1
|
Saadah OI, AlAmeel T, Al Sarkhy A, Hasosah M, Al-Hussaini A, Almadi MA, Al-Bawardy B, Altuwaijri TA, AlEdreesi M, Bakkari SA, Alharbi OR, Azzam NA, Almutairdi A, Alenzi KA, Al-Omari BA, Almudaiheem HY, Al-Jedai AH, Mosli MH. Saudi consensus guidance for the diagnosis and management of inflammatory bowel disease in children and adolescents. Saudi J Gastroenterol 2024:00936815-990000000-00101. [PMID: 39215473 DOI: 10.4103/sjg.sjg_171_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT The management of inflammatory bowel disease (IBD) in children and adolescents is challenging. Clear evidence-based guidelines are required for this population. This article provides recommendations for managing IBD in Saudi children and adolescents aged 6-19 years, developed by the Saudi Ministry of Health in collaboration with the Saudi Society of Clinical Pharmacy and the Saudi Gastroenterology Association. All 57 guideline statements are based on the most up-to-date information for the diagnosis and management of pediatric IBD.
Collapse
Affiliation(s)
- Omar I Saadah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Turki AlAmeel
- Department of Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ahmed Al Sarkhy
- Gastroenterology Unit, Pediatrics Department, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Hasosah
- Department of Pediatrics, Gastroenterology Unit, King Abdulaziz Medical City, National Guard Hospital, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman Al-Hussaini
- Children's Specialized Hospital, King Fahad Medical City, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Majid A Almadi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Badr Al-Bawardy
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia, Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Talal A Altuwaijri
- Department of Surgery, Division of Vascular Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed AlEdreesi
- Gastroenterology Unit, Pediatric Department, Al Habib Medical Group, Khobar, Saudi Arabia
| | - Shakir A Bakkari
- Department of Gastroenterology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Othman R Alharbi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Nahla A Azzam
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Abdulelah Almutairdi
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalidah A Alenzi
- Executive Management of Transformation, Planning, and Business Development, Tabuk Health Cluster, Tabuk, Saudi Arabia
| | - Bedor A Al-Omari
- Department of Pharmaceutical Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Ahmed H Al-Jedai
- Deputyship of Therapeutic Affairs, Ministry of Health, Riyadh, Saudi Arabia
- Colleges of Medicine and Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahmoud H Mosli
- Department of Internal Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Soltani F, Kamali H, Akhgari A, Afrasiabi Garekani H, Nokhodchi A, Sadeghi F. Formulation and optimization of a single-layer coat for targeting budesonide pellets to the descending Colon. Pharm Dev Technol 2024; 29:212-220. [PMID: 38392961 DOI: 10.1080/10837450.2024.2321250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
The current budesonide formulations are inadequate for addressing left-sided colitis, and patients might hesitate to use an enema for a prolonged time. This study focuses on developing a single-layer coating for budesonide pellets targeting the descending colon. Pellets containing budesonide (1.5%w/w), PVP K30 (5%w/w), lactose monohydrate (25%w/w) and Avicel pH 102 (68.5%w/w) were prepared using extrusion spheronization technique. Coating formulations were designed using response surface methodology with pH and time-dependent Eudragits. Dissolution tests were conducted at different pH levels (1.2, 6.5, 6.8, and 7.2). Optimal coating formulation, considering coating level and the Eudragit (S + L) ratio to the total coating weight, was determined. Budesonide pellets were coated with the optimized composition and subjected to continuous dissolution testing simulating the gastrointestinal tract. The coating, with 48% S, 12% L, and 40% RS at a 10% coating level, demonstrated superior budesonide delivery to the descending colon. Coated pellets had a spherical shape with a uniform 30 µm thickness coating, exhibiting pH and time-dependent release. Notably, zero-order release kinetics was observed for the last 9 h in colonic conditions. The study suggests that an optimized single-layer coating, incorporating pH and time-dependent polymers, holds promise for consistently delivering budesonide to the descending colon.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Pharmaceutical Research Inc, Coral Springs, Florida, USA
| | - Fatemeh Sadeghi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Ahmed AA, Otten AT, Gareb B, Huijmans JE, Eissens AC, Rehman A, Dijkstra G, Kosterink JGW, Frijlink HW, Schellekens RCA. Capsules with Ileocolonic-Targeted Release of Vitamin B 2, B 3, and C (ColoVit) Intended for Optimization of Gut Health: Development and Validation of the Production Process. Pharmaceutics 2023; 15:1354. [PMID: 37242596 PMCID: PMC10223462 DOI: 10.3390/pharmaceutics15051354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The ileocolonic-targeted delivery of vitamins can establish beneficial alterations in gut microbial composition. Here, we describe the development of capsules containing riboflavin, nicotinic acid, and ascorbic acid covered with a pH-sensitive coating (ColoVit) to establish site-specific release in the ileocolon. Ingredient properties (particle size distribution, morphology) relevant for formulation and product quality were determined. Capsule content and the in vitro release behaviour were determined using a HPLC-method. Uncoated and coated validation batches were produced. Release characteristics were evaluated using a gastro-intestinal simulation system. All capsules met the required specifications. The contents of the ingredients were in the 90.0-120.0% range, and uniformity requirements were met. In the dissolution test a lag-time in drug release of 277-283 min was found, which meets requirements for ileocolonic release. The release itself is immediate as shown by dissolution of the vitamins of more than 75% in 1 h. The production process of the ColoVit formulation was validated and reproducible, it was shown that the vitamin blend was stable during the production process and in the finished coated product. The ColoVit is intended as an innovative treatment approach for beneficial microbiome modulation and optimization of gut health.
