924 Poland
| | - Nina Bartoszek
- BioNanoPark Laboratories of Lodz Regional Park of Science and Technology, Dubois 144; Lodz 93-465 Poland
| | - Bogdan Walkowiak
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15; Lodz 90-924 Poland
- BioNanoPark Laboratories of Lodz Regional Park of Science and Technology, Dubois 144; Lodz 93-465 Poland
| | | |
Collapse
|
42
|
Raza F, Zafar H, Zhu Y, Ren Y, -Ullah A, Khan AU, He X, Han H, Aquib M, Boakye-Yiadom KO, Ge L. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers. Pharmaceutics 2018; 10:E16. [PMID: 29346275 PMCID: PMC5874829 DOI: 10.3390/pharmaceutics10010016] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today's world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, "release mechanisms" their physical and chemical characteristics and diverse applications.
Collapse
Affiliation(s)
- Faisal Raza
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing210009, China.
| | - Hajra Zafar
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad45320, Pakistan.
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing210009, China.
| | - Yuan Ren
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing210009, China.
| | - Aftab -Ullah
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing210009, China.
| | - Asif Ullah Khan
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing210009, China.
| | - Xinyi He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing210009, China.
| | - Han Han
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing210009, China.
| | - Md Aquib
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing210009, China.
| | | | - Liang Ge
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing210009, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
43
|
Nafee N, Zewail M, Boraie N. Alendronate-loaded, biodegradable smart hydrogel: a promising injectable depot formulation for osteoporosis. J Drug Target 2017; 26:563-575. [DOI: 10.1080/1061186x.2017.1390670] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
44
|
Kolawole OM, Lau WM, Mostafid H, Khutoryanskiy VV. Advances in intravesical drug delivery systems to treat bladder cancer. Int J Pharm 2017; 532:105-117. [DOI: 10.1016/j.ijpharm.2017.08.120] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
|
45
|
Porcu EP, Salis A, Rassu G, Maestri M, Galafassi J, Bruni G, Giunchedi P, Gavini E. Engineered polymeric microspheres obtained by multi-step method as potential systems for transarterial embolization and intraoperative imaging of HCC: Preliminary evaluation. Eur J Pharm Biopharm 2017; 117:160-167. [DOI: 10.1016/j.ejpb.2017.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
|
46
|
Chitosan- g -poly( N -isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration. Eur J Pharm Biopharm 2017; 113:140-148. [DOI: 10.1016/j.ejpb.2016.11.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/27/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022]
|
47
|
Ramos OL, Pereira RN, Martins A, Rodrigues R, Fuciños C, Teixeira JA, Pastrana L, Malcata FX, Vicente AA. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Crit Rev Food Sci Nutr 2017; 57:1377-1393. [PMID: 26065435 DOI: 10.1080/10408398.2014.993749] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Whey proteins are widely used as nutritional and functional ingredients in formulated foods because they are relatively inexpensive, generally recognized as safe (GRAS) ingredient, and possess important biological, physical, and chemical functionalities. Denaturation and aggregation behavior of these proteins is of particular relevance toward manufacture of novel nanostructures with a number of potential uses. When these processes are properly engineered and controlled, whey proteins may be formed into nanohydrogels, nanofibrils, or nanotubes and be used as carrier of bioactive compounds. This review intends to discuss the latest understandings of nanoscale phenomena of whey protein denaturation and aggregation that may contribute for the design of protein nanostructures. Whey protein aggregation and gelation pathways under different processing and environmental conditions such as microwave heating, high voltage, and moderate electrical fields, high pressure, temperature, pH, and ionic strength were critically assessed. Moreover, several potential applications of nanohydrogels, nanofibrils, and nanotubes for controlled release of nutraceutical compounds (e.g. probiotics, vitamins, antioxidants, and peptides) were also included. Controlling the size of protein networks at nanoscale through application of different processing and environmental conditions can open perspectives for development of nanostructures with new or improved functionalities for incorporation and release of nutraceuticals in food matrices.
Collapse
Affiliation(s)
- Oscar L Ramos
- a CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal.,b LEPABE-Laboratory of Engineering of Processes, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias , Porto , Portugal
| | - Ricardo N Pereira
- a CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Artur Martins
- a CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Rui Rodrigues
- a CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Clara Fuciños
- a CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal.,c Biotechnology Group , Department of Analytical Chemistry and Food Science , University of Vigo , Ourense , Spain
| | - José A Teixeira
- a CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal
| | - Lorenzo Pastrana
- c Biotechnology Group , Department of Analytical Chemistry and Food Science , University of Vigo , Ourense , Spain
| | - F Xavier Malcata
- b LEPABE-Laboratory of Engineering of Processes, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias , Porto , Portugal.,d Department of Chemical Engineering , Rua Dr. Roberto Frias , Porto , Portugal
| | - António A Vicente
- a CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal
| |
Collapse
|
48
|
|
49
|
Zardad AZ, Choonara YE, Du Toit LC, Kumar P, Mabrouk M, Kondiah PPD, Pillay V. A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents. Polymers (Basel) 2016; 8:E359. [PMID: 30974645 PMCID: PMC6431863 DOI: 10.3390/polym8100359] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022] Open
Abstract
There has been an exponential increase in research into the development of thermal- and ultrasound-activated delivery systems for cancer therapy. The majority of researchers employ polymer technology that responds to environmental stimuli some of which are physiologically induced such as temperature, pH, as well as electrical impulses, which are considered as internal stimuli. External stimuli include ultrasound, light, laser, and magnetic induction. Biodegradable polymers may possess thermoresponsive and/or ultrasound-responsive properties that can complement cancer therapy through sonoporation and hyperthermia by means of High Intensity Focused Ultrasound (HIFU). Thermoresponsive and other stimuli-responsive polymers employed in drug delivery systems can be activated via ultrasound stimulation. Polyethylene oxide/polypropylene oxide co-block or triblock polymers and polymethacrylates are thermal- and pH-responsive polymer groups, respectively but both have proven to have successful activity and contribution in chemotherapy when exposed to ultrasound stimulation. This review focused on collating thermal- and ultrasound-responsive delivery systems, and combined thermo-ultrasonic responsive systems; and elaborating on the advantages, as well as shortcomings, of these systems in cancer chemotherapy. The mechanisms of these systems are explicated through their physical alteration when exposed to the corresponding stimuli. The properties they possess and the modifications that enhance the mechanism of chemotherapeutic drug delivery from systems are discussed, and the concept of pseudo-ultrasound responsive systems is introduced.
Collapse
Affiliation(s)
- Az-Zamakhshariy Zardad
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa Claire Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials, National Research Centre, 33 El-Bohouth St. (former El-Tahrir St.), Dokki, Giza P.O. 12622, Egypt.
| | - Pierre Pavan Demarco Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
50
|
Poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) Thermo-Responsive Microgels as Self-Regulated Drug Delivery System. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|