1
|
Kiricenko K, Klinken S, Kleinebudde P. Proof of a LOD prediction model with orthogonal PAT methods in continuous wet granulation and drying. J Pharm Sci 2025; 114:176-184. [PMID: 39004417 DOI: 10.1016/j.xphs.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Real-time monitoring of critical quality attributes, such as residual water in granules after drying which can be determined through loss-on-drying (LOD), during wet granulation and drying is essential in continuous manufacturing. Near-infrared (NIR) spectroscopy has been widely used as process analytical technology (PAT) for in-line LOD monitoring. This study aims to develop and apply a model for predicting the LOD based on process parameters. Additionally, the efficacy of an orthogonal PAT approach using NIR and mass balance (MB) for a vibrating fluidized bed dryer (VFBD) is demonstrated. An in-house-built, cost-effective NIR sensor was utilized for measurements and exhibited good correlation compared to standard method via infrared drying. The combination of NIR and MB, as independent methods, has demonstrated their applicability. A good correlation, with a Pearson r above 0.99, was observed for LOD up to 16 % (w/w). The use of an orthogonal PAT method mitigated the risk of false process adaption. In some experiments where the NIR sensor might have been covered by powder and therefore did not measure accurately, LOD monitoring via MB remained feasible. The developed model effectively predicted LOD or process parameters, resulting in an R2 of 0.882 and a RMSE of 0.475 between predicted and measured LOD using the standard method.
Collapse
Affiliation(s)
- Katharina Kiricenko
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Science, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stefan Klinken
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Science, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Peter Kleinebudde
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Science, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Hetrick EM, Pack BW, Wolfe CN, Zhao M. Mass balance analysis for therapeutic peptides: Case studies, applications, and perspectives. J Pharm Biomed Anal 2025; 252:116501. [PMID: 39442464 DOI: 10.1016/j.jpba.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
The concept of mass balance is discussed as it pertains to the pharmaceutical development of therapeutic peptides. Case studies are presented demonstrating how to perform a mass balance assessment on solid drug substance and solution drug product, and the role of mass balance in the context of the overall product control strategy is discussed. Utilizing mass balance as a specification test where the result is calculated from other critical quality attribute tests, each with their own specification, offers little value as a formalized quality acceptance criterion and may create more deviations, non-value added investigations, and potential batch failures. While useful in characterizing the performance of analytical methods and as part of a rigorous understanding of the manufacturing process and control strategy development, mass balance should not be required as a specification control and should instead be demonstrated during method development and through well-designed forced degradation experiments. Analytical method variability is discussed in relation to the analytical target profile, and the overall impact of sources of variability on the mass balance calculation is described in support of this position.
Collapse
Affiliation(s)
- Evan M Hetrick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States.
| | - Brian W Pack
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - Chad N Wolfe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - Meng Zhao
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States
| |
Collapse
|
3
|
Neugebauer P, Zettl M, Moser D, Poms J, Kuchler L, Sacher S. Process analytical technology in Downstream-Processing of Drug Substances- A review. Int J Pharm 2024; 661:124412. [PMID: 38960339 DOI: 10.1016/j.ijpharm.2024.124412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Process Analytical Technology (PAT) has revolutionized pharmaceutical manufacturing by providing real-time monitoring and control capabilities throughout the production process. This review paper comprehensively examines the application of PAT methodologies specifically in the production of solid active pharmaceutical ingredients (APIs). Beginning with an overview of PAT principles and objectives, the paper explores the integration of advanced analytical techniques such as spectroscopy, imaging modalities and others into solid API substance production processes. Novel developments in in-line monitoring at academic level are also discussed. Emphasis is placed on the role of PAT in ensuring product quality, consistency, and compliance with regulatory requirements. Examples from existing literature illustrate the practical implementation of PAT in solid API substance production, including work-up, crystallization, filtration, and drying processes. The review addresses the quality and reliability of the measurement technologies, aspects of process implementation and handling, the integration of data treatment algorithms and current challenges. Overall, this review provides valuable insights into the transformative impact of PAT on enhancing pharmaceutical manufacturing processes for solid API substances.
