1
|
Mehrotra S, Kalyan BG P, Nayak PG, Joseph A, Manikkath J. Recent Progress in the Oral Delivery of Therapeutic Peptides and Proteins: Overview of Pharmaceutical Strategies to Overcome Absorption Hurdles. Adv Pharm Bull 2024; 14:11-33. [PMID: 38585454 PMCID: PMC10997937 DOI: 10.34172/apb.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Proteins and peptides have secured a place as excellent therapeutic moieties on account of their high selectivity and efficacy. However due to oral absorption limitations, current formulations are mostly delivered parenterally. Oral delivery of peptides and proteins (PPs) can be considered the need of the hour due to the immense benefits of this route. This review aims to critically examine and summarize the innovations and mechanisms involved in oral delivery of peptide and protein drugs. Methods Comprehensive literature search was undertaken, spanning the early development to the current state of the art, using online search tools (PubMed, Google Scholar, ScienceDirect and Scopus). Results Research in oral delivery of proteins and peptides has a rich history and the development of biologics has encouraged additional research effort in recent decades. Enzyme hydrolysis and inadequate permeation into intestinal mucosa are the major causes that result in limited oral absorption of biologics. Pharmaceutical and technological strategies including use of absorption enhancers, enzyme inhibition, chemical modification (PEGylation, pro-drug approach, peptidomimetics, glycosylation), particulate delivery (polymeric nanoparticles, liposomes, micelles, microspheres), site-specific delivery in the gastrointestinal tract (GIT), membrane transporters, novel approaches (self-nanoemulsifying drug delivery systems, Eligen technology, Peptelligence, self-assembling bubble carrier approach, luminal unfolding microneedle injector, microneedles) and lymphatic targeting, are discussed. Limitations of these strategies and possible innovations for improving oral bioavailability of protein and peptide drugs are discussed. Conclusion This review underlines the application of oral route for peptide and protein delivery, which can direct the formulation scientist for better exploitation of this route.
Collapse
Affiliation(s)
- Sonal Mehrotra
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pavan Kalyan BG
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | | | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
2
|
Molenda S, Sikorska A, Florczak A, Lorenc P, Dams-Kozlowska H. Oligonucleotide-Based Therapeutics for STAT3 Targeting in Cancer-Drug Carriers Matter. Cancers (Basel) 2023; 15:5647. [PMID: 38067351 PMCID: PMC10705165 DOI: 10.3390/cancers15235647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 09/08/2024] Open
Abstract
High expression and phosphorylation of signal transducer and transcription activator 3 (STAT3) are correlated with progression and poor prognosis in various types of cancer. The constitutive activation of STAT3 in cancer affects processes such as cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The importance of STAT3 in cancer makes it a potential therapeutic target. Various methods of directly and indirectly blocking STAT3 activity at different steps of the STAT3 pathway have been investigated. However, the outcome has been limited, mainly by the number of upstream proteins that can reactivate STAT3 or the relatively low specificity of the inhibitors. A new branch of molecules with significant therapeutic potential has emerged thanks to recent developments in the regulatory function of non-coding nucleic acids. Oligonucleotide-based therapeutics can silence target transcripts or edit genes, leading to the modification of gene expression profiles, causing cell death or restoring cell function. Moreover, they can reach untreatable targets, such as transcription factors. This review briefly describes oligonucleotide-based therapeutics that found application to target STAT3 activity in cancer. Additionally, this review comprehensively summarizes how the inhibition of STAT3 activity by nucleic acid-based therapeutics such as siRNA, shRNA, ASO, and ODN-decoy affected the therapy of different types of cancer in preclinical and clinical studies. Moreover, due to some limitations of oligonucleotide-based therapeutics, the importance of carriers that can deliver nucleic acid molecules to affect the STAT3 in cancer cells and cells of the tumor microenvironment (TME) was pointed out. Combining a high specificity of oligonucleotide-based therapeutics toward their targets and functionalized nanoparticles toward cell type can generate very efficient formulations.