Collapse
Affiliation(s)
- Aisha A. Ahmed
- Apotheek A15, 4207 HT Gorinchem, The Netherlands; (A.A.A.)
| | - Antonius T. Otten
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Bahez Gareb
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | | - Anko C. Eissens
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | | | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Jos G. W. Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Department of Pharmaco Therapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Reinout C. A. Schellekens
- Apotheek A15, 4207 HT Gorinchem, The Netherlands; (A.A.A.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Impact of gastric and bowel surgery on gastrointestinal drug delivery. Drug Deliv Transl Res 2023; 13:37-53. [PMID: 35585472 PMCID: PMC9726802 DOI: 10.1007/s13346-022-01179-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 01/01/2023]
Abstract
General surgical procedures on the gastrointestinal tract are commonly performed worldwide. Surgical resections of the stomach, small intestine, or large intestine can have a significant impact on the anatomy and physiological environment of the gastrointestinal tract. These physiological changes can affect the effectiveness of orally administered formulations and drug absorption and, therefore, should be considered in rational drug formulation design for specific pathological conditions that are commonly associated with surgical intervention. For optimal drug delivery, it is important to understand how different surgical procedures affect the short-term and long-term functionality of the gastrointestinal tract. The significance of the surgical intervention is dependent on factors such as the specific region of resection, the degree of the resection, the adaptive and absorptive capacity of the remaining tissue, and the nature of the underlying disease. This review will focus on the common pathological conditions affecting the gastric and bowel regions that may require surgical intervention and the physiological impact of the surgery on gastrointestinal drug delivery. The pharmaceutical considerations for conventional and novel oral drug delivery approaches that may be impacted by general surgical procedures of the gastrointestinal tract will also be addressed.
Collapse
|
5
|
Kamakura R, Raza GS, Sodum N, Lehto V, Kovalainen M, Herzig K. Colonic Delivery of Nutrients for Sustained and Prolonged Release of Gut Peptides: A Novel Strategy for Appetite Management. Mol Nutr Food Res 2022; 66:e2200192. [PMID: 35938221 PMCID: PMC9787473 DOI: 10.1002/mnfr.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Obesity is one of the major global threats to human health and risk factors for cardiometabolic diseases and certain cancers. Glucagon-like peptide-1 (GLP-1) plays a major role in appetite and glucose homeostasis and recently the USFDA approved GLP-1 agonists for the treatment of obesity and type 2 diabetes. GLP-1 is secreted from enteroendocrine L-cells in the distal part of the gastrointestinal (GI) tract in response to nutrient ingestion. Endogenously released GLP-1 has a very short half-life of <2 min and most of the nutrients are absorbed before reaching the distal GI tract and colon, which hinders the use of nutritional compounds for appetite regulation. The review article focuses on nutrients that endogenously stimulate GLP-1 and peptide YY (PYY) secretion via their receptors in order to decrease appetite as preventive action. In addition, various delivery technologies such as pH-sensitive, mucoadhesive, time-dependent, and enzyme-sensitive systems for colonic targeting of nutrients delivery are described. Sustained colonic delivery of nutritional compounds could be one of the most promising approaches to prevent obesity and associated metabolic diseases by, e.g., sustained GLP-1 release.
