1
|
Schäfer-Korting M. Looking to the Future: Drug Delivery and Targeting in the Prophylaxis and Therapy of Severe and Chronic Diseases. Handb Exp Pharmacol 2024; 284:389-411. [PMID: 37861719 DOI: 10.1007/164_2023_696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
High molecular weight actives and cell-based therapy have the potential to revolutionize the prophylaxis and therapy of severe diseases. Yet, the size and nature of the agents - proteins, nucleic acids, cells - challenge drug delivery and thus formulation development. Moreover, off-target effects may result in severe adverse drug reactions. This makes delivery and targeting an essential component of high-end drug development. Loading to nanoparticles facilitates delivery and enables targeted mRNA vaccines and tumor therapeutics. Stem cell therapy opens up a new horizon in diabetes type 1 among other domains which may enhance the quality of life and life expectancy. Cell encapsulation protects transplants against the recipient's immune system, may ensure long-term efficacy, avoid severe adverse reactions, and simplify the management of rare and fatal diseases.The knowledge gained so far encourages to widen the spectrum of potential indications. Co-development of the active agent and the vehicle has the potential to accelerate drug research. One recommended starting point is the use of computational approaches. Transferability of preclinical data to humans will benefit from performing studies first on validated human 3D disease models reflecting the target tissue, followed by studies on validated animal models. This makes approaching a new level in drug development a multidisciplinary but ultimately worthwhile and attainable challenge. Intense monitoring of the patients after drug approval and periodic reporting to physicians and scientists remain essential for the safe use of drugs especially in rare diseases and pave future research.
Collapse
|
2
|
Radbruch M, Pischon H, Du F, Haag R, Schumacher F, Kleuser B, Mundhenk L, Gruber AD. Biodegradable core-multishell nanocarrier: Topical tacrolimus delivery for treatment of dermatitis. J Control Release 2022; 349:917-928. [PMID: 35905785 DOI: 10.1016/j.jconrel.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
Two challenges in topical drug delivery to the skin include solubilizing hydrophobic drugs in water-based formulations and increasing drug penetration into the skin. Polymeric core-multishell nanocarrier (CMS), particularly the novel biodegradable CMS (bCMS = hPG-PCL1.1K-mPEG2k-CMS) have shown both advantages on excised skin ex vivo. Here, we investigated topical delivery of tacrolimus (TAC; > 500 g/mol) by bCMS in a hydrogel on an oxazolone-induced model of dermatitis in vivo. As expected, bCMS successfully delivered TAC into the skin. However, in vivo they did not increase, but decrease TAC penetration through the stratum corneum compared to ointment. Differences in the resulting mean concentrations were mostly non-significant in the skin (epidermis: 35.7 ± 20.9 ng/cm2 for bCMS vs. 92.6 ± 62.7 ng/cm2 for ointment; dermis: 76.8 ± 26.8 ng/cm2vs 118.2 ± 50.4 ng/cm2), but highly significant in blood (plasma: 1.1 ± 0.4 ng/ml vs 11.3 ± 9.3 ng/ml; erythrocytes: 0.5 ± 0.2 ng/ml vs 3.4 ± 2.4 ng/ml) and liver (0.01 ± 0.01 ng/mg vs 0.03 ± 0.01 ng/mg). bCMS were detected in the stratum corneum but not in viable skin or beyond. The therapeutic efficacy of TAC delivered by bCMS was equivalent to that of standard TAC ointment. Our results suggest that bCMS may be a promising carrier for the topical delivery of TAC. The quantitative difference to previous results should be interpreted in light of structural differences between murine and human skin, but highlights the need as well as potential methods to develop more a complex ex vivo analysis on human skin to ensure quantitative predictive value.
Collapse
Affiliation(s)
- Moritz Radbruch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Hannah Pischon
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Fang Du
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Fabian Schumacher
- Department for Nutritional Toxicology, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Burkhard Kleuser
- Department for Nutritional Toxicology, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany.
| |
Collapse
|
3
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Graff P, Hönzke S, Joshi AA, Yealland G, Fleige E, Unbehauen M, Schäfer-Korting M, Hocke A, Haag R, Hedtrich S. Preclinical Testing of Dendritic Core-Multishell Nanoparticles in Inflammatory Skin Equivalents. Mol Pharm 2022; 19:1795-1802. [PMID: 35266720 DOI: 10.1021/acs.molpharmaceut.1c00734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human skin equivalents emerged as novel tools in preclinical dermatological research. It is being claimed that they may bridge the translational gap between preclinical and clinical research, yet only a few studies have investigated their suitability for preclinical drug testing so far. Therefore, we investigated if inflammatory skin equivalents, which emulate hallmarks of atopic dermatitis (AD), are suitable to assess the anti-inflammatory effects of dexamethasone (DXM) in a cream formulation or loaded onto dendritic core-multishell nanoparticles. Topical DXM application resulted in significantly decreased expression of the proinflammatory cytokine TSLP, increased expression of the skin barrier protein involucrin, and facilitated glucocorticoid receptor translocation in a dose-dependent manner. Further, DXM treatment inhibited gene expression of extracellular matrix components, potentially indicative of the known skin atrophy-inducing side effects of glucocorticoids. Overall, we were able to successfully assess the anti-inflammatory effects of DXM and the superiority of the nanoparticle formulation. Nevertheless the identification of robust readout parameters proved challenging and requires careful study design.
Collapse
Affiliation(s)
- Patrick Graff
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany
| | - Stefan Hönzke
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Aaroh Anand Joshi
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Guy Yealland
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Emanuel Fleige
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sarah Hedtrich
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Dong P, Stellmacher J, Bouchet LM, Nieke M, Kumar A, Osorio‐Blanco ER, Nagel G, Lohan SB, Teutloff C, Patzelt A, Schäfer‐Korting M, Calderón M, Meinke MC, Alexiev U. A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pin Dong
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Freie Universität Berlin Institute of Pharmacy Berlin Germany
| | - Johannes Stellmacher
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| | - Lydia M. Bouchet
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | - Marius Nieke
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
- Humboldt-Universität zu Berlin Institute of Biology Berlin Germany
| | - Amit Kumar
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | | | - Gregor Nagel
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
| | - Silke B. Lohan
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Christian Teutloff
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | | | - Marcelo Calderón
- Freie Universität Berlin Institute of Chemistry and Biochemistry Berlin Germany
- POLYMAT Faculty of Chemistry University of the Basque Country UPV/EHU 20018 Donostia-San Sebastián Spain
- IKERBASQUE Basque Foundