1
|
Beheshtizadeh N, Gharibshahian M, Bayati M, Maleki R, Strachan H, Doughty S, Tayebi L. Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomed Pharmacother 2023; 166:115301. [PMID: 37562236 DOI: 10.1016/j.biopha.2023.115301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
The utilization of growth factors in the process of tissue regeneration has garnered significant interest and has been the subject of extensive research. However, despite the fervent efforts invested in recent clinical trials, a considerable number of these studies have produced outcomes that are deemed unsatisfactory. It is noteworthy that the trials that have yielded the most satisfactory outcomes have exhibited a shared characteristic, namely, the existence of a mechanism for the regulated administration of growth factors. Despite the extensive exploration of drug delivery vehicles and their efficacy in delivering certain growth factors, the development of a reliable predictive approach for the delivery of delicate growth factors like Vascular Endothelial Growth Factor (VEGF) remains elusive. VEGF plays a crucial role in promoting angiogenesis; however, the administration of VEGF demands a meticulous approach as it necessitates precise localization and transportation to a specific target tissue. This process requires prolonged and sustained exposure to a low concentration of VEGF. Inaccurate administration of drugs, either through off-target effects or inadequate delivery, may heighten the risk of adverse reactions and potentially result in tumorigenesis. At present, there is a scarcity of technologies available for the accurate encapsulation of VEGF and its subsequent sustained and controlled release. The objective of this review is to present and assess diverse categories of VEGF administration mechanisms. This paper examines various systems, including polymeric, liposomal, hydrogel, inorganic, polyplexes, and microfluidic, and evaluates the appropriate dosage of VEGF for multiple applications.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Bayati
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran.
| | - Hannah Strachan
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
2
|
Wang Y, Li H, Zhao C, Zi Q, He F, Wang W. VEGF-modified PLA/HA nanocomposite fibrous membrane for cranial defect repair in rats. J Biomater Appl 2023; 38:455-467. [PMID: 37610341 DOI: 10.1177/08853282231198157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A major obstacle to bone tissue repair is the difficulty in establishing a rapid blood supply areas of bone defects. Vascular endothelial growth factor (VEGF)-infused tissue-engineered scaffolds offer a possible therapeutic option for these types of injuries. Their role is to accelerate angiogenesis and improve bone healing. In this study, we used electrostatic spinning and biofactor binding to construct polylactic acid (PLA)/hydroxyapatite (HA)-VEGF scaffold materials and clarify their pro-vascular role in bone defect areas for efficient bone defect repair. PLA/HA nanocomposite fibrous membranes were manufactured by selecting suitable electrostatic spinning parameters. Heparin and VEGF were bound sequentially, and then the VEGF binding and release curves of the fiber membranes were calculated. A rat cranial defect model was constructed, and PLA/HA fiber membranes bound with VEGF and unbound with VEGF were placed for treatment. Finally, we compared bone volume recovery and vascular recovery in different fibrous membrane sites. A VEGF concentration of 2.5 µg/mL achieved the maximum binding and uniform distribution of PLA/HA fibrous membranes. Extended-release experiments showed that VEGF release essentially peaked at 14 days. In vivo studies showed that PLA/HA fibrous membranes bound with VEGF significantly increased the number of vessels at the site of cranial defects, bone mineral density, bone mineral content, bone bulk density, trabecular separation, trabecular thickness, and the number of trabeculae at the site of defects in rats compared with PLA/HA fibrous membranes not bound with VEGF. VEGF-bound PLA/HA fibrous membranes demonstrate the slow release of VEGF. The VEGF binding process does not disrupt the morphology and structure of the fibrous membranes. The fibrous membranes could stimulate both osteogenesis and angiogenesis. Taken together, this research provides a new strategy for critical-sized bone defects repairing.
Collapse
Affiliation(s)
- Yanghao Wang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haohan Li
- Kunming Medical University, Kunming, Yunnan, China
| | - Cuicui Zhao
- Kunming Medical University, Kunming, Yunnan, China
| | - Qihan Zi
- Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Weizhou Wang
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
4
|
Salas A, García-García P, Díaz-Rodríguez P, Évora C, Almeida TA, Delgado A. New local ganirelix sustained release therapy for uterine leiomyoma. Evaluation in a preclinical organ model. Biomed Pharmacother 2022; 156:113909. [DOI: 10.1016/j.biopha.2022.113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022] Open
|
5
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
6
|
Kerimoğlu O, Özer-Önder S, Alarçin E, Karsli S. Formulation and evaluation of the vascular endothelial growth factor loaded polycaprolactone nanoparticles. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Faga MG, Duraccio D, Di Maro M, Kowandy C, Malucelli G, Mussano FD, Genova T, Coqueret X. Electron-Beam-Induced Grafting of Chitosan onto HDPE/ATZ Composites for Biomedical Applications. Polymers (Basel) 2021; 13:4016. [PMID: 34833321 PMCID: PMC8623127 DOI: 10.3390/polym13224016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
The surface functionalisation of high-density polyethylene (HDPE) and HDPE/alumina-toughened zirconia (ATZ) surfaces with chitosan via electron-beam (EB) irradiation technique was exploited for preparing materials suitable for biomedical purposes. ATR-FTIR analysis and wettability measurements were employed for monitoring the surface changes after both irradiation and chitosan grafting reaction. Interestingly, the presence of ATZ loadings beyond 2 wt% influenced both the EB irradiation process and the chitosan functionalisation reaction, decreasing the oxidation of the surface and the chitosan grafting. The EB irradiation induced an increase in Young's modulus and a decrease in the elongation at the break of all analysed systems, whereas the tensile strength was not affected in a relevant way. Biological assays indicated that electrostatic interactions between the negative charges of the surface of cell membranes and the -NH3+ sites on chitosan chains promoted cell adhesion, while some oxidised species produced during the irradiation process are thought to cause a detrimental effect on the cell viability.
Collapse
Affiliation(s)
- Maria Giulia Faga
- Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)-UOS di Torino, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino, Italy;
| | - Donatella Duraccio
- Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)-UOS di Torino, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino, Italy;
| | - Mattia Di Maro
- Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)-UOS di Torino, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino, Italy;
| | - Christelle Kowandy
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, CEDEX 2, 51687 Reims, France; (C.K.); (X.C.)
| | - Giulio Malucelli
- Politecnico di Torino-Dipartimento di Scienza Applicata e Tecnologia, and Local INSTM Unit, Viale Teresa Michel 5, 15121 Alessandria, Italy;
| | - Federico Davide Mussano
- Dipartimento di Scienze Chirurgiche CIR Dental School, Università di Torino, via Nizza 230, 10126 Torino, Italy;
| | - Tullio Genova
- Dipartimento Scienze della Vita e Biologia dei Sistemi, Università di Torino, via Accademia Albertina 13, 10123 Torino, Italy;
| | - Xavier Coqueret
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, CEDEX 2, 51687 Reims, France; (C.K.); (X.C.)
| |
Collapse
|
8
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
9
|
The Bone Regeneration Capacity of BMP-2 + MMP-10 Loaded Scaffolds Depends on the Tissue Status. Pharmaceutics 2021; 13:pharmaceutics13070979. [PMID: 34209593 PMCID: PMC8308972 DOI: 10.3390/pharmaceutics13070979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022] Open
Abstract
Biomaterials-mediated bone formation in osteoporosis (OP) is challenging as it requires tissue growth promotion and adequate mineralization. Based on our previous findings, the development of scaffolds combining bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 10 (MMP-10) shows promise for OP management. To test our hypothesis, scaffolds containing BMP-2 + MMP-10 at variable ratios or BMP-2 + Alendronate (ALD) were prepared. Systems were characterized and tested in vitro on healthy and OP mesenchymal stem cells and in vivo bone formation was studied on healthy and OP animals. Therapeutic molecules were efficiently encapsulated into PLGA microspheres and embedded into chitosan foams. The use of PLGA (poly(lactic-co-glycolic acid)) microspheres as therapeutic molecule reservoirs allowed them to achieve an in vitro and in vivo controlled release. A beneficial effect on the alkaline phosphatase activity of non-OP cells was observed for both combinations when compared with BMP-2 alone. This effect was not detected on OP cells where all treatments promoted a similar increase in ALP activity compared with control. The in vivo results indicated a positive effect of the BMP-2 + MMP-10 combination at both of the doses tested on tissue repair for OP mice while it had the opposite effect on non-OP animals. This fact can be explained by the scaffold’s slow-release rate and degradation that could be beneficial for delayed bone regeneration conditions but had the reverse effect on healthy animals. Therefore, the development of adequate scaffolds for bone regeneration requires consideration of the tissue catabolic/anabolic balance to obtain biomaterials with degradation/release behaviors suited for the existing tissue status.
Collapse
|
10
|
Duan W, Jin Y, Cui Y, Xi F, Liu X, Wo F, Wu J. A co-delivery platform for synergistic promotion of angiogenesis based on biodegradable, therapeutic and self-reporting luminescent porous silicon microparticles. Biomaterials 2021; 272:120772. [PMID: 33838529 DOI: 10.1016/j.biomaterials.2021.120772] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
Insufficient angiogenesis happened in body defects such as ulceration, coronary heart disease, and chronic wounds constitutes a major challenge in tissue regeneration engineering. Owing to the poor bioactivity and maintenance of pro-angiogenic cells and factors during transplantation, new bioactive materials to tackle the barrier are highly desirable. Herein, we demonstrate a co-delivery platform for synergistic promotion of angiogenesis based on biodegradable, therapeutic, and self-reporting luminescent porous silicon (PSi) microparticles. The biodegradable and biocompatible PSi microparticles could quickly release therapeutic Si ions, which is bioactive to promote cell migration, tube formation, and angiogenic gene expression in vitro. To construct a highly efficient angiogenesis treatment platform, vascular endothelial growth factor (VEGF) was electrostatically adsorbed by PSi microparticles for effective drug loading and delivery. The dual therapeutic components (Si ions and VEGF) could release with the dissolution of Si skeleton, accompanying by the decay of photoluminescence (PL) intensity and blue shift of the maximum PL wavelength. Therefore, real-time drug release could be self-reported and assessed with the two-dimensional PL signal. The co-delivery of Si ions and VEGF displayed synergistic effect and highly efficient angiogenesis, which was evidenced by the enhancement of endothelial cell migration and tube formation in vitro with approximately 1.5-5 times higher than control. The blood vessel formation in vivo was also significantly improved as shown by the chick chorioallantoic membrane (CAM) model, in which the total length, size and junctions exhibited 2.1 ± 0.4, 4 ± 0.4, and 3.9 ± 0.3 times in comparison to control, respectively. The PSi and VEGF co-delivery system display great potential in tissue engineering as a biodegradable and self-reporting theranostic platform to promote angiogenesis.
Collapse
Affiliation(s)
- Wei Duan
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yao Jin
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yaoxuan Cui
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Fengna Xi
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingyue Liu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Fangjie Wo
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jianmin Wu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Impacts of chitosan oligosaccharide (COS) on angiogenic activities. Microvasc Res 2020; 134:104114. [PMID: 33232706 DOI: 10.1016/j.mvr.2020.104114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/10/2023]
Abstract
It has been proved that chitosan oligosaccharide (COS) has a more favorable therapeutic applications such as wound healing and anti-tumor treatment, and can affect angiogenesis. For better understanding the effect of COS on angiogenic activities at cellular level, COS with different concentration and degree of polymerization (DP) were used to culture human umbilical vein endothelial cells (HUVECs) in this work. Cell proliferation activity, cell morphology, cell migration and angiogenesis associated factor expression of HUVECs were evaluated. The results indicated that COS at a high concentration of 400 μg/mL (COS(400)) and DP of 6 (Chitinhexaose Hydrochloride, COS6) had inhibitory effect on angiogenic activities of HUVECs. Specifically, COS(400) and COS6 inhibited cell proliferation activity, cell migration, and vascular endothelial cell growth factor (VEGF) expression of HUVECs. While COS at a low concentration (<400 μg/mL) and suitable polymerization degrees (DP < 6) had little significant effect on cell proliferation, migration, and VEGF expression of HUVECs, showing dose-dependent effect. These findings provided insight for the potential use of COS, for broadening its future applications in biomedical fields and functional materials area. It also helped guide the design and synthesis of chitosan-based materials as an angiogenesis inhibitor for anti-angiogenic therapy.
Collapse
|
12
|
de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4995. [PMID: 33171898 PMCID: PMC7664280 DOI: 10.3390/ma13214995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties- biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed. Consequently, this polysaccharide is used in various fields, such as tissue engineering, drug delivery systems, and cancer treatment. In this sense, this review aims to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications. We present the most relevant and new information about this polysaccharide-based biomaterial's applications in distinct fields and also the ability of chitosan and its various derivatives to selectively permeate through the cancer cell membranes and exhibit anticancer activity, and the possibility of adding several therapeutic metal ions as a strategy to improve the therapeutic potential of this polymer.