Collapse
Affiliation(s)
- Sara Molenda
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Agata Sikorska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Patryk Lorenc
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
3
|
Wu S, Yun J, Tang W, Familiari G, Relucenti M, Wu J, Li X, Chen H, Chen R. Therapeutic m 6A Eraser ALKBH5 mRNA-Loaded Exosome-Liposome Hybrid Nanoparticles Inhibit Progression of Colorectal Cancer in Preclinical Tumor Models. ACS NANO 2023. [PMID: 37310898 DOI: 10.1021/acsnano.3c03050] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although therapeutic targets have been developed for colorectal cancer (CRC) therapy, the therapeutic effects are not ideal and the survival rate for CRC patients remains poor. Therefore, it is crucial to recognize a specific target and develop an efficacious delivery system for CRC therapy. Herein, we demonstrate that reduced ALKBH5 mediates aberrant m6A modification and tumor progression in CRC. Mechanically, histone deacetylase 2-mediated H3K27 deacetylation inhibits ALKBH5 transcription in CRC, whereas ectopic ALKBH5 expression decreases tumorigenesis of CRC cells and protects mice from colitis-associated tumor development. Further, METTL14/ALKBH5/IGF2BPs combine to modulate JMJD8 stability in an m6A-dependent manner, which increases glycolysis and accelerates the development of CRC by enhancing the enzymatic activity of PKM2. Moreover, ALKBH5 mRNA-loaded folic acid-modified exosome-liposome hybrid nanoparticles were synthesized and significantly inhibit the progression of CRC in preclinical tumor models by modulating the ALKBH5/JMJD8/PKM2 axis and inhibiting glycolysis. Overall, our research confirms the crucial function of ALKBH5 in regulating the m6A status in CRC and provides a direct preclinical approach for using ALKBH5 mRNA nanotherapeutics for CRC.
Collapse
Affiliation(s)
- Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Weiyan Tang
- Medical Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Medical and Legal Locomotive Apparatus, Section of Human Anatomy Via Alfonso Borelli, Sapienza University of Rome, Roma 5000161, Italy
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Roma 5000161, Italy
| | - Jiong Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
- Beijing Laboratory of Allergic Diseases, Capital Medical University, Beijing 100069, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
4
|
Balgobind A, Daniels A, Ariatti M, Singh M. HER2/neu Oncogene Silencing in a Breast Cancer Cell Model Using Cationic Lipid-Based Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041190. [PMID: 37111675 PMCID: PMC10142055 DOI: 10.3390/pharmaceutics15041190] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The overexpression of the human epidermal growth factor 2 (HER2/neu) oncogene is predictive of adverse breast cancer prognosis. Silencing the HER2/neu overexpression using siRNA may be an effective treatment strategy. Major requirements for siRNA-based therapy are safe, stable, and efficient delivery systems to channel siRNA into target cells. This study assessed the efficacy of cationic lipid-based systems for the delivery of siRNA. Cationic liposomes were formulated with equimolar ratios of the respective cholesteryl cytofectins, 3β-N-(N', N'-dimethylaminopropyl)-carbamoyl cholesterol (Chol-T) or N, N-dimethylaminopropylaminylsuccinylcholesterylformylhydrazide (MS09), with the neutral helper lipid, dioleoylphosphatidylethanolamine (DOPE), with and without a polyethylene glycol stabilizer. All cationic liposomes efficiently bound, compacted, and protected the therapeutic siRNA against nuclease degradation. Liposomes and siRNA lipoplexes were spherical, <200 nm in size, with moderate particle size distributions (PDI < 0.4). The siRNA lipoplexes exhibited minimal dose-dependent cytotoxicity and effective HER2/neu siRNA transfection in the HER2/neu overexpressing SKBR-3 cells. The non-PEGylated Chol-T-siRNA lipoplexes induced the highest HER2/neu silencing at the mRNA (10000-fold decrease) and protein levels (>111.6-fold decrease), surpassing that of commercially available Lipofectamine 3000 (4.1-fold reduction in mRNA expression). These cationic liposomes are suitable carriers of HER2/neu siRNA for gene silencing in breast cancer.
