1
|
Cristofoli M, Kung CP, Hadgraft J, Lane ME, Sil BC. Ion Pairs for Transdermal and Dermal Drug Delivery: A Review. Pharmaceutics 2021; 13:909. [PMID: 34202939 PMCID: PMC8234378 DOI: 10.3390/pharmaceutics13060909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Ion pairing is a strategy used to increase the permeation of topically applied ionised drugs. Formation occurs when the electrostatic energy of attraction between oppositely charged ions exceeds their mean thermal energy, making it possible for them to draw together and attain a critical distance. These ions then behave as a neutral species, allowing them to partition more readily into a lipid environment. Partition coefficient studies may be used to determine the potential of ions to pair and partition into an organic phase but cannot be relied upon to predict flux. Early researchers indicated that temperature, size of ions and dielectric constant of the solvent system all contributed to the formation of ion pairs. While size is important, this may be outweighed by improved lipophilicity of the counter ion due to increased length of the carbon chain. Organic counter ions are more effective than inorganic moieties in forming ion pairs. In addition to being used to increase permeation, ion pairs have been used to control and even prevent permeation of the active ingredient. They have also been used to stabilise solid lipid nanoparticle formulations. Ion pairs have been used in conjunction with permeation enhancers, and permeation enhancers have been used as counter ions in ion pairing. This review attempts to show the various ways in which ion pairs have been used in drug delivery via the skin. It also endeavours to extract and consolidate common approaches in order to inform future formulations for topical and transdermal delivery.
Collapse
Affiliation(s)
- Mignon Cristofoli
- School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK;
| | - Chin-Ping Kung
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (J.H.); (M.E.L.)
| | - Jonathan Hadgraft
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (J.H.); (M.E.L.)
| | - Majella E. Lane
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.-P.K.); (J.H.); (M.E.L.)
| | - Bruno C. Sil
- School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK;
| |
Collapse
|
2
|
Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv 2020; 17:145-155. [PMID: 31910342 DOI: 10.1080/17425247.2020.1713087] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Transdermal drug delivery has several clinical benefits over conventional routes of drug administration. To open the transdermal route for a wider range of drugs, including macromolecules, numerous physical and chemical techniques to overcome the natural low skin permeability have been developed.Areas covered: This review focuses on permeation enhancers (penetration enhancers, percutaneous absorption promoters or accelerants), which are chemicals that increase drug flux through the skin barrier. First, skin components, drug permeation pathways, and drug properties are introduced. Next, we discuss properties of enhancers, their various classifications, structure-activity relationships, mechanisms of action, reversibility and toxicity, biodegradable enhancers, and synergistic enhancer combinations.Expert opinion: Overcoming the remarkable skin barrier properties in an efficient, temporary and safe manner remains a challenge. High permeation-enhancing potency has long been perceived to be associated with toxicity and irritation potential of such compounds, which has limited their further development. In addition, the complexity of enhancer interactions with skin, formulation and drug, along with their vast chemical diversity hampered understanding of their mechanisms of action. The recent development in the field revealed highly potent yet safe enhancers or enhancer combinations, which suggest that enhancer-aided transdermal drug delivery has yet to reach its full potential.
Collapse
Affiliation(s)
- Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Monika Kopečná
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Kopečná M, Macháček M, Nováčková A, Paraskevopoulos G, Roh J, Vávrová K. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Sci Rep 2019; 9:14617. [PMID: 31601936 PMCID: PMC6787078 DOI: 10.1038/s41598-019-51226-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/26/2019] [Indexed: 12/02/2022] Open
Abstract
Skin penetration/permeation enhancers are compounds that improve (trans)dermal drug delivery. We designed hybrid terpene-amino acid enhancers by conjugating natural terpenes (citronellol, geraniol, nerol, farnesol, linalool, perillyl alcohol, menthol, borneol, carveol) or cinnamyl alcohol with 6-(dimethylamino)hexanoic acid through a biodegradable ester linker. The compounds were screened for their ability to increase the delivery of theophylline and hydrocortisone through and into human skin ex vivo. The citronellyl, bornyl and cinnamyl esters showed exceptional permeation-enhancing properties (enhancement ratios up to 82) while having low cellular toxicities. The barrier function of enhancer-treated skin (assessed by transepidermal water loss and electrical impedance) recovered within 24 h. Infrared spectroscopy suggested that these esters fluidized the stratum corneum lipids. Furthermore, the citronellyl ester increased the epidermal concentration of topically applied cidofovir, which is a potent antiviral and anticancer drug, by 15-fold. In conclusion, citronellyl 6-(dimethylamino)hexanoate is an outstanding enhancer with an advantageous combination of properties, which may improve the delivery of drugs that have a limited ability to cross biological barriers.