Collapse
Affiliation(s)
- Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Adillys Marcelo da Cunha Santos
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of Recôncavo da Bahia (UFRB), Feira de Santana 44042-280, Brazil;
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| |
Collapse
|
13
|
Palomino-Durand C, Lopez M, Marchandise P, Martel B, Blanchemain N, Chai F. Chitosan/Polycyclodextrin (CHT/PCD)-Based Sponges Delivering VEGF to Enhance Angiogenesis for Bone Regeneration. Pharmaceutics 2020; 12:pharmaceutics12090784. [PMID: 32825081 PMCID: PMC7557476 DOI: 10.3390/pharmaceutics12090784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Vascularization is one of the main challenges in bone tissue engineering (BTE). In this study, vascular endothelial growth factor (VEGF), known for its angiogenic effect, was delivered by our developed sponge, derived from a polyelectrolyte complexes hydrogel between chitosan (CHT) and anionic cyclodextrin polymer (PCD). This sponge, as a scaffold for growth factor delivery, was formed by freeze-drying a homogeneous CHT/PCD hydrogel, and thereafter stabilized by a thermal treatment. Microstructure, water-uptake, biodegradation, mechanical properties, and cytocompatibility of sponges were assessed. VEGF-delivery following incubation in medium was then evaluated by monitoring the VEGF-release profile and its bioactivity. CHT/PCD sponge showed a porous (open porosity of 87.5%) interconnected microstructure with pores of different sizes (an average pore size of 153 μm), a slow biodegradation (12% till 21 days), a high water-uptake capacity (~600% in 2 h), an elastic property under compression (elastic modulus of compression 256 ± 4 kPa), and a good cytocompatibility in contact with osteoblast and endothelial cells. The kinetic release of VEGF was found to exert a pro-proliferation and a pro-migration effect on endothelial cells, which are two important processes during scaffold vascularization. Hence, CHT/PCD sponges were promising vehicles for the delivery of growth factors in BTE.
Collapse
Affiliation(s)
- Carla Palomino-Durand
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Marco Lopez
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Pierre Marchandise
- ULR 4490–MABLab–Adiposité Médullaire et Os, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France;
- ULR 4490–MABLab–Adiposité Médullaire et Os, Univ. Littoral Côte d’Opale, 62200 Boulogne-sur-Mer, France
| | - Bernard Martel
- UMR 8207, UMET—Unité Matériaux et Transformations, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Supérieure de Chimie de Lille (ENSCL), University of Lille, 59655 Lille, France;
| | - Nicolas Blanchemain
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
| | - Feng Chai
- U1008 Controlled Drug Delivery Systems and Biomaterials, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire de Lille (CHU Lille), University of Lille, 59000 Lille, France; (C.P.-D.); (M.L.); (N.B.)
- Correspondence: ; Tel.: +33-320-626-997
| |
Collapse
|
14
|
Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels. Biomolecules 2020; 10:biom10081185. [PMID: 32824101 PMCID: PMC7464976 DOI: 10.3390/biom10081185] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
Polysaccharides are widely used as building blocks of scaffolds and hydrogels in tissue engineering, which may require their chemical modification to permit crosslinking. The goal of this study was to generate a library of oxidized alginate (oALG) and oxidized hyaluronic acid (oHA) that can be used for in situ gelling hydrogels by covalent reaction between aldehyde groups of the oxidized polysaccharides (oPS) and amino groups of carboxymethyl chitosan (CMC) through imine bond formation. Here, we studied the effect of sodium periodate concentration and reaction time on aldehyde content, molecular weight of derivatives and cytotoxicity of oPS towards 3T3-L1 fibroblasts. It was found that the molecular weights of all oPs decreased with oxidation and that the degree of oxidation was generally higher in oHA than in oALG. Studies showed that only oPs with an oxidation degree above 25% were cytotoxic. Initial studies were also done on the crosslinking of oPs with CMC showing with rheometry that rather soft gels were formed from higher oxidized oPs possessing a moderate cytotoxicity. The results of this study indicate the potential of oALG and oHA for use as in situ gelling hydrogels or inks in bioprinting for application in tissue engineering and controlled release.
Collapse
|
15
|
Application of Chitosan in Bone and Dental Engineering. Molecules 2019; 24:molecules24163009. [PMID: 31431001 PMCID: PMC6720623 DOI: 10.3390/molecules24163009] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Chitosan is a deacetylated polysaccharide from chitin, the natural biopolymer primarily found in shells of marine crustaceans and fungi cell walls. Upon deacetylation, the protonation of free amino groups of the d-glucosamine residues of chitosan turns it into a polycation, which can easily interact with DNA, proteins, lipids, or negatively charged synthetic polymers. This positive-charged characteristic of chitosan not only increases its solubility, biodegradability, and biocompatibility, but also directly contributes to the muco-adhesion, hemostasis, and antimicrobial properties of chitosan. Combined with its low-cost and economic nature, chitosan has been extensively studied and widely used in biopharmaceutical and biomedical applications for several decades. In this review, we summarize the current chitosan-based applications for bone and dental engineering. Combining chitosan-based scaffolds with other nature or synthetic polymers and biomaterials induces their mechanical properties and bioactivities, as well as promoting osteogenesis. Incorporating the bioactive molecules into these biocomposite scaffolds accelerates new bone regeneration and enhances neovascularization in vivo.
Collapse
|
16
|
|
17
|
Reyes R, Rodríguez JA, Orbe J, Arnau MR, Évora C, Delgado A. Combined sustained release of BMP2 and MMP10 accelerates bone formation and mineralization of calvaria critical size defect in mice. Drug Deliv 2018. [PMID: 29516759 PMCID: PMC6058487 DOI: 10.1080/10717544.2018.1446473] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of dual delivery of bone morphogenetic protein-2 (BMP-2) and matrix metalloproteinase 10 (MMP10) on bone regeneration was investigated in a murine model of calvarial critical-size defect, hypothesizing that it would result in an enhanced bone formation. Critical-size calvarial defects (4 mm diameter) were created in mice and PLGA microspheres preloaded with either BMP-2, MMP10 or a microsphere combination of both were transplanted into defect sites at different doses. Empty microspheres were used as the negative control. Encapsulation efficiency was assessed and in vivo release kinetics of BMP-2 and MMP10 were examined over 14 days. Histological analyses were used to analyze bone formation after four and eight weeks. Combination with MMP10 (30 ng) significantly enhanced BMP-2 (600 ng)-mediated osteogenesis, as confirmed by the increase in percentage of bone fill (p < .05) at four weeks. Moreover, it also increased mineral apposition rate (p < .05), measured by double labeling with tetracycline and calceine. MMP10 accelerates bone repair by enhancing BMP-2-promoted bone healing and improving the mineralization rate. In conclusion combination of MMP10 and BMP-2 may become a promising strategy for repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Ricardo Reyes
- a Department of Biochemistry, Microbiology, Cell Biology and Genetics , Universidad de La Laguna , La Laguna , Spain.,b Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna , La Laguna , Spain
| | - Jose Antonio Rodríguez
- c Laboratorio de Aterotrombosis, Área de Ciencias Cardiovasculares, CIMA-Universidad de Navarra , Pamplona , Spain.,d CIBER de Enfermedades Cardiovasculares (CIBER-CV) , Madrid , Spain.,e IdiSNA-Health Research Institute of Navarra , Pamplona , Spain
| | - Josune Orbe
- c Laboratorio de Aterotrombosis, Área de Ciencias Cardiovasculares, CIMA-Universidad de Navarra , Pamplona , Spain.,d CIBER de Enfermedades Cardiovasculares (CIBER-CV) , Madrid , Spain.,e IdiSNA-Health Research Institute of Navarra , Pamplona , Spain
| | - María Rosa Arnau
- f Servicio de Estabulario, Universidad de La Laguna , La Laguna , Spain
| | - Carmen Évora
- b Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna , La Laguna , Spain.,g Department of Chemical Engineering and Pharmaceutical Technology , Universidad de La Laguna , La Laguna , Spain