Collapse
Affiliation(s)
- Remi Kamakura
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Ghulam Shere Raza
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Nalini Sodum
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsFaculty of Science and ForestryUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Miia Kovalainen
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Karl‐Heinz Herzig
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
- Department of Pediatric Gastroenterology and Metabolic DiseasesPediatric InstitutePoznan University of Medical SciencesPoznań60–572Poland
| |
Collapse
|
6
|
Herbada RS, Torres-Suárez AI, Otero-Espinar FJ, Fraguas-Sanchez AI, Lopez-Cabarcos E, Rubio-Retama J, Fernández-Carballido A. Matrix tablets based on a novel poly (magnesium acrylate) hydrogel for the treatment of inflammatory bowel diseases. Int J Pharm 2021; 608:121121. [PMID: 34560203 DOI: 10.1016/j.ijpharm.2021.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
The objective of this work was to evaluate the potential use of a new polymer (PAMgA) in the development sustained release matrix tablets for the treatment of bowel inflammatory diseases. For this purpose, budesonide, a highly lipophilic compound, was used as model drug. Tablets with two reticulation grades of PAMgA (PAMgA 5 and 40) and with 9 mg of budesonide were developed and characterized. All the studies were carried out using biorelevant media (FaSSGF and FaSSIF). Swelling and erosion of PAMgA tablets was influenced by the reticulation grade of the polymer and the biorelevant media assayed, being water uptake higher for PAMgA 40 tablets in intestinal fluid, whereas PAMgA 5 showed more intense erosion in this biorelevant medium. Budesonide was released slowly from PAMgA tablets, both in gastric and intestinal environment, following Super case II transport kinetics (relaxation-controlled delivery), with a lag time of around 1-2 h. When the dissolution medium was changed sequentially throughout the trial, 75% of the budesonide dose was released in a sustained manner between 4 and 20 h of testing from PAMgA tablets, showing a more controlled budesonide release than Entocort® and Budenofalk® (commercially available sustained release formulations of budesonide). In conclusion, PAMgA polymer allows controlling the release of highly lipophilic drugs as budesonide, being an useful excipient for the development of sustained release matrix tablets.
Collapse
Affiliation(s)
- Rebeca Simancas Herbada
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; Institute of Industrial Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Ana Isabel Fraguas-Sanchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Enrique Lopez-Cabarcos
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
7
|
5-Aminosalicylic Acid Loaded Chitosan-Carrageenan Hydrogel Beads with Potential Application for the Treatment of Inflammatory Bowel Disease. Polymers (Basel) 2021; 13:polym13152463. [PMID: 34372065 PMCID: PMC8347588 DOI: 10.3390/polym13152463] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of our work is to prepare mucoadhesive particles with biopolymers and 5-Aminosalicylic acid (5ASA) using the ionotropic gelation technique to ensure a controlled drug release at the colon level with potential applications in the treatment of intestinal bowel disease (IBD). The preparation of particles through the crosslinking of Chitosan (CS) with sodium tripolyphosphate (TPP) using different mass ratios and the influence of the k-Carrageenan (kCG) layer were studied. UV–VIS spectrometry was employed to assess encapsulation efficiency and drug release profile of 5ASA. The particles were investigated using FT-IR spectrometry for chemical characterization and the DLS results highlighted a monodisperse particle size distribution. The morphology of the polymeric beads was investigated using micro-computer tomography (µCT) and Scanning Electron Microscopy (SEM). Particles based on Chitosan and k-Carrageenan were able to incorporate and preserve 5ASA in an acidic and alkaline medium. The 5ASA loaded polymeric particles obtained after immersion for 1 h in kCG solution exhibited the lowest release rate in pH = 1.2. Biocompatibility studies performed on all of the particles displayed a good viability for the CCD 841 CoN cells and low cytotoxicity. All of the results have shown that these new biomaterials could be a versatile platform of targeted carriers with potential applications in inflammatory bowel disease treatment.
Collapse
|
8
|
Tavares Junior AG, de Araújo JTC, Meneguin AB, Chorilli M. Characteristics, Properties and Analytical/Bioanalytical Methods of 5-Aminosalicylic Acid: A Review. Crit Rev Anal Chem 2020; 52:1000-1014. [PMID: 33258695 DOI: 10.1080/10408347.2020.1848516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Five-aminosalicylic acid (5-ASA) is an anti-inflammatory drug indicated in the treatment of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Among the analytical methods of quantification of 5-ASA described in the literature, the High Efficiency Liquid Chromatography stands out, a sensitive technique but with a high cost. In recent years, alternative methods have been developed, presenting efficiency and reduced cost, such as UV/visible spectrophotometric, spectrofluorescent, and electrochemical methods, techniques recommended for the application in quality control and quantification of 5-ASA in pharmaceutical forms and biological fluids. This article aims to review the physicochemical characteristics, pharmacokinetics, mechanisms of action, controlled release systems, and the different analytical and bioanalytical methods for the quantification of 5-ASA.