Collapse
Affiliation(s)
- Monika Kopečná
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Miloslav Macháček
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Anna Nováčková
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Georgios Paraskevopoulos
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Department of Organic and Bioorganic Chemistry, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Kopečná M, Kováčik A, Kučera O, Macháček M, Sochorová M, Audrlická P, Vávrová K. Fluorescent Penetration Enhancers Reveal Complex Interactions among the Enhancer, Drug, Solvent, and Skin. Mol Pharm 2019; 16:886-897. [DOI: 10.1021/acs.molpharmaceut.8b01196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
|
6
|
Stratum corneum modulation by chemical enhancers and lipid nanostructures: implications for transdermal drug delivery. Ther Deliv 2017; 8:701-718. [DOI: 10.4155/tde-2017-0045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Skin is the outermost and largest protective covering of the body. The uppermost layer of the skin, stratum corneum also called the horny layer is composed of keratin-filled cells covered by a lipid matrix which shields the skin from physical and chemical entrants. The lipid lamellar structure comprises of ceramides, cholesterol, fatty acids and proteins. Chemical enhancers that mimic the lamellar chemistry, reversibly fluidize the latter can be utilized for enhancing transport of cargo across the epidermis into the dermis. This review deals with the stratum corneum chemistry, mechanisms to modulate its packing with the aid of chemical enhancers, biophysical techniques for characterization and applications in the design of nature-inspired biocompatible lipid nanostructures for transdermal delivery of drugs and bioactive agents.
Collapse
|
7
|
Oliveira MS, Goulart GCA, Ferreira LAM, Carneiro G. Hydrophobic ion pairing as a strategy to improve drug encapsulation into lipid nanocarriers for the cancer treatment. Expert Opin Drug Deliv 2016; 14:983-995. [DOI: 10.1080/17425247.2017.1266329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mariana Silva Oliveira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele Castro Assis Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| |
Collapse
|
8
|
Abstract
To achieve an efficient skin penetration of most compounds it is necessary to overcome the barrier function of the skin, provided mainly (but not only) by the stratum corneum. Among various strategies used or studied to date, chemical penetration enhancers are the most frequently employed with one of the longest histories of use. There is a multitude of agents described as penetration enhancers, and they present varying properties and structures. In this manuscript, we aim to provide a brief overview of traditional enhancers and some of their properties, focusing on the benefits of combination of chemical enhancers and on selected novel compounds that have shown promise to increase drug delivery into/across the skin.
Collapse
|
9
|
|
10
|
Diblíková D, Kopečná M, Školová B, Krečmerová M, Roh J, Hrabálek A, Vávrová K. Transdermal Delivery and Cutaneous Targeting of Antivirals using a Penetration Enhancer and Lysolipid Prodrugs. Pharm Res 2013; 31:1071-81. [DOI: 10.1007/s11095-013-1228-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
|
11
|
Amino acid derivatives as transdermal permeation enhancers. J Control Release 2013; 165:91-100. [DOI: 10.1016/j.jconrel.2012.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/28/2012] [Accepted: 11/03/2012] [Indexed: 01/31/2023]
|
12
|
Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 2012; 164:26-40. [DOI: 10.1016/j.jconrel.2012.09.017] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/11/2023]
|
13
|
A biomimetic chitosan derivates: preparation, characterization and transdermal enhancement studies of N-arginine chitosan. Molecules 2011; 16:6778-90. [PMID: 21829153 PMCID: PMC6264446 DOI: 10.3390/molecules16086778] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 11/17/2022] Open
Abstract
A novel arginine-rich chitosan (CS) derivates mimicked cell penetration peptides; N-Arginine chitosan (N-Arg-CS) was prepared by two reaction methods involving activated L-arginine and the amine group on the chitosan. FTIR spectra showed that arginine was chemically coupled with CS. Elemental analysis estimated that the degrees of substitution (DS) of arginine in CS were 6%, 31.3% and 61.5%, respectively. The drug adefovir was chosen as model and its permeation flux across excised mice skin was investigated using a Franz diffusion cell. The results showed that the most effective enhancer was 2% (w/v) concentration of 10 kDa N-Arg-CS with 6% DS. At neutral pH, the cumulative amount of adefovir permeated after 12 hours was 2.63 ± 0.19 mg cm−2 which was 5.83-fold more than adefovir aqueous solution. Meanwhile N-Arg-CS was 1.83, 2.22, and 2.45 times more effective than Azone, eucalyptus and peppermint, respectively. The obtained results suggest that N-Arg-CS could be a promising transdermal enhancer.