Collapse
Affiliation(s)
- Peter Neugebauer
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria
| | - Manuel Zettl
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Daniel Moser
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Johannes Poms
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Lisa Kuchler
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| | - Stephan Sacher
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria.
| |
Collapse
|
4
|
Vandeputte T, Ghijs M, De Beer T, Nopens I. Cracking the code: Spatial heterogeneity as the missing piece for modeling granular fluidized bed drying. Int J Pharm 2024; 657:124135. [PMID: 38643808 DOI: 10.1016/j.ijpharm.2024.124135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Pharmaceutical twin-screw wet granulation is a multifaceted and intricate process pivotal to drug product development. Accurate modeling of this process is indispensable for optimizing manufacturing parameters and ensuring product quality. The fluid bed dryer, an integral component of this granulation process, significantly influences the granular critical quality attributes. This study builds upon prior research by integrating experimental findings on granule segregation during fluid bed drying into an existing compartmental model, enhancing its predictive capabilities. An additional model layer on granule segregation behavior is composed and integrated into the existing model structure in this study. The added model compartment describes probability distributions on the vertical position of granules within each granule size class considered. To beware of overfitting, predictions of both the moisture content after drying and the granule bed temperature throughout drying are discussed in this study relative to experimental data from earlier published studies. These independent analyses demonstrated a marked improvement in prediction accuracy compared to earlier published model structures. The refined model accurately predicts the residual moisture content after drying for an untrained formulation. Moreover, it simultaneously makes accurate predictions of the granular bed temperature, which emboldens its structural correctness. This advancement makes it a powerful tool for predicting the behavior of the pharmaceutical fluid bed drying, which holds significant promise to facilitate pharmaceutical product development.
Collapse
Affiliation(s)
- Tuur Vandeputte
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, B-9000 Ghent, Belgium; Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, B-9000 Ghent, Belgium.
| | - Michael Ghijs
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, B-9000 Ghent, Belgium; Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, B-9000 Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, B-9000 Ghent, Belgium.
| | - Ingmar Nopens
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
5
|
Yang TL, Szewc J, Zhong L, Leonova A, Giebułtowicz J, Habashy R, Isreb A, Alhnan MA. The Use of Near-infrared as Process Analytical Technology (PAT) during 3D Printing Tablets at the Point-of-Care. Int J Pharm 2023:123073. [PMID: 37230372 DOI: 10.1016/j.ijpharm.2023.123073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Fused deposition modelling (FDM) is one of the most researched 3D printing technologies that holds great potential for low-cost manufacturing of personalised medicine. To achieve real-time release, timely quality control is a major challenge for applying 3D printing technologies as a point-of-care (PoC) manufacturing approach. This work proposes the use of a low-cost and compact near-infrared (NIR) spectroscopy modality as a process analytical technology (PAT) to monitor a critical quality attribute (drug content) during and after FDM 3D printing process. 3D printed caffeine tablets were used to manifest the feasibility of the NIR model as a quantitative analytical procedure and dose verification method. Caffeine tablets (0-40% w/w) were fabricated using polyvinyl alcohol and FDM 3D printing. The predictive performance of the NIR model was demonstrated in linearity (correlation coefficient, R2) and accuracy (root mean square error of prediction, RMSEP). The actual drug content values were determined using the reference high-performance liquid chromatography (HPLC) method. The model of full-completion caffeine tablets demonstrated linearity (R2 = 0.985) and accuracy (RMSEP =1.4%), indicated to be an alternative dose quantitation method for 3D printed products. The ability of the models to assess caffeine contents during the 3D printing process could not be accurately achieved using the model built with complete tablets. Instead, by building a predictive model for each completion stage of 20%, 40%, 60% and 80%, the model of different completion caffeine tablets displayed linearity (R2 of 0.991, 0.99, 0.987, and 0.983) and accuracy (RMSEP of 2.22%, 1.65%, 1.41%, 0.83%), respectively. Overall, this study demonstrated the feasibility of a low NIR model as a non-destructive, low-cost, compact, and rapid analysis dose verification method enabling the real-time release to facilitate 3D printing medicine production in the clinic.
Collapse
Affiliation(s)
- Tzuyi L Yang
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Jakub Szewc
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Lingu Zhong
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Anna Leonova
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Joanna Giebułtowicz
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | | | - Abdullah Isreb
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| |
Collapse
|
6
|
Al-Attili M, Ferreira C, Price C, Faulds K, Chen YC. Development of a Spatially Offset Raman Spectroscopy Probe for Monitoring Pharmaceutical Drying. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Heat Transfer Model and Soft Sensing for Segmented Fluidized Bed Dryer. Processes (Basel) 2022. [DOI: 10.3390/pr10122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this work is to evaluate thermal behaviors and develop a soft sensor for online prediction of LOD (loss-on-drying) in the segmented fluidized bed dryer (Seg-FBD) in the ConsiGma25 line, which is regarded as the intermediate critical quality attribute for the final drug product. Preheating and drying experiments are performed and heat transfers and conductions among the Seg-FBD are evaluated based on the temperature measurements from sensors and an infrared thermal camera. A temperature distribution in dryer cells and high heat conductions in walls are found. Considerable heat transfers between the neighboring dryer cells are determined, which equal approximately 7% of the energy provided from the heated air. The cell-to-cell heat transfers are implemented into the heat transfer and drying models of the Seg-FBD. The models are calibrated successively in gPROMS Formulated Products (gFP) and the temperature and LOD errors are less than 2 °C and 0.5 wt.%, respectively. Subsequently, a soft sensor is established by combining data sources, a real-time data communication method, and the developed drying model, and it shows the capability of predicting real-time LOD, where the error of end-point LOD is within 0.5 wt.%. The work provides detailed steps and applicable tools for developing a soft sensor, and the online deployment of the soft sensor could support continuous production in the Seg-FBD by enabling visualization of process status and determination of process end point.