| | - Araceli Delgado
- b Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna , La Laguna , Spain.,g Department of Chemical Engineering and Pharmaceutical Technology , Universidad de La Laguna , La Laguna , Spain
| |
Collapse
|
18
|
Zhang W, Zhao Q, Yuan J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew Chem Int Ed Engl 2018; 57:6754-6773. [PMID: 29124842 PMCID: PMC6001701 DOI: 10.1002/anie.201710272] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/27/2023]
Abstract
The past decade has witnessed rapid advances in porous polyelectrolytes and there is tremendous interest in their synthesis as well as their applications in environmental, energy, biomedicine, and catalysis technologies. Research on porous polyelectrolytes is motivated by the flexible choice of functional organic groups and processing technologies as well as the synergy of the charge and pores spanning length scales from individual polyelectrolyte backbones to their nano-/micro-superstructures. This Review surveys recent progress in porous polyelectrolytes including membranes, particles, scaffolds, and high surface area powders/resins as well as their derivatives. The focus is the interplay between surface chemistry, Columbic interaction, and pore confinement that defines new chemistry and physics in such materials for applications in energy conversion, molecular separation, water purification, sensing/actuation, catalysis, tissue engineering, and nanomedicine.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
- Department of Materials and Environmental Chemistry (MMK)Stockholm University10691StockholmSweden
| |
Collapse
|
19
|
Zhang W, Zhao Q, Yuan J. Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
- Department of Materials and Environmental Chemistry (MMK); Stockholm University; 10691 Stockholm Schweden
| |
Collapse
|
20
|
Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic-alginate composite thermogel. Int J Pharm 2018; 543:160-168. [PMID: 29567197 DOI: 10.1016/j.ijpharm.2018.03.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
As the life expectancy of the world population increases, osteoporotic (OP) fracture risk increase. Therefore in the present study a novel injectable thermo-responsive hydrogel loaded with microspheres of 17β-estradiol, microspheres of bone morphogenetic protein-2 (BMP-2) and plasma rich in growth factors (PRGF) was applied locally to regenerate a calvaria critical bone defect in OP female rats. Three systems were characterized: Tetronic® 1307 (T-1307) reinforced with alginate (T-A), T-A with PRGF and T-A-PRGF with microspheres. The addition of the microspheres increased the viscosity but the temperature for the maximum viscosity did not change (22-24 °C). The drugs were released during 6 weeks in one fast phase (three days) followed by a long slow phase. In vivo evaluation was made in non-OP and OP rats treated with T-A, T-A with microspheres of 17β-estradiol (T-A-βE), T-A-βE prepared with PRGF (T-A-PRGF-βE), T-A-βE with microspheres of BMP-2 (T-A-βE-BMP-2) and the combination of the three (T-A-PRGF-βE-BMP). After 12 weeks, histological and histomorphometric analyzes showed a synergic effect due to the addition of BMP-2 to the T-A-βE formulation. The PRGF did not increased the bone repair. The new bone filling the OP defect was less mineralized than in the non-OP groups.
Collapse
|
21
|
Santoveña A, Monzón C, Delgado A, Evora C, Llabrés M, Fariña J. Development of a standard method for in vitro evaluation of Triamcinolone and BMP-2 diffusion mechanism from thermosensitive and biocompatible composite hyaluronic acid-pluronic hydrogels. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Segredo-Morales E, García-García P, Évora C, Delgado A. BMP delivery systems for bone regeneration: Healthy vs osteoporotic population. Review. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Santoveña A, Monzón C, Alvarez-Lorenzo C, Del Rosario C, Delgado A, Evora C, Concheiro A, Llabrés M, Fariña JB. Structure-Performance Relationships of Temperature-Responsive PLGA-PEG-PLGA Gels for Sustained Release of Bone Morphogenetic Protein-2. J Pharm Sci 2017; 106:3353-3362. [PMID: 28732712 DOI: 10.1016/j.xphs.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022]
Abstract
PLGA (poly(lactic-co-glycolic) acid)-PEG (polyethylene glycol)-PLGA synthesis conditions have an impact on the physicochemical features of the copolymer and its usefulness as biomaterial. This study reports on an analysis of the composition and structural properties of PLGA-PEG-PLGA copolymers applying a variety of analytical techniques. Viscoelastic properties and particularly the temperature-responsive behavior of PLGA-PEG-PLGA showed a marked dependence on copolymer structural features. Physicochemical and biological properties, such as bioadhesion, biocompatibility and cell viability, of the raw copolymers and their gels were also evaluated. The most promising copolymer was chosen to formulate the osteoinductive protein bone morphogenetic protein-2 (125I-BMP-2), and the ability of its gels to sustain the release both in vitro and in vivo was monitored in situ using a gamma counter. In vitro diffusion studies were carried out using a bioinspired set-up that included a biorelevant receptor medium. In vivo release tests after implantation in a critical-size calvarial defect model showed an important burst, but then the release fitted well to the square-root kinetics. Importantly, the release rate constants recorded in vitro and in vivo matched each other suggesting close in vitro-in vivo correlation. Overall, the information gathered opens new perspectives in the biomedical application of these temperature-sensitive materials.
Collapse
Affiliation(s)
- Ana Santoveña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Campus de Anchieta, 38203 La Laguna (Tenerife), Spain.
| | - Cecilia Monzón
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Del Rosario
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain
| | - Araceli Delgado
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain
| | - Carmen Evora
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Matias Llabrés
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Campus de Anchieta, 38203 La Laguna (Tenerife), Spain
| | - José B Fariña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Campus de Anchieta, 38200 La Laguna (Tenerife), Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Campus de Anchieta, 38203 La Laguna (Tenerife), Spain
| |
Collapse
|
24
|
Mele L, Vitiello PP, Tirino V, Paino F, De Rosa A, Liccardo D, Papaccio G, Desiderio V. Changing Paradigms in Cranio-Facial Regeneration: Current and New Strategies for the Activation of Endogenous Stem Cells. Front Physiol 2016; 7:62. [PMID: 26941656 PMCID: PMC4764712 DOI: 10.3389/fphys.2016.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Craniofacial area represent a unique district of human body characterized by a very high complexity of tissues, innervation and vascularization, and being deputed to many fundamental function such as eating, speech, expression of emotions, delivery of sensations such as taste, sight, and earing. For this reasons, tissue loss in this area following trauma or for example oncologic resection, have a tremendous impact on patients' quality of life. In the last 20 years regenerative medicine has emerged as one of the most promising approach to solve problem related to trauma, tissue loss, organ failure etc. One of the most powerful tools to be used for tissue regeneration is represented by stem cells, which have been successfully implanted in different tissue/organs with exciting results. Nevertheless, both autologous and allogeneic stem cell transplantation raise many practical and ethical concerns that make this approach very difficult to apply in clinical practice. For this reason different cell free approaches have been developed aiming to the mobilization, recruitment, and activation of endogenous stem cells into the injury site avoiding exogenous cells implant but instead stimulating patients' own stem cells to repair the lesion. To this aim many strategies have been used including functionalized bioscaffold, controlled release of stem cell chemoattractants, growth factors, BMPs, Platelet-Rich-Plasma, and other new strategies such as ultrasound wave and laser are just being proposed. Here we review all the current and new strategies used for activation and mobilization of endogenous stem cells in the regeneration of craniofacial tissue.