Collapse
|
14
|
Vávrová K, Kovaříková P, Školová B, Líbalová M, Roh J, Čáp R, Holý A, Hrabálek A. Enhanced Topical and Transdermal Delivery of Antineoplastic and Antiviral Acyclic Nucleoside Phosphonate cPr-PMEDAP. Pharm Res 2011; 28:3105-15. [DOI: 10.1007/s11095-011-0508-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/01/2011] [Indexed: 11/27/2022]
|
15
|
Esters and amides of hexanoic acid substituted with tertiary amino group in terminal position and their activity as transdermal permeation enhancers. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2010. [DOI: 10.2298/jsc090527034f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Series of alkyl esters of 6-diethylamino-, 6-(pyrrolidin-1-yl)-, 6- (piperidin-1-yl) and 6-(morpholin-1-yl)hexanoic acids and alkylamides of 6-dimethylamino-, 6-(piperidin-1-yl) and 6-(morpholin-1-yl)hexanoic acids, containing 8-12 carbon atoms in the alkyl chain, were prepared by methods of classical organic synthesis. The appropriate secondary amine was alkylated with ethyl-6-bromohexanoate to give ester of ?-substituted hexanoic acid, except of ethyl-6-dimethylaminohexanoate (1), which was prepared by Eschweiler-Clarke methylation of 6-aminohexanoic acid followed by direct esterification with ethanol. The resulted esters of ?-substituted hexanoic acids underwent direct transesterification with long chain alkanols to yield the desired amino esters, or they were treated with long-chain alkylamines to prepare secondary amides of the appropriate heterocyclic hexanoic acids. These products were in vitro tested on their activity as transdermal permeation enhancers on the strips of the excised human skin with theophylline as the model permeant. The activity was evaluated using parameter enhancement ratio (ER), defined as the ratio between the overall amount of the permeant passing through the skin with the tested enhancer and that without tested substance. Decyl 6-(pyrrolidin- 1-yl)hexanoate (16) with ER = 30 showed the highest activity. The enhancing effects of the esters were generally better than those of the amides.
Collapse
|
16
|
Sapra B, Jain S, Tiwary AK. Transdermal delivery of carvedilol in rats: probing the percutaneous permeation enhancement mechanism of soybean extract-chitosan mixture. Drug Dev Ind Pharm 2009; 35:1230-41. [PMID: 19555244 DOI: 10.1080/03639040902882272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND This study was designed for investigating the effect of soybean (SS) extract and chitosan (CTN) in facilitating the permeation of carvedilol (CDL) across rat epidermis. METHOD Transdermal flux of carvedilol through heat-separated rat epidermis was investigated in vitro using vertical Keshary-Chien diffusion cells. Biophysical and microscopic manifestations of epidermis treated with SS-extract, CTN, and SS extract-CTN mixture were investigated by using DSC, TEWL, SEM, and TEM. Biochemical estimations of cholesterol, sphingosine, and triglycerides were carried out for treated excised as well as viable rat epidermis. The antihypertensive activity of the patches in comparison to that after oral administration of carvedilol was studied in deoxycorticosterone acetate-induced hypertensive rats. RESULTS The solubility of CDL was found to be maximum in the presence of 1% (w/v) SS extract. The K(IPM/PB) of CDL decreased with increase in concentration of SS extract. The in vitro permeation of CDL across rat epidermis increased and was maximum with combination of SS extract and chitosan (CTN). Biochemical and microscopic studies revealed the initiation of reversal of barrier integrity after 12 hours. Furthermore, the application of patches containing SS extract-CTN mixture resulted in sustained release of carvedilol, which was able to control the hypertension in deoxycorticosterone acetate (DOCA) induced hypertensive rats through 24 hours. CTN was found to potentiate the permeation enhancing activity of SS extract. CONCLUSION The developed transdermal patches of CDL containing SS extract-CTN mixture exhibited better performance as compared to oral administration in controlling hypertension in rats.
Collapse
Affiliation(s)
- Bharti Sapra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | | | | |
Collapse
|
17
|
Novotný J, Kovaříková P, Novotný M, Janůšová B, Hrabálek A, Vávrová K. Dimethylamino Acid Esters as Biodegradable and Reversible Transdermal Permeation Enhancers: Effects of Linking Chain Length, Chirality and Polyfluorination. Pharm Res 2008; 26:811-21. [DOI: 10.1007/s11095-008-9780-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
|