Collapse
|
8
|
Grelier A, Zadravec M, Remmelgas J, Forgber T, Colacino F, Pilcer G, Stauffer F, Hörmann-Kincses T. Model-Guided Development of a Semi-Continuous Drying Process. Pharm Res 2022; 39:2005-2016. [PMID: 35974124 DOI: 10.1007/s11095-022-03361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION With an increased adoption of continuous manufacturing for pharmaceutical production, the ConsiGma® CTL25 wet granulation and tableting line has reached widespread use. In addition to the continuous granulation step, the semi-continuous six-segmented fluid bed dryer is a key unit in the line. The dryer is expected to have an even distribution of the inlet air between the six drying cells. However, process observations during manufacturing runs showed a repeatable pattern in drying time, which suggests a variability in the drying performance between the different cells of the dryer. The aim of this work is to understand the root-cause of this variability. MATERIALS AND METHODS In a first step, the variability in the air temperature and air flow velocity between the dryer cells was measured on an empty dryer. In a second step, the experimental data were interpreted with the help of results from computational fluid dynamics (CFD) simulations to better understand the reasons for the observed variability. RESULTS The CFD simulations were used to identify one cause of the measured difference in the air temperature, showing the impact of the air inlet design on the temperature distribution in the dryer. CONCLUSIONS Although the simulation could not predict the exact temperature, the trend was similar to the experimental observations, demonstrating the added value of this type of simulation to guide process development, engineering decisions and troubleshoot equipment performance variability.
Collapse
Affiliation(s)
- Anthony Grelier
- UCB Pharma S.A, Allée de La Recherche, 60 1070, Brussels, Belgium
| | | | | | | | - Franco Colacino
- UCB Pharma S.A, Allée de La Recherche, 60 1070, Brussels, Belgium
| | - Gabrielle Pilcer
- UCB Pharma S.A, Allée de La Recherche, 60 1070, Brussels, Belgium
| | - Fanny Stauffer
- UCB Pharma S.A, Allée de La Recherche, 60 1070, Brussels, Belgium.
| | | |
Collapse
|
9
|
Monaco D, Omar C, Reynolds GK, Tajarobi P, Litster JD, Salman AD. Drying in a continuous wet granulation line: Investigation of different end of drying control methods. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Gagnon F, Desbiens A, Poulin É, Bouchard J, Lapointe-Garant PP. Grey-box model calibration and validation for a continuous horizontal fluidized bed dryer. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Rehrl J, Hörmann-Kincses T, Sibanc R, Hsiao WK, Franke M, Khinast J. Fluidization characterization in the ConSigma 25 dryer via process data - A method of advanced quality assurance in continuous manufacturing. Int J Pharm 2021; 607:121041. [PMID: 34455056 DOI: 10.1016/j.ijpharm.2021.121041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/22/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Wet granulation lines in pharmaceutical manufacturing facilities typically comprise a dryer that removes the excess moisture content after wet granulation. In this study, a semi-continuous dryer installed in the ConsiGma 25 wet granulation line was investigated. The goal was to highlight specific characteristics of this type of dryer, utilizing the available process data and the corresponding data obtained via material characterization. This paper addresses typical effects and issues associated with the dryer's setup and operation (e.g., unexpected cell temperature profiles, the effects of air flow and temperature on the granule properties, variations in the granule moisture between the dryer cells). Since in many situations the liquid-to-solid ratio is based on the properties of granules after the granulation step, the selection of inlet air flow rate and the inlet air temperature of the dryer as well as the overall line throughput (affecting the cell fill level in the dryer) are of particular interest from a practical point of view. This paper discusses these issues and provides suggestions on how to address them when setting up the process. A novel approach for characterizing the fluidization inside the dryer by means of quantifying the "smoothness" of the temperature profile is proposed. The paper should be viewed as a hands-on guideline, which highlights possible pitfalls during the process setup and offers solutions.