Collapse
Affiliation(s)
- Luigi Mele
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Pietro Paolo Vitiello
- Medical Oncology, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Second University of Naples Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Francesca Paino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Alfredo De Rosa
- Department of Odontology and Surgery, Second University of Naples Naples, Italy
| | - Davide Liccardo
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| |
Collapse
|
25
|
Sivashankari PR, Prabaharan M. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int J Biol Macromol 2016; 93:1382-1389. [PMID: 26899174 DOI: 10.1016/j.ijbiomac.2016.02.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 11/24/2022]
Abstract
Tissue engineering is concerned about the rejuvenation and restoration of diseased and damages tissues/organs using man-made scaffolds that mimic the native environment of the cells. In recent years, a variety of biocompatible and biodegradable natural materials is employed for the fabrication of such scaffolds. Of these natural materials, chitosan is the most preferred one as it imitates the extracellular matrix (ECM) of the cells. Moreover, chitosan-based materials are pro-angiogenic and have antibacterial activity. These materials can be easily fabricated into the desired shape of the scaffolds that are suitable for tissue support and regeneration. Growth factors are small proteins/peptides that support and enhance the growth and differentiation of cells into a specific lineage. It has been observed that scaffolds capable of delivering growth factor promote tissue repair and regeneration at a faster rate when compared to scaffolds without growth factor. The present review focuses on the recent developments on chitosan-based scaffolds for the delivery of growth factors thereby improving and enhancing tissue regeneration.
Collapse
Affiliation(s)
- P R Sivashankari
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India.
| |
Collapse
|
26
|
Saravanan S, Leena RS, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2016; 93:1354-1365. [PMID: 26845481 DOI: 10.1016/j.ijbiomac.2016.01.112] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
The clinical demand for scaffolds and the diversity of available polymers provide freedom in the fabrication of scaffolds to achieve successful progress in bone tissue engineering (BTE). Chitosan (CS) has drawn much of the attention in recent years for its use as graft material either as alone or in a combination with other materials in BTE. The scaffolds should possess a number of properties like porosity, biocompatibility, water retention, protein adsorption, mechanical strength, biomineralization and biodegradability suited for BTE applications. In this review, CS and its properties, and the role of CS along with other polymeric and ceramic materials as scaffolds for bone tissue repair applications are highlighted.
Collapse
Affiliation(s)
- S Saravanan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - R S Leena
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
27
|
Saltz A, Kandalam U. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review. J Biomed Mater Res A 2016; 104:1276-84. [PMID: 26826060 DOI: 10.1002/jbm.a.35647] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 01/01/2023]
Abstract
Craniofacial bone is a complex structure with an intricate anatomical and physiological architecture. The defects that exist in this region therefore require a precise control of osteogenesis in their reconstruction. Unlike traditional surgical intervention, tissue engineering techniques mediate bone development with limited postoperative risk and cost. Alginate stands as the premier polymer in bone repair because of its mild ionotropic gelation and excellent biocompatibility, biodegradability, and injectability. Alginate microcarriers are candidates of choice to mediate cells and accommodate into 3-D environment. Several studies reported the use of alginate microcarriers for delivering cells, drugs, and growth factors. This review will explore the potential use of alginate microcarrier for stem cell systems and its application in craniofacial bone tissue engineering.
Collapse
Affiliation(s)
- Adam Saltz
- Nova Southeastern University College of Dental Medicine, Fort Lauderdale, Florida, 33328
| | - Umadevi Kandalam
- Nova Southeastern University College of Dental Medicine, Fort Lauderdale, Florida, 33328
| |
Collapse
|
28
|
Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Release 2016; 225:152-69. [PMID: 26805518 DOI: 10.1016/j.jconrel.2016.01.033] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keng-Liang Ou
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University - Shuang Ho Hospital, New Taipei city, Taiwan
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
29
|
|
30
|
Lohse N, Moser N, Backhaus S, Annen T, Epple M, Schliephake H. Continuous delivery of rhBMP2 and rhVEGF165 at a certain ratio enhances bone formation in mandibular defects over the delivery of rhBMP2 alone--An experimental study in rats. J Control Release 2015; 220:201-209. [PMID: 26485046 DOI: 10.1016/j.jconrel.2015.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/03/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to test the hypothesis that different amounts of vascular endothelial growth factor and bone morphogenic protein differentially affect bone formation when applied for repair of non-healing defects in the rat mandible. Porous composite PDLLA/CaCO3 carriers were fabricated as slow release carriers and loaded with rhBMP2 and rhVEGF165 in 10 different dosage combinations using gas foaming with supercritical carbon dioxide. They were implanted in non-healing defects of the mandibles of 132 adult Wistar rats with additional lateral augmentation. Bone formation was assessed both radiographically (bone volume) and by histomorphometry (bone density). The use of carriers with a ratio of delivery of VEGF/BMP between 0.7 and 1.2 was significantly related to the occurrence of significant increases in radiographic bone volume and/or histologic bone density compared to the use of carriers with a ratio of delivery of ≤ 0.5 when all intervals and all outcome parameters were considered. Moreover, simultaneous delivery at this ratio helped to "save" rhBMP2 as both bone volume and bone density after 13 weeks were reached/surpassed using half the dosage required for rhBMP2 alone. It is concluded, that the combined delivery of rhVEGF165 and rhBMP2 for repair of critical size mandibular defects can significantly enhance volume and density of bone formation over delivery of rhBMP2 alone. It appears from the present results that continuous simultaneous delivery of rhVEGF165 and rhBMP2 at a ratio of approximately 1 is favourable for the enhancement of bone formation.