Collapse
Affiliation(s)
- Adhika Balgobind
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mario Ariatti
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
5
|
Eş I, Malfatti-Gasperini AA, de la Torre LG. The diffusion-driven microfluidic process to manufacture lipid-based nanotherapeutics with stealth properties for siRNA delivery. Colloids Surf B Biointerfaces 2022; 215:112476. [PMID: 35390597 DOI: 10.1016/j.colsurfb.2022.112476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Our study investigated the manufacturing of lipid-based nanotherapeutics with stealth properties for siRNA delivery by employing a diffusion-driven microfluidic process in one or two-steps strategies to produce siRNA-loaded lipid nanocarriers and lipoplexes, respectively. In the one-step synthesis, siRNA in the aqueous phase is introduced from one inlet, while phospholipids dispersed in anhydrous ethanol are introduced from other inlets, generating the lipid nanocarriers. In the two-steps strategies, the pre-formed liposomes are complexed with siRNA. The process configuration with an aqueous diffusion barrier exerts a significant effect on the nanoaggregates synthesis. Dynamic light scattering data showed that lipid nanocarriers had a bigger particle diameter (298 ± 24 nm) and surface charge (43 ± 6 mV) compared to lipoplexes (194 ± 7 nm and 37.0 ± 0.4 mV). Moreover, DSPE-PEG(2000) was included in the formulation to synthesize lipid-based nanotherapeutics containing siRNA with stealth characteristics. The inclusion of PEG-lipid resulted in an increase in the surface charge of lipoplexes (from 33.7 ± 4.4-54.3 ± 1.6 mV), while a significant decrease was observed in the surface charge of lipid nanocarriers (30.3 ± 8.7 mV). The different structural assemblies were identified for lipoplex and lipid nanocarriers using Synchrotron SAXS. Lipid nanocarriers present a lower amount of multilayers than lipoplexes. Lipid-PEG insertion significantly influenced lipid nanocarriers' characteristics, drastically decreasing the number of multilayers. This effect was not observed in lipoplexes. The association between process configuration, lipid composition, and its effect on the characteristics of lipid-based vector systems can generate fundamental insights, contributing to gene-based nanotherapeutics development.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; National Nanotechnology Research Center of Turkey (UNAM), Bilkent University, Ankara, Turkey
| | - Antonio A Malfatti-Gasperini
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Wang D, Wang X, Wang L, Zhang J, Ma J, Xia G, Hong B. Antisense microRNA185 loaded liposome for efficient inhibition of the hepatic endogenous microRNA185 level. Eur J Pharm Sci 2021; 161:105803. [PMID: 33722732 DOI: 10.1016/j.ejps.2021.105803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/08/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
MicroRNA185 (miR185), an endogenous noncoding RNA with 23 nucleotides, is one of key posttranscriptional modulators of cholesterol metabolism in hepatic cells. The antisense inhibitor of miR185 (miR185i) could decrease cholesterol level in vivo, providing a promising agent for anti-atherosclerosis strategy. In this work, a novel LipomiR185i was constructed by thin film hydration method and post-PEGylation as DOPE: DOTAP: Chol: DSPE-PEG2000 at the molar ratio of 1:1:1:0.1 with a nitrogen-to-phosphate ratio of 3, through the optimization of three cationic lipids (DOTAP, DODMA and DLin-MC3-DMA), six helper lipids (PC-98T, HSPC, DOPE, DMPC, DPPC and DSPC), different amounts and incorporation approaches of DSPE-PEG2000 and nitrogen-to-phosphate ratio. LipomiR185i was characterized with a particle size of 174 ± 11 nm, a zeta potential of 7.0 ± 3.3 mV, high encapsulation efficiency and transfection activity. It could protect miR185i from the rapid degradation by nucleases in serum, enhance cellular uptake and promote lysosomal escape in HepG2 cells. LipomiR185i could accumulate in the liver and remain for at least two weeks. More importantly, LipomiR185i significantly down-regulated the hepatic endogenous miR185 level in vitro and in vivo without significant tissue damage at 14 mg⋅kg-1. The construction of LipomiR185i provides a potential anti-atherosclerotic nanodrug as well as a platform for delivering small RNAs to the liver efficiently and safely.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jie Ma
- Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
7
|
Primary effusion lymphoma enhancer connectome links super-enhancers to dependency factors. Nat Commun 2020; 11:6318. [PMID: 33298918 PMCID: PMC7726151 DOI: 10.1038/s41467-020-20136-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Primary effusion lymphoma (PEL) has a very poor prognosis. To evaluate the contributions of enhancers/promoters interactions to PEL cell growth and survival, here we produce H3K27ac HiChIP datasets in PEL cells. This allows us to generate the PEL enhancer connectome, which links enhancers and promoters in PEL genome-wide. We identify more than 8000 genomic interactions in each PEL cell line. By incorporating HiChIP data with H3K27ac ChIP-seq data, we identify interactions between enhancers/enhancers, enhancers/promoters, and promoters/promoters. HiChIP further links PEL super-enhancers to PEL dependency factors MYC, IRF4, MCL1, CCND2, MDM2, and CFLAR. CRISPR knock out of MEF2C and IRF4 significantly reduces MYC and IRF4 super-enhancer H3K27ac signal. Knock out also reduces MYC and IRF4 expression. CRISPRi perturbation of these super-enhancers by tethering transcription repressors to enhancers significantly reduces target gene expression and reduces PEL cell growth. These data provide insights into PEL molecular pathogenesis.