Collapse
Affiliation(s)
- Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria.
| | | | - Rok Sibanc
- Bayer AG, Engineering & Technology, 51368 Leverkusen, Germany.
| | - Wen-Kai Hsiao
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria.
| | - Meik Franke
- Bayer AG, Engineering & Technology, 51368 Leverkusen, Germany; Faculty of Science and Technology (TNW), University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands(1).
| | - Johannes Khinast
- Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria.
| |
Collapse
|
12
|
Domokos A, Pusztai É, Madarász L, Nagy B, Gyürkés M, Farkas A, Fülöp G, Casian T, Szilágyi B, Nagy ZK. Combination of PAT and mechanistic modeling tools in a fully continuous powder to granule line: Rapid and deep process understanding. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Kim EJ, Kim JH, Kim MS, Jeong SH, Choi DH. Process Analytical Technology Tools for Monitoring Pharmaceutical Unit Operations: A Control Strategy for Continuous Process Verification. Pharmaceutics 2021; 13:919. [PMID: 34205797 PMCID: PMC8234957 DOI: 10.3390/pharmaceutics13060919] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Various frameworks and methods, such as quality by design (QbD), real time release test (RTRT), and continuous process verification (CPV), have been introduced to improve drug product quality in the pharmaceutical industry. The methods recognize that an appropriate combination of process controls and predefined material attributes and intermediate quality attributes (IQAs) during processing may provide greater assurance of product quality than end-product testing. The efficient analysis method to monitor the relationship between process and quality should be used. Process analytical technology (PAT) was introduced to analyze IQAs during the process of establishing regulatory specifications and facilitating continuous manufacturing improvement. Although PAT was introduced in the pharmaceutical industry in the early 21st century, new PAT tools have been introduced during the last 20 years. In this review, we present the recent pharmaceutical PAT tools and their application in pharmaceutical unit operations. Based on unit operations, the significant IQAs monitored by PAT are presented to establish a control strategy for CPV and real time release testing (RTRT). In addition, the equipment type used in unit operation, PAT tools, multivariate statistical tools, and mathematical preprocessing are introduced, along with relevant literature. This review suggests that various PAT tools are rapidly advancing, and various IQAs are efficiently and precisely monitored in the pharmaceutical industry. Therefore, PAT could be a fundamental tool for the present QbD and CPV to improve drug product quality.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Ji Hyeon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 heon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea;
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| |
Collapse
|
14
|
Gagnon F, Bouchard J, Desbiens A, Poulin É, Lapointe-Garant PP. A dynamic simulation model of a continuous horizontal fluidized bed dryer. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Ryckaert A, Ghijs M, Portier C, Djuric D, Funke A, Vervaet C, De Beer T. The Influence of Equipment Design and Process Parameters on Granule Breakage in a Semi-Continuous Fluid Bed Dryer after Continuous Twin-Screw Wet Granulation. Pharmaceutics 2021; 13:pharmaceutics13020293. [PMID: 33672389 PMCID: PMC7926462 DOI: 10.3390/pharmaceutics13020293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
The drying unit of a continuous from-powder-to-tablet manufacturing line based on twin-screw granulation (TSG) is a crucial intermediate process step to achieve the desired tablet quality. Understanding the size reduction of pharmaceutical granules before, during, and after the fluid bed drying process is, however, still lacking. A first major goal was to investigate the breakage and attrition phenomena during transport of wet and dry granules, the filling phase, and drying phase on a ConsiGma-25 system (C25). Pneumatic transport of the wet granules after TSG towards the dryer induced extensive breakage, whereas the turbulent filling and drying phase of the drying cells caused rather moderate breakage and attrition. Subsequently, the dry transfer line was responsible for additional extensive breakage and attrition. The second major goal was to compare the influence of drying air temperature and drying time on granule size and moisture content for granules processed with a commercial-scale ConsiGma-25 system and with the R&D-scale ConsiGma-1 (C1) system. Generally, the granule quality obtained after drying with C1 was not predictive for the C25, making it challenging during process development with the C1 to obtain representative granules for the C25.
Collapse
Affiliation(s)
- Alexander Ryckaert
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Michael Ghijs
- BIOMATH, Department of Mathematical Modelling, Statistics and Bio-informatics, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Christoph Portier
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (C.P.); (C.V.)
| | - Dejan Djuric
- Chemical & Pharmaceutical Development, Pharma R&D, Bayer AG, Friedrich-Ebert-Straße 475, 42117 Wuppertal, Germany; (D.D.); (A.F.)
| | - Adrian Funke
- Chemical & Pharmaceutical Development, Pharma R&D, Bayer AG, Friedrich-Ebert-Straße 475, 42117 Wuppertal, Germany; (D.D.); (A.F.)