Collapse
Affiliation(s)
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
9
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
10
|
Gareb B, Dijkstra G, Kosterink JGW, Frijlink HW. Development of novel zero-order release budesonide tablets for the treatment of ileo-colonic inflammatory bowel disease and comparison with formulations currently used in clinical practice. Int J Pharm 2018; 554:366-375. [PMID: 30414898 DOI: 10.1016/j.ijpharm.2018.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023]
Abstract
Up to 50% of Crohn's disease and ulcerative colitis patients suffer from ileo-colonic inflammation. Topically delivered budesonide is an effective treatment but in vitro as well as clinical data suggest that oral formulations currently used in clinical practice are not optimal to treat the ileo-colon. The aim of this in vitro study was to develop ileo-colonic-targeted zero-order sustained-release tablets containing 3 mg or 9 mg budesonide. Targeted delivery was achieved by coating the tablets with the ColoPulse technology (ColoPulse 3 mg or ColoPulse 9 mg, respectively). Tablets were tested in a 10-h gastrointestinal simulation system for site-specific release, zero-order release kinetics (R2 ≥ 0.950), release rate, and completeness of release (≥80%). Release profiles of the novel formulations were compared with Entocort, Budenofalk, and Cortiment (budesonide MMX). ColoPulse 3 mg and 9 mg were targeted to the simulated ileo-colon, budesonide release was complete and in a sustained zero-order manner, and both formulations complied with a 6-month accelerated stability study. None of the formulations currently used in clinical practice targeted the ileo-colon. These in vitro results are discussed in light of clinical data. ColoPulse 3 mg and 9 mg are novel interesting formulations for the treatment of the entire ileo-colon in inflammatory bowel disease.
Collapse
Affiliation(s)
- Bahez Gareb
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; Department of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
11
|
Ferri D, Gaviña P, Parra M, Costero AM, El Haskouri J, Amorós P, Merino V, Teruel AH, Sancenón F, Martínez-Máñez R. Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180873. [PMID: 30225077 PMCID: PMC6124098 DOI: 10.1098/rsos.180873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/11/2018] [Indexed: 05/04/2023]
Abstract
Mesoporous silica microparticles were prepared, loaded with the dye safranin O (M-Saf) or with the drug budesonide (M-Bud) and capped by the grafting of a bulky azo derivative. Cargo release from M-Saf at different pH values (mimicking those found in the gastrointestinal tract) in the absence or presence of sodium dithionite (a reducing agent mimicking azoreductase enzyme present in the colon) was tested. Negligible safranin O release was observed at pH 6.8 and 4.5, whereas a moderate delivery at pH 1.2 was noted and attributed to the hydrolysis of the urea bond that linked the azo derivative onto the external surface of the inorganic scaffold. Moreover, a marked release was observed when sodium dithionite was present and was ascribed to the rupture of the azo bond in the molecular gate. Budesonide release from M-Bud in the presence of sodium dithionite was also assessed by ultraviolet-visible spectroscopy and high performance liquid chromatography measurements. In addition, preliminary in vivo experiments with M-Saf carried out in mice indicated that the chemical integrity of the microparticles remained unaltered in the stomach and the small intestine, and safranin O seemed to be released in the colon.
Collapse
Affiliation(s)
- Daniel Ferri
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València-Universitat Politècnica de València, Valencia, Spain
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València-Universitat Politècnica de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Margarita Parra
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València-Universitat Politècnica de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Ana M. Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València-Universitat Politècnica de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Jamal El Haskouri
- Instituto de Ciencia de los Materiales (ICMUV), Universitat de València, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain
| | - Pedro Amorós
- Instituto de Ciencia de los Materiales (ICMUV), Universitat de València, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain
| | - Virginia Merino
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València-Universitat Politècnica de València, Valencia, Spain
- Pharmacy and Pharmaceutical Technology and Parasitology, Universitat de València, Burjassot, 46100 Valencia, Spain
| | - Adrián H. Teruel
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València-Universitat Politècnica de València, Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València-Universitat Politècnica de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València-Universitat Politècnica de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|