Collapse
|
8
|
Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, Khaitov MR. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MEDCHEMCOMM 2019; 10:369-377. [PMID: 31015904 PMCID: PMC6457174 DOI: 10.1039/c8md00515j] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
Gene therapy is a promising approach for personalized medicine, but its application in humans requires development of efficient and safe vehicles. PEGylated liposomes are some of the most suitable delivery systems for nucleic acids because of their stability under physiological conditions and prolonged circulation time, compared to conventional and other types of "stealth" liposomes. In vitro/in vivo activity of PEGylated liposomes is highly dependent on PEG motif abundance. The process of "stealth" coverage formation is a very important parameter for efficient transfection assays and further fate determination of the PEG layer after tissue penetration. In this review, we discuss the latest methods of PEGylated liposome preparation.
Collapse
Affiliation(s)
- A S Nosova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - O O Koloskova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - A A Nikonova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
- Mechnikov Research Institute of Vaccines and Sera , Moscow , Russia
| | - V A Simonova
- I. M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - V V Smirnov
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
- I. M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - D Kudlay
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - M R Khaitov
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| |
Collapse
|
9
|
Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, Khaitov MR. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MEDCHEMCOMM 2019. [DOI: 10.1039/c8md00515j%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A brief review and comparison of the methods of PEGylation of liposomal particles and their influence on the delivery of RNA.
Collapse
Affiliation(s)
- A. S. Nosova
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
| | | | - A. A. Nikonova
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
- Mechnikov Research Institute of Vaccines and Sera
- Moscow
| | - V. A. Simonova
- I. M. Sechenov First Moscow State Medical University
- Moscow
- Russia
| | - V. V. Smirnov
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
- I. M. Sechenov First Moscow State Medical University
- Moscow
| | - D. Kudlay
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
| | - M. R. Khaitov
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
| |
Collapse
|
10
|
Gruffaz M, Zhou S, Vasan K, Rushing T, Michael QL, Lu C, Jung JU, Gao SJ. Repurposing Cytarabine for Treating Primary Effusion Lymphoma by Targeting Kaposi's Sarcoma-Associated Herpesvirus Latent and Lytic Replications. mBio 2018; 9:mBio.00756-18. [PMID: 29739902 PMCID: PMC5941074 DOI: 10.1128/mbio.00756-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/05/2023] Open
Abstract
Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically linked to primary effusion lymphoma (PEL), an aggressive and nontreatable malignancy commonly found in AIDS patients. In this study, we performed a high-throughput screening of 3,731 characterized compounds and identified cytarabine, approved by the FDA for treating numerous types of cancer, as a potent inhibitor of KSHV-induced PEL. We showed the high efficacy of cytarabine in the growth inhibition of various PEL cells by inducing cell cycle arrest and apoptosis. Cytarabine inhibited host DNA and RNA syntheses and therefore induced cellular cytotoxicity. Furthermore, cytarabine inhibited viral DNA and RNA syntheses and induced the rapid degradation of KSHV major latent protein LANA (latency-associated nuclear antigen), leading to the suppression of KSHV latent replication. Importantly, cytarabine effectively inhibited active KSHV replication and virion production in PEL cells. Finally, cytarabine treatments not only effectively inhibited the initiation and progression of PEL tumors but also induced regression of grown PEL tumors in a xenograft mouse model. Altogether, our study has identified cytarabine as a novel therapeutic agent for treating PEL as well as eliminating KSHV persistent infection.IMPORTANCE Primary effusion lymphoma is an aggressive malignancy caused by Kaposi's sarcoma-associated herpesvirus. The outcome of primary effusion lymphoma is dismal without specific treatment. Through a high-throughput screening of characterized compounds, we identified an FDA-approved compound, cytarabine, as a potent inhibitor of primary effusion lymphoma. We showed that cytarabine induced regression of PEL tumors in a xenograft mouse model. Cytarabine inhibited host and viral DNA and RNA syntheses, resulting in the induction of cytotoxicity. Of interest, cytarabine induced the degradation of KSHV major latent protein LANA, hence suppressing KSHV latent replication, which is required for PEL cell survival. Furthermore, cytarabine inhibited KSHV lytic replication program, preventing virion production. Our findings identified cytarabine as a novel therapeutic agent for treating PEL as well as for eliminating KSHV persistent infection. Since cytarabine is already approved by the FDA, it might be an ideal candidate for repurposing for PEL therapy and for further evaluation in advanced clinical trials.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Antiviral Agents/administration & dosage