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (C.P.); (C.V.)
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
- Correspondence: ; Tel.: +32-9-264-80-97
| |
Collapse
|
16
|
Webster GK, Pommerening CA, Harman WW, Gragg MA, Han JH, Taylor DJ. Exploiting Kinetic Solubility Differences for Low Level Detection of Crystallinity in Amorphous Drug Formulations. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666181210144338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Enabling formulations have been implemented by the pharmaceutical industry
as an effective tool for keeping Active Pharmaceutical Ingredient (API) in an amorphous state. Upon
dosing in the amorphous state, many drugs which fail to demonstrate bioactivity due to the limited solubility
and bioavailability of their crystalline form become bioavailable.
Purpose:
The analytical techniques use today for crystallinity detection are challenged by the sensitivity
and robustness needed to achieve a 5% quantitation limit in low dose drug products. Our laboratory has
developed a novel procedure capable of meeting this sensitivity and selectivity requirement. This is
achieved by exploiting the differences in kinetic solubility of the formulated amorphous and free crystalline
forms of API currently being used in dosage form platforms.
Methods:
Representative amorphous drug formulations were prepared and spiked with varying levels of
crystalline drug substances to evaluate the selectivity and recovery of the crystalline drug substance
from the product formulation. Kinetic solubility testing using a (i) Particle wetting phase, (ii) Particle
suspending/erosion phase, (iii) Sampling time point and (iv) A total recovery determination for the drug
substance.
Results:
The method selectively and quantitatively distinguishes crystalline drug substance from amorphous
drug substance for samples spiked from 2.5% to 10% of the nominal label concentration of the
API in the dosage form matrix.
Conclusion:
The kinetic solubility approach reported here achieves sensitive crystallinity quantitation
for low drug level amorphous drug formulations at levels not yet achieved by complimentary analytical
techniques.
Collapse
Affiliation(s)
- Gregory K. Webster
- Research & Development Department, AbbVie Inc., North Chicago, IL 60064, United States
| | | | - Whitney W. Harman
- Research & Development Department, AbbVie Inc., North Chicago, IL 60064, United States
| | - Mathew A. Gragg
- Research & Development Department, AbbVie Inc., North Chicago, IL 60064, United States
| | - Jian-Hwa Han
- Research & Development Department, AbbVie Inc., North Chicago, IL 60064, United States
| | - Daniel J. Taylor
- Research & Development Department, AbbVie Inc., North Chicago, IL 60064, United States
| |
Collapse
|
17
|
End-Point Prediction of Granule Moisture in a ConsiGma™-25 Segmented Fluid Bed Dryer. Pharmaceutics 2020; 12:pharmaceutics12050452. [PMID: 32423047 PMCID: PMC7284354 DOI: 10.3390/pharmaceutics12050452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/02/2020] [Accepted: 05/09/2020] [Indexed: 11/16/2022] Open
Abstract
Continuously operated pharmaceutical manufacturing lines often consist of a wet granulation unit operation, followed by a (semi-) continuous dryer. The operating conditions of the dryer are crucial for obtaining a desired final granule moisture. Commercially available dryers lack of a thorough online measurement of granule moisture during the drying process. However, this information could improve the operation of the equipment considerably, yielding a granule moisture close to the desired value (e.g., by drying time and process parameter adjustments in real-time). The paper at hand proposes a process model, which can be parameterized from a very limited number of experiments and then be used as a so-called soft sensor for predicting granule moisture. It utilizes available process measurements for the estimation of the granule moisture. The development of the model as well as parameter identification and validation experiments are provided. The proposed model paves the way for the application of sophisticated observer concepts. Possible future activities on that topic are outlined in the paper.
Collapse
|
18
|
Vanhoorne V, Vervaet C. Recent progress in continuous manufacturing of oral solid dosage forms. Int J Pharm 2020; 579:119194. [PMID: 32135231 DOI: 10.1016/j.ijpharm.2020.119194] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/28/2022]
Abstract
Continuous drug product manufacturing is slowly being implemented in the pharmaceutical industry. Although the benefits related to the quality and cost of continuous manufacturing are widely recognized, several challenges hampered the widespread introduction of continuous manufacturing of drug products. Current review presents an overview of state-of-the art research, equipment, process analytical technology implementations and advanced control strategies. Additionally, guidelines and regulatory viewpoints on implementation of continuous manufacturing in the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- V Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University.