Collapse
Affiliation(s)
- N Lohse
- Dept. of Oral and Maxillofacial Surgery, George-Augusta-University, Göttingen, Germany
| | - N Moser
- Dept. of Oral and Maxillofacial Surgery, George-Augusta-University, Göttingen, Germany
| | - S Backhaus
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - T Annen
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - M Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - H Schliephake
- Dept. of Oral and Maxillofacial Surgery, George-Augusta-University, Göttingen, Germany.
| |
Collapse
|
31
|
Bone critical defect repair with poloxamine-cyclodextrin supramolecular gels. Int J Pharm 2015; 495:463-473. [PMID: 26362078 DOI: 10.1016/j.ijpharm.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the osteoinductive capacity of a poloxamine (Tetronic(®) 908, T) and α-cyclodextrin (αCD) supramolecular gel (T-CD) as scaffold in a critical size defect in rat calvaria. The T-CD gel was evaluated solely and after being loaded with simvastatin (SV) and bone morphogenetic protein (BMP-2) separately and in combinations in order to reduce the doses of the active substances. Three doses of SV (7.5, 75, 750 μg) and two doses of BMP-2 (3 and 6 μg) were tested. The histology and histomorphometrical analysis showed improved bone repair with T-CD compared to T, probably due to better release control of both SV and BMP-2. In addition, as T-CD eroded more slowly than poloxamine alone, it remained longer in the defect site. Although synergism was not obtained with BMP-2 and SV, according to the observed regeneration of the defect, the dose of BMP-2 and SV can be reduced to 3 μg and 7.5 μg, respectively.
Collapse
|
32
|
Griffin KS, Davis KM, McKinley TO, Anglen JO, Chu TMG, Boerckel JD, Kacena MA. Evolution of Bone Grafting: Bone Grafts and Tissue Engineering Strategies for Vascularized Bone Regeneration. Clin Rev Bone Miner Metab 2015. [DOI: 10.1007/s12018-015-9194-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Díaz-Rodríguez P, Gómez-Amoza JL, Landin M. The synergistic effect of VEGF and biomorphic silicon carbides topography on
in vivo
angiogenesis and human bone marrow derived mesenchymal stem cell differentiation. Biomed Mater 2015; 10:045017. [DOI: 10.1088/1748-6041/10/4/045017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Alginate based polyurethanes: A review of recent advances and perspective. Int J Biol Macromol 2015; 79:377-87. [DOI: 10.1016/j.ijbiomac.2015.04.076] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
|
35
|
Del Rosario C, Rodríguez-Évora M, Reyes R, Delgado A, Évora C. BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporous β-TCP scaffold for critical-size bone defect repair in rats. ACTA ACUST UNITED AC 2015. [PMID: 26201844 DOI: 10.1088/1748-6041/10/4/045008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this work was to study the bone repair induced by bone morphogenetic protein-2 (BMP-2), rat mesenchymal stem cells (rMSCs), and platelet-derived growth factor (PDGF-BB) incorporated in a macroporous beta-tricalcium phosphate (β-TCP) system fabricated by robocasting, and to identify the most beneficial combination in a critical rat calvaria defect. BMP-2 was formulated in microspheres to provide a prolonged, local concentration, whereas PDGF-BB, which acts during the initial stage of defect repair, was incorporated in a thin layer of crosslinked alginate. Approximately 80% of PDGF-BB and 90% of BMP-2 were released into the defect during the first 2 d and 3 weeks, respectively. Histological analyses indicated a minor synergistic effect in the BMP-2-MSC groups. In contrast, significant antagonism was found with combined BMP-2 and PDGF-BB defect treatment. The high-grade repair induced by BMP-2 rules out any advantage from combining BMP-2 with PDGF-BB or MSCs, at least with this scaffold and defect model.
Collapse
Affiliation(s)
- Carlos Del Rosario
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, 38200 La Laguna, Spain
| | | | | | | | | |
Collapse
|
36
|
Herrmann M, Verrier S, Alini M. Strategies to Stimulate Mobilization and Homing of Endogenous Stem and Progenitor Cells for Bone Tissue Repair. Front Bioeng Biotechnol 2015; 3:79. [PMID: 26082926 PMCID: PMC4451737 DOI: 10.3389/fbioe.2015.00079] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/16/2015] [Indexed: 12/17/2022] Open
Abstract
The gold standard for the treatment of critical-size bone defects is autologous or allogenic bone graft. This has several limitations including donor site morbidity and the restricted supply of graft material. Cell-based tissue engineering strategies represent an alternative approach. Mesenchymal stem cells (MSCs) have been considered as a source of osteoprogenitor cells. More recently, focus has been placed on the use of endothelial progenitor cells (EPCs), since vascularization is a critical step in bone healing. Although many of these approaches have demonstrated effectiveness for bone regeneration, cell-based therapies require time consuming and cost-expensive in vitro cell expansion procedures. Accordingly, research is becoming increasingly focused on the homing and stimulation of native cells. The stromal cell-derived factor-1 (SDF-1) - CXCR4 axis has been shown to be critical for the recruitment of MSCs and EPCs. Vascular endothelial growth factor (VEGF) is a key factor in angiogenesis and has been targeted in many studies. Here, we present an overview of the different approaches for delivering homing factors to the defect site by absorption or incorporation to biomaterials, gene therapy, or via genetically manipulated cells. We further review strategies focusing on the stimulation of endogenous cells to support bone repair. Finally, we discuss the major challenges in the treatment of critical-size bone defects and fracture non-unions.
Collapse
Affiliation(s)
| | | | - Mauro Alini
- AO Research Institute Davos , Davos , Switzerland
| |
Collapse
|
37
|
Schliephake H, Vucak M, Boven J, Backhaus S, Annen T, Epple M. Solvent free production of porous PDLLA/calcium carbonate composite scaffolds improves the release of bone growth factors. Oral Maxillofac Surg 2015; 19:133-141. [PMID: 25178431 DOI: 10.1007/s10006-014-0463-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE Incorporation of alkaline nano-/microparticles for neutralization of acidic degradation products into degradable polymer foams requires the use of organic solvents, which may compromise biocompatibility and may be associated with biological hazards. The aim of the present study was to develop and validate a solvent-free method to produce porous poly (DL-lactic acid)/calcium carbonate composite scaffolds (PDLLA/CaCO3) for controlled release of incorporated osteogenic growth factors. METHODS Composite PDLLA/CaCO3 granules were produced using a milling process and compared to composite material fabricated through a solution precipitation process using organic solvents. Particle size and mineral content were comparable in both groups. Supercritical carbon dioxide pressure was used to incorporate rhBMP2 into both composites. RESULTS Gas foaming resulted in comparable pore structures in both groups exhibiting a homogenous distribution of CaCO3 microparticles in the polymer scaffolds. The elasticity modulus of both types of scaffolds was not significantly different whereas the bending strength of the solvent-free produced scaffolds was significantly lower. The pH values remained constant between 6.90 and 7.25 during degradation of both composites. Release of BMP2 was significantly higher and the induction of alkaline phosphatase was more reliable in the group of scaffolds produced without organic solvents. CONCLUSION Solvent-free fabrication of composite PDLLA/CaCO3 scaffolds for controlled release of bone growth factors through gas foaming significantly enhances the release of growth factors and improves the biological efficacy of the incorporated growth factors.