- Apoptosis/drug effects
- Cell Line, Tumor
- Cytarabine/administration & dosage
- DNA Replication/drug effects
- Female
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- Lymphoma, Primary Effusion/drug therapy
- Lymphoma, Primary Effusion/physiopathology
- Lymphoma, Primary Effusion/virology
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Sarcoma, Kaposi/drug therapy
- Sarcoma, Kaposi/physiopathology
- Sarcoma, Kaposi/virology
- Virus Latency/drug effects
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shenghua Zhou
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Karthik Vasan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Teresa Rushing
- Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Qing Liu Michael
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chu Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
11
|
Du X, Khan AR, Fu M, Ji J, Yu A, Zhai G. Current development in the formulations of non-injection administration of paclitaxel. Int J Pharm 2018; 542:242-252. [PMID: 29555439 DOI: 10.1016/j.ijpharm.2018.03.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/05/2023]
Abstract
Paclitaxel (PTX) belongs to a class of taxane anti-tumor drug used for the clinic treatment of breast cancer, ovarian cancer, non-small-cell lung cancer, and so on. PTX has poor water solubility and oral bioavailability. It is generally administered via intravenous (i.v.) infusion. Traditional PTX injectable preparations contain Cremophor-EL and ethanol to improve its solubility, which would result in adverse reactions like severe hypersensitivity, neutropenia, etc. Adverse reactions can be reduced only by complicated pretreatment with glucocorticoid and antihistamines drugs and followed by PTX slow infusion for three hours, which has brought significant inconvenience to the patients. Though, a new-generation PTX formulation, Abraxane, free of Cremophor-EL and ethanol, is still being administrated by frequent i.v. infusions and extremely expensive. Therefore, non-injection administration of PTX is urgently needed to avoid the side effects as well as reduce inconvenience to the patients. Recently, a variety of non-injection drug delivery systems (DDSs) of PTX have been developed. This review aims to discuss the progress of non-injectable administration systems of PTX, including oral administration systems, vaginal administration systems, implantable DDSs, transdermal DDSs and intranasal administration for the future study and clinical applications.
Collapse
Affiliation(s)
- Xiyou Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Manfei Fu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
12
|
|
13
|
Lechanteur A, Furst T, Evrard B, Delvenne P, Piel G, Hubert P. Promoting Vaginal Distribution of E7 and MCL-1 siRNA-Silencing Nanoparticles for Cervical Cancer Treatment. Mol Pharm 2017; 14:1706-1717. [PMID: 28350964 DOI: 10.1021/acs.molpharmaceut.6b01154] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is an urgent need to develop a less aggressive and more effective treatment against cervical lesions induced by different high-risk human papillomavirus (HR-HPV). We investigated the potential of a cocktail of small interfering RNA (siRNA) directed against the oncoprotein E6 (E6), the oncoprotein E7 (E7), or the antiapoptotic protein MCL-1 (MCL-1). The combination of siRNA anti-E7 and anti-MCL-1 demonstrated high efficacy on multiple HPV16 and HPV18 cell lines and no effects on healthy keratinocytes. This gene therapy has been considered for a vaginal administration since this route of application holds high potential for the treatment of diseases in the female reproductive tracts. Therefore, PEGylated lipoplexes have been designed and characterized to protect siRNA and to diffuse in the mucosal environment before they reach the cervico/vaginal epithelium. This new nanovector complexed to the combination of active siRNA induced an efficient mRNA knockdown since biological effects were obtained in vitro. This work also provided evidence that the PEGylated lipoplexes had appropriate physicochemical properties to diffuse into a mucin network according to size measurement experiments in artificial mucus. After demonstrating the distribution and the efficacy of siRNA into a 3D-cervical model lesion and through porcine vaginal mucosa, in vivo experiments in mouse have been performed under physiological conditions. This study revealed a complete and sustained coverage of the mucosal epithelium following an unique vaginal administration of fluorescent PEGylated lipoplexes. Overall, our results showed the potential of the PEGylated lipoplexes for the prolonged delivery of active siRNA to treat HPV-induced lesions.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Philippe Delvenne
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| | - Pascale Hubert
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM and ‡Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège , 4000 Liège, Belgium
| |
Collapse
|
14
|
Ansari AS, Santerre PJ, Uludağ H. Biomaterials for polynucleotide delivery to anchorage-independent cells. J Mater Chem B 2017; 5:7238-7261. [DOI: 10.1039/c7tb01833a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparison of various chemical vectors used for polynucleotide delivery to mammalian anchorage-independent cells.