| |
Collapse
|
19
|
Szabó E, Démuth B, Galata DL, Vass P, Hirsch E, Csontos I, Marosi G, Nagy ZK. Continuous Formulation Approaches of Amorphous Solid Dispersions: Significance of Powder Flow Properties and Feeding Performance. Pharmaceutics 2019; 11:E654. [PMID: 31817454 PMCID: PMC6955740 DOI: 10.3390/pharmaceutics11120654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Preparation and formulation of amorphous solid dispersions (ASDs) are becoming more and more popular in the pharmaceutical field because the dissolution of poorly water-soluble drugs can be effectively improved this way, which can lead to increased bioavailability in many cases. During downstream processing of ASDs, technologists need to keep in mind both traditional challenges and the newest trends. In the last decade, the pharmaceutical industry began to display considerable interest in continuous processing, which can be explained with their potential advantages such as smaller footprint, easier scale-up, and more consistent product, better quality and quality assurance. Continuous downstream processing of drug-loaded ASDs opens new ways for automatic operation. Therefore, the formulation of poorly water-soluble drugs may be more effective and safe. However, developments can be challenging due to the poor flowability and feeding properties of ASDs. Consequently, this review pays special attention to these characteristics since the feeding of the components greatly influences the content uniformity in the final dosage form. The main purpose of this paper is to summarize the most important steps of the possible ASD-based continuous downstream processes in order to give a clear overview of current course lines and future perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zsombor K. Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, H-1111 Budapest, Hungary; (E.S.); (B.D.); (D.L.G.); (P.V.); (E.H.); (I.C.); (G.M.)
| |
Collapse
|
20
|
Mu G, Liu T, Chen J, Xia L, Yu C. 110th Anniversary: Real-Time End Point Detection of Fluidized Bed Drying Process Based on a Switching Model of Near-Infrared Spectroscopy. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guoqing Mu
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China
- Institute of Advanced Control Technology, Dalian University of Technology, Dalian 116024, China
| | - Tao Liu
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China
- Institute of Advanced Control Technology, Dalian University of Technology, Dalian 116024, China
| | - Junghui Chen
- Department of Chemical Engineering, Chung-Yuan Christian University, Chung-Li District, Taoyuan 32023, Taiwan
| | - Liangzhi Xia
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Caiyuan Yu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Cha B, Galbraith SC, Liu H, Park SY, Huang Z, O’Connor T, Lee S, Yoon S. A Thermodynamic Balance Model for Liquid Film Drying Kinetics of a Tablet Film Coating and Drying Process. AAPS PharmSciTech 2019; 20:209. [PMID: 31161386 DOI: 10.1208/s12249-019-1398-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 11/30/2022] Open
Abstract
A tablet film coating and drying process was assessed by an experimentally validated thermodynamic balance model. Mass conservation equations were derived for the process air and the aqueous coating solution. Thermodynamic behavior of the solution was described by evaporation at the tablet surface and penetration into the tablet. Energy balance equations including heat loss to the atmosphere were coupled to the mass conservation equation. Experimental data using the ConsiGma™ coater (GEA, Belgium) were used for both parameter estimation and model validation. The results showed the proposed model can investigate primitive outlet variables and further internal variables representing evaporation and penetration. A sensitivity analysis revealed that evaporation depended more on the input parameters while penetration hinges on the tablet properties, particularly on the tablet volume affecting the tablet porosity.
Collapse
|
22
|
Jung N, Windbergs M. Raman spectroscopy in pharmaceutical research and industry. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In the fast-developing fields of pharmaceutical research and industry, the implementation of Raman spectroscopy and related technologies has been very well received due to the combination of chemical selectivity and the option for non-invasive analysis of samples. This chapter explores established and potential applications of Raman spectroscopy, confocal Raman microscopy and related techniques from the early stages of drug development research up to the implementation of these techniques in process analytical technology (PAT) concepts for large-scale production in the pharmaceutical industry. Within this chapter, the implementation of Raman spectroscopy in the process of selection and optimisation of active pharmaceutical ingredients (APIs) and investigation of the interaction with excipients is described. Going beyond the scope of early drug development, the reader is introduced to the use of Raman techniques for the characterization of complex drug delivery systems, highlighting the technical requirements and describing the analysis of qualitative and quantitative composition as well as spatial component distribution within these pharmaceutical systems. Further, the reader is introduced to the application of Raman techniques for performance testing of drug delivery systems addressing drug release kinetics and interactions with biological systems ranging from single cells up to complex tissues. In the last part of this chapter, the advantages and recent developments of integrating Raman technologies into PAT processes for solid drug delivery systems and biologically derived pharmaceutics are discussed, demonstrating the impact of the technique on current quality control standards in industrial production and providing good prospects for future developments in the field of quality control at the terminal part of the supply chain and various other fields like individualized medicine.