Collapse
Affiliation(s)
- H Schliephake
- Department of Oral and Maxillofacial Surgery, George-Augusta-University, Robert-Koch-Str, 40 37075, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|
38
|
Rong JJ, Liang M, Xuan FQ, Sun JY, Zhao LJ, Zhen HZ, Tian XX, Liu D, Zhang QY, Peng CF, Yao TM, Li F, Wang XZ, Han YL, Yu WT. Alginate-calcium microsphere loaded with thrombin: A new composite biomaterial for hemostatic embolization. Int J Biol Macromol 2015; 75:479-88. [DOI: 10.1016/j.ijbiomac.2014.12.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
|
39
|
Del Rosario C, Rodríguez-Evora M, Reyes R, González-Orive A, Hernández-Creus A, Shakesheff KM, White LJ, Delgado A, Evora C. Evaluation of nanostructure and microstructure of bone regenerated by BMP-2-porous scaffolds. J Biomed Mater Res A 2015; 103:2998-3011. [DOI: 10.1002/jbm.a.35436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 01/28/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Carlos Del Rosario
- Department of Chemical Engineering and Pharmaceutical Technology; University of La Laguna; 38200 Spain
| | - Maria Rodríguez-Evora
- Department of Chemical Engineering and Pharmaceutical Technology; University of La Laguna; 38200 Spain
| | - Ricardo Reyes
- Department of Chemical Engineering and Pharmaceutical Technology; University of La Laguna; 38200 Spain
- Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands, University of La Laguna; 38200 Spain
| | - Alejandro González-Orive
- Department of Physico-Chemistry; Institute of Materials and Nanotechnology, University of La Laguna; 38200 Spain
| | - Alberto Hernández-Creus
- Department of Physico-Chemistry; Institute of Materials and Nanotechnology, University of La Laguna; 38200 Spain
| | - Kevin M Shakesheff
- Wolfson Centre for Stem Cells; Tissue Engineering and Modelling (STEM); School of Pharmacy; University of Nottingham; United Kingdom
| | - Lisa J White
- Wolfson Centre for Stem Cells; Tissue Engineering and Modelling (STEM); School of Pharmacy; University of Nottingham; United Kingdom
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology; University of La Laguna; 38200 Spain
- Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands, University of La Laguna; 38200 Spain
| | - Carmen Evora
- Department of Chemical Engineering and Pharmaceutical Technology; University of La Laguna; 38200 Spain
- Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands, University of La Laguna; 38200 Spain
| |
Collapse
|
40
|
Stoppel WL, Ghezzi CE, McNamara SL, Black LD, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43:657-80. [PMID: 25537688 PMCID: PMC8196399 DOI: 10.1007/s10439-014-1206-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/26/2014] [Indexed: 01/05/2023]
Abstract
Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.
Collapse
Affiliation(s)
- Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Stephanie L. McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- The Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
41
|
Barui A, Khare R, Dhara S, Banerjee P, Chatterjee J. Ex vivo bio-compatibility of honey-alginate fibrous matrix for HaCaT and 3T3 with prime molecular expressions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2659-2667. [PMID: 22042457 DOI: 10.1007/s10856-011-4456-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/02/2011] [Indexed: 05/31/2023]
Abstract
Honey's inherent compositional diversity, bio-compatibility and time tested therapeutic efficacy, especially in tissue repair as a topical agent, attract researchers towards harnessing its biomaterial potential particularly in developing matrix for tissue engineering applications. Hence, this study fabricates fibrous mat from optimum honey-alginate formulation and alginate solution using wet spinning technology. The physical and morphological properties of the scaffolds are assessed and finally their comparative biological performances are evaluated through in vitro studies on adherence, viability and prime molecular expression of HaCaT and 3T3 cells. The honey-alginate scaffold demonstrates better performance than that of alginate in terms of cellular adherence, viability and proper expression of cell-cell adhesion molecule (E-cadherin) and prime molecules of extra cellular matrix (Collagen I and III) by HaCaT and 3T3 respectively.
Collapse
Affiliation(s)
- Ananya Barui
- School of Medical Science & Technology, IIT Kharagpur, Kharagpur, 721302, India
| | | | | | | | | |
Collapse
|
42
|
Abstract
Bone defects requiring grafts to promote healing are frequently occurring and costly problems in health care. Chitosan, a biodegradable, naturally occurring polymer, has drawn considerable attention in recent years as scaffolding material in tissue engineering and regenerative medicine. Chitosan is especially attractive as a bone scaffold material because it supports the attachment and proliferation of osteoblast cells as well as formation of mineralized bone matrix. In this review, we discuss the fundamentals of bone tissue engineering and the unique properties of chitosan as a scaffolding material to treat bone defects for hard tissue regeneration. We present the common methods for fabrication and characterization of chitosan scaffolds, and discuss the influence of material preparation and addition of polymeric or ceramic components or biomolecules on chitosan scaffold properties such as mechanical strength, structural integrity, and functional bone regeneration. Finally, we highlight recent advances in development of chitosan-based scaffolds with enhanced bone regeneration capability.
Collapse
Affiliation(s)
- Sheeny Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195 USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
43
|
Melchiorri AJ, Nguyen BNB, Fisher JP. Mesenchymal stem cells: roles and relationships in vascularization. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:218-28. [PMID: 24410463 DOI: 10.1089/ten.teb.2013.0541] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the primary challenges in translating tissue engineering to clinical applicability is adequate, functional vascularization of tissue constructs. Vascularization is necessary for the long-term viability of implanted tissue expanded and differentiated in vitro. Such tissues may be derived from various cell sources, including mesenchymal stem cells (MSCs). MSCs, able to differentiate down several lineages, have been extensively researched for their therapeutic capabilities. In addition, MSCs have a variety of roles in the vascularization of tissue, both through direct contact and indirect signaling. The studied relationships between MSCs and vascularization have been utilized to further the necessary advancement of vascularization in tissue engineering concepts. This review aims to provide a summary of relevant relationships between MSCs, vascularization, and other relevant cell types, along with an overview discussing applications and challenges related to the roles and relationships of MSCs and vascular tissues.