Collapse
Affiliation(s)
- Aysha S. Ansari
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Paul J. Santerre
- Institute of Biomaterials & Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
15
|
Büyükköroğlu G, Şenel B, Başaran E, Yenilmez E, Yazan Y. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur J Pharm Biopharm 2016; 109:174-183. [PMID: 27793757 DOI: 10.1016/j.ejpb.2016.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 08/28/2016] [Accepted: 10/23/2016] [Indexed: 12/20/2022]
Abstract
Cervical cancer is one of the most life threatening types of cancer among women and is generally resistant to chemotherapy. The objective of this study was to prepare a vaginal suppository containing a chemotherapeutic agent and a genetic material that can be applied locally for cervical cancer. Paclitaxel was selected as the chemotherapeutic agent and siRNA which inhibits BCL-2 oncogene was selected as the genetic material. Bcl-2 siRNA, paclitaxel and paclitaxel/Bcl-2 siRNA combination were incorporated into solid lipid nanoparticles (SLNs) and were dispersed separately in vaginal suppositories prepared with PEG 6000. Physicochemical properties of SLNs, their cytotoxicities on HeLa cell lines and also the effect of SLNs on the total protein amount of the cells were examined followed by the investigation of release rates of the active materials from the SLNs prepared. Average diameters of all SLNs prepared were below 180nm with a positive zeta potential value between +22.20 and +48.16mV at the pH range of 4.2 and 7.4. The release of Bcl-2 siRNA from SLNs incorporated Bcl-2 siRNA and the release of paclitaxel (PTX) from PTX incorporated SLNs were completed within 12h and 36h. SLNs incorporating Bcl-2 siRNA and paclitaxel/Bcl-2 siRNA were found to be more toxic when compared to paclitaxel incorporated SLN and placebo SLN. The disintegration of the vaginal suppositories as well as the release of the SLNs was completed within 2 h. This study indicates that vaginal suppository containing SLNs can bring the advantages of the simultaneous delivery of paclitaxel and siRNA via vaginal route with no help from professionals.
Collapse
Affiliation(s)
- Gülay Büyükköroğlu
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
| | - Behiye Şenel
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ebru Başaran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Evrim Yenilmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yasemin Yazan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
16
|
Lechanteur A, Furst T, Evrard B, Delvenne P, Hubert P, Piel G. PEGylation of lipoplexes: The right balance between cytotoxicity and siRNA effectiveness. Eur J Pharm Sci 2016; 93:493-503. [PMID: 27593989 DOI: 10.1016/j.ejps.2016.08.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
The delivery of small interfering RNA (siRNA) is an attractive therapeutic approach to treat several pathologies, such as viral infections or cancers. However, the stability and the efficacy of these biotherapies are still a major obstacle to their use. Cationic liposomes (DOTAP/Chol/DOPE 1/0.75/0.5M ratio) have been complexed to siRNA (lipoplexes) in order to be administrated by the vaginal route, in the context of HPV16 induced cervical preneoplastic lesions. To overcome the constraint of the cervico-vaginal mucus, PEGylation is required to allow the diffusion of lipoplexes through it. Thereby, PEGylated lipoplexes coated with three types of polyethylene glycol (PEG) as DSPE-PEG2000, DSPE-PEG750 or C8-PEG2000-Ceramide (Ceramide-PEG2000) at different densities have been developed and characterized. PEGylated lipoplexes were successfully prepared and showed a hydrodynamic diameter around 200nm, appropriate for vaginal application. In vitro assays on HPV16 positive cell lines revealed that a positive charge of PEGylated lipoplexes allows a higher mRNA knockdown by siRNA. However, the cationic property is also associated to cytotoxicity. The addition of a high percentage of PEG prevented this toxicity but seemed also to reduce siRNA endosomal escape, probably by steric hindrance. The decreasing of PEG density of Ceramide-PEG2000 to 20% allows the release of siRNA and in consequence, biological activities, contrarily to DSPE-PEG. These results suggest that Ceramide-PEG is more appropriate for siRNA delivery compared to DSPE-PEG. In conclusion, the right balance between cytotoxicity and siRNA effectiveness has been found with the transfection of lipoplexes coated with 20% of Ceramide-PEG2000. This new nanovector could have a high potential against multiple mucosal diseases, such as human papillomavirus-induced genital lesions.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium; Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium.
| | - Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|