On the way from the active drug molecule (API) in the research laboratory to the marketed medicine in the pharmacy, therapeutic efficacy of the active molecule and safety of the final medicine for the patient are of utmost importance. For each step, strict regulatory requirements apply which demand for suitable analytical techniques to acquire robust data to understand and control design, manufacturing and industrial large-scale production of medicines. In this context, Raman spectroscopy has come to the fore due to the combination of chemical selectivity and the option for non-invasive analysis of samples. Following the technical advancements in Raman equipment and analysis software, Raman spectroscopy and microscopy proofed to be valuable methods with versatile applications in pharmaceutical research and industry, starting from the analysis of single drug molecules as well as complex multi-component formulations up to automatized quality control during industrial production.
Collapse
|
23
|
De Leersnyder F, Vanhoorne V, Bekaert H, Vercruysse J, Ghijs M, Bostijn N, Verstraeten M, Cappuyns P, Van Assche I, Vander Heyden Y, Ziemons E, Remon JP, Nopens I, Vervaet C, De Beer T. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer. Eur J Pharm Sci 2018; 115:223-232. [PMID: 29374528 DOI: 10.1016/j.ejps.2018.01.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/12/2017] [Accepted: 01/20/2018] [Indexed: 10/17/2022]
Abstract
Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator, dryer and mill.
Collapse
Affiliation(s)
- F De Leersnyder
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium
| | - V Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium
| | - H Bekaert
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium
| | - J Vercruysse
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium
| | - M Ghijs
- BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Belgium
| | - N Bostijn
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium
| | - M Verstraeten
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium
| | - P Cappuyns
- Department of Pharmaceutical Development, Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Belgium
| | - I Van Assche
- Department of Pharmaceutical Development, Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Belgium
| | - Y Vander Heyden
- Department of Analytical Chemistry and Pharmaceutical Technology, VUB, Belgium
| | - E Ziemons
- CIRM, Laboratory of Analytical Chemistry, University of Liege, Belgium
| | - J P Remon
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium
| | - I Nopens
- BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Belgium
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium
| | - T De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium.
| |
Collapse
|
24
|
Multivariate monitoring for the industrialisation of a continuous wet granulation tableting process. Int J Pharm 2018; 547:506-519. [DOI: 10.1016/j.ijpharm.2018.06.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022]
|
25
|
Barimani S, Šibanc R, Kleinebudde P. Optimization of a semi-batch tablet coating process for a continuous manufacturing line by design of experiments. Int J Pharm 2018; 539:95-103. [DOI: 10.1016/j.ijpharm.2018.01.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
|
26
|
|
27
|
Peters J, Teske A, Taute W, Döscher C, Höft M, Knöchel R, Breitkreutz J. Real-time process monitoring in a semi-continuous fluid-bed dryer - microwave resonance technology versus near-infrared spectroscopy. Int J Pharm 2017; 537:193-201. [PMID: 29288092 DOI: 10.1016/j.ijpharm.2017.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application.