Collapse
Affiliation(s)
- Anthony J Melchiorri
- Fischell Department of Bioengineering, University of Maryland , College Park, Maryland
| | | | | |
Collapse
|
44
|
Ucar S, Yilgor P, Hasirci V, Hasirci N. Chitosan-based wet-spun scaffolds for bioactive agent delivery. J Appl Polym Sci 2013. [DOI: 10.1002/app.39629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Pinar Yilgor
- Department of Biomedical Engineering; Faculty of Engineering and Architecture; Cukurova University; 01330; Adana; Turkey
| | | | | |
Collapse
|
45
|
Rodríguez-Évora M, Delgado A, Reyes R, Hernández-Daranas A, Soriano I, San Román J, Evora C. Osteogenic effect of local, long versus short term BMP-2 delivery from a novel SPU-PLGA-βTCP concentric system in a critical size defect in rats. Eur J Pharm Sci 2013; 49:873-84. [PMID: 23797057 DOI: 10.1016/j.ejps.2013.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
A concentric delivery system, composed of the three biomaterials SPU, PLGA, and βTCP (segmented polyurethane, poly[lactic-co-glycolic acid], and β-tricalcium phosphate) was fabricated as an external, porous ring of βTCP with a pasty core of a new SPU, mixed with PLGA microspheres. The regenerative effects of two distinct doses of either immediately available or continuously released rhBMP-2 were evaluated in an 8mm, critical calvaria defect in rats. Protein dose and release kinetics affected material resorption rates and the progression of the regeneration process. Groups treated with the empty system alone or in conjunction with free rhBMP-2 did not respond. By contrast, after 12 weeks, approximately 20% and 60% of the defects implanted with systems loaded with 1.6 μg and 6.5 μg rhBMP-2, respectively were healed, with all the growth factor being released in the course of 6 weeks. The NMR, FTIR, GPC, DSC, and histological analyses showed that PLGA microsphere degradation occurred independently of the regenerative process. However, the resorption rate of the SPU and βTCP did depend on the regeneration process, which was governed by dose and release rate of rhBMP-2. Furthermore, the biocompatibility and high capacity of adaptation to the defect convert the herein proposed, new SPU polymer into a potential material for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- M Rodríguez-Évora
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, 38200 La Laguna, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Reyes R, Delgado A, Solis R, Sanchez E, Hernandez A, Roman JS, Evora C. Cartilage repair by local delivery of transforming growth factor-β1 or bone morphogenetic protein-2 from a novel, segmented polyurethane/polylactic-co
-glycolic bilayered scaffold. J Biomed Mater Res A 2013. [DOI: 10.1002/jbm.a.34769] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ricardo Reyes
- Department of Chemical Engineering and Pharmaceutical Technology; Universidad de La Laguna; San Cristóbal de La Laguna 38200 Spain
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology; Universidad de La Laguna; San Cristóbal de La Laguna 38200 Spain
| | - Raul Solis
- Department of Macromolecular Chemistry; CSIC, Instituto de Ciencia y Tecnología de Polimeros; Madrid Spain
| | - Esther Sanchez
- Department of Chemical Engineering and Pharmaceutical Technology; Universidad de La Laguna; San Cristóbal de La Laguna 38200 Spain
| | - Antonio Hernandez
- Traumatology Service; Hospiten Rambla Ltd; Santa Cruz de Tenerife Spain
| | - Julio San Roman
- Department of Macromolecular Chemistry; CSIC, Instituto de Ciencia y Tecnología de Polimeros; Madrid Spain
| | - Carmen Evora
- Department of Chemical Engineering and Pharmaceutical Technology; Universidad de La Laguna; San Cristóbal de La Laguna 38200 Spain
| |
Collapse
|
47
|
Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 2012; 64:1292-309. [PMID: 22342771 PMCID: PMC3358582 DOI: 10.1016/j.addr.2012.01.016] [Citation(s) in RCA: 430] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/23/2012] [Accepted: 01/30/2012] [Indexed: 12/15/2022]
Abstract
The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with pre-programmed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering.
Collapse
Affiliation(s)
- Tiffany N. Vo
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| |
Collapse
|
48
|
Wu H, Liao C, Jiao Q, Wang Z, Cheng W, Wan Y. Fabrication of core–shell microspheres using alginate and chitosan–polycaprolactone for controlled release of vascular endothelial growth factor. REACT FUNCT POLYM 2012. [DOI: 10.1016/j.reactfunctpolym.2012.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Hernández A, Reyes R, Sánchez E, Rodríguez-Évora M, Delgado A, Evora C. In vivo osteogenic response to different ratios of BMP-2 and VEGF released from a biodegradable porous system. J Biomed Mater Res A 2012; 100:2382-91. [PMID: 22528545 DOI: 10.1002/jbm.a.34183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 12/13/2022]
Abstract
Bone regeneration and vascularization with porous PLGA scaffolds loaded with VEGF (0.35 and 1.75 μg) and BMP-2 (3.5 and 17.5 μg), incorporated in PLGA microspheres, or the combination of either dose of BMP-2 with the low dose of VEGF were investigated in an intramedullary femur defect in rabbits. The system was designed to control growth factor (GF) release and maintain the GFs localized within the defect. An incomplete release was observed in vitro whereas in vivo VEGF and BMP-2 were totally delivered during 3 and 4 weeks, respectively. A weak synergistic effect of the dual delivery of VEGF and BMP-2 (high dose) was found by 4 weeks. However, the absence of an apparent synergistic long-term effect (12 weeks) of the combination over BMP-2 alone suggests that more work has to be done to optimize VEGF dose, sequential presentation, and the ratio of the two GFs to obtain a beneficial bone repair response.
Collapse
Affiliation(s)
- Antonio Hernández
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, 38200 La Laguna, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Draenert FG, Nonnenmacher AL, Kämmerer PW, Goldschmitt J, Wagner W. BMP-2 and bFGF release and in vitro effect on human osteoblasts after adsorption to bone grafts and biomaterials. Clin Oral Implants Res 2012; 24:750-7. [PMID: 22524399 DOI: 10.1111/j.1600-0501.2012.02481.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2012] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Combination of scaffolds and growth factors is a promising option for several clinical problems in bone biomaterials. Simplified growth factor loading by adsorption from aqueous solution is one important option for this technology. We evaluated the adsorption followed by PBS rinsing, release and biological effect of transient loading with basic fibroblast growth factor (bFGF) and bone morphogenic protein 2 (BMP-2) on fresh frozen bone, processed bone matrix, collagen, and a ceramic material with immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and qRT-PCR. MATERIALS AND METHODS The study consisted of three in vitro experiments (immunofluorescence, ELISA, and qRT-PCR) in human osteoblasts (HOB). The first evaluated the adsorption of the growth factors bFGF and BMP-2 to the biomaterials, analyzed by immunofluorescence assays. The second experiment used ELISA to analyze the release of the growth factors from the matrix. The biological effect of the growth factors on HOB was then studied with qRT-PCR experiments as the third step. RESULTS Strongest sustained release peaks in ELISA were observed in bFGF loading on processed bone matrix (steam-resistant mineralized bone matrix, SMBM) with up to 553 pg/ml medium. BMP-2 loading was less effective in ELISA peak release experiments with up to 257 pg/ml medium in processed bone matrix (SMBM). bFGF showed also higher release peaks in collagen material (192 pg/ml) compared with BMP-2 (101 pg/ml). Cumulative release values 0-72 h were estimated. The expression of runX2, osteocalcin, and alkaline phosphatase as markers for osteoblast activity was correlating. CONCLUSION The results showed sustained release of BMP-2 and bFGF after transient loading on bone biomaterials with a stronger effect in biological scaffolds. This is interesting for therapeutic growth factor loading as well as insights in natural growth factor matrix deposition during bone healing.
Collapse
Affiliation(s)
- Florian G Draenert
- Clinic for Oral and Maxillofacial Surgery, University of Marburg, Marburg, Germany.
| | | | | | | | | |
Collapse
|