Collapse
Affiliation(s)
- Johanna Peters
- Heinrich-Heine-University Düsseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Andreas Teske
- L.B. Bohle Maschinen + Verfahren GmbH, Industriestr. 18, 59320 Ennigerloh, Germany
| | - Wolfgang Taute
- Christian-Albrechts-University Kiel, Institute of Electrical Engineering and Information Technology, Kaiserstr. 2, 24143 Kiel, Germany
| | - Claas Döscher
- Döscher Microwave Systems GmbH, Am Diebsteich 31, 22761 Hamburg, Germany
| | - Michael Höft
- Christian-Albrechts-University Kiel, Institute of Electrical Engineering and Information Technology, Kaiserstr. 2, 24143 Kiel, Germany
| | - Reinhard Knöchel
- Christian-Albrechts-University Kiel, Institute of Electrical Engineering and Information Technology, Kaiserstr. 2, 24143 Kiel, Germany
| | - Jörg Breitkreutz
- Heinrich-Heine-University Düsseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Laske S, Paudel A, Scheibelhofer O, Sacher S, Hoermann T, Khinast J, Kelly A, Rantannen J, Korhonen O, Stauffer F, De Leersnyder F, De Beer T, Mantanus J, Chavez PF, Thoorens B, Ghiotti P, Schubert M, Tajarobi P, Haeffler G, Lakio S, Fransson M, Sparen A, Abrahmsen-Alami S, Folestad S, Funke A, Backx I, Kavsek B, Kjell F, Michaelis M, Page T, Palmer J, Schaepman A, Sekulic S, Hammond S, Braun B, Colegrove B. A Review of PAT Strategies in Secondary Solid Oral Dosage Manufacturing of Small Molecules. J Pharm Sci 2017; 106:667-712. [DOI: 10.1016/j.xphs.2016.11.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022]
|
29
|
Inagaki K, Yamashita Y. Automatic Endpoint Determination for a Fluidized-Bed Dryer by using In-Line NIRS. KAGAKU KOGAKU RONBUN 2017. [DOI: 10.1252/kakoronbunshu.43.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Koji Inagaki
- Engineering Research Laboratory, Morinaga Milk Industry Co., Ltd
| | - Yoshiyuki Yamashita
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|
30
|
Jolliffe HG, Gerogiorgis DI. Plantwide design and economic evaluation of two Continuous Pharmaceutical Manufacturing (CPM) cases: Ibuprofen and artemisinin. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2016.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Teżyk M, Milanowski B, Ernst A, Lulek J. Recent progress in continuous and semi-continuous processing of solid oral dosage forms: a review. Drug Dev Ind Pharm 2015; 42:1195-214. [PMID: 26592545 DOI: 10.3109/03639045.2015.1122607] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Continuous processing is an innovative production concept well known and successfully used in other industries for many years. The modern pharmaceutical industry is facing the challenge of transition from a traditional manufacturing approach based on batch-wise production to a continuous manufacturing model. OBJECTIVE The aim of this article is to present technological progress in manufacturing based on continuous and semi-continuous processing of the solid oral dosage forms. METHODS Single unit processes possessing an alternative processing pathway to batch-wise technology or, with some modification, an altered approach that may run continuously, and are thus able to seamlessly switch to continuous manufacturing are briefly presented. Furthermore, the concept of semi-continuous processing is discussed. Subsequently, more sophisticated production systems created by coupling single unit processes and comprising all the steps of production, from powder to final dosage form, were reviewed. Finally, attempts of end-to-end production approach, meaning the linking of continuous synthesis of API from intermediates with the production of final dosage form, are described. RESULTS There are a growing number of scientific articles showing an increasing interest in changing the approach to the production of pharmaceuticals in recent years. Numerous scientific publications are a source of information on the progress of knowledge and achievements of continuous processing. These works often deal with issues of how to modify or replace the unit processes in order to enable seamlessly switching them into continuous processing. A growing number of research papers concentrate on integrated continuous manufacturing lines in which the production concept of "from powder to tablet" is realized. Four main domains are under investigation: influence of process parameters on intermediates or final dosage forms properties, implementation of process analytical tools, control-managing system responsible for keeping continuous materials flow through the whole manufacturing process and the development of new computational methods to assess or simulate these new manufacturing techniques. The attempt to connect the primary and secondary production steps proves that development of continuously operating lines is possible. CONCLUSION A mind-set change is needed to be able to face, and fully assess, the advantages and disadvantages of switching from batch to continuous mode production.
Collapse
Affiliation(s)
- Michał Teżyk
- a Gedeon Richter Polska Sp. z o.o. , Grodzisk Mazowiecki , Poland ;,b Department of Pharmaceutical Technology , Faculty of Pharmacy, Poznan University of Medical Sciences , Poznan , Poland
| | - Bartłomiej Milanowski
- b Department of Pharmaceutical Technology , Faculty of Pharmacy, Poznan University of Medical Sciences , Poznan , Poland
| | - Andrzej Ernst
- a Gedeon Richter Polska Sp. z o.o. , Grodzisk Mazowiecki , Poland
| | - Janina Lulek
- b Department of Pharmaceutical Technology , Faculty of Pharmacy, Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
32
|
Continuous manufacturing: the future in pharmaceutical solid dosage form manufacturing. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.15.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Fonteyne M, Vercruysse J, De Leersnyder F, Van Snick B, Vervaet C, Remon JP, De Beer T. Process Analytical Technology for continuous manufacturing of solid-dosage forms. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Fonteyne M, Arruabarrena J, de Beer J, Hellings M, Van Den Kerkhof T, Burggraeve A, Vervaet C, Remon JP, De Beer T. NIR spectroscopic method for the in-line moisture assessment during drying in a six-segmented fluid bed dryer of a continuous tablet production line: Validation of quantifying abilities and uncertainty assessment. J Pharm Biomed Anal 2014; 100:21-27. [DOI: 10.1016/j.jpba.2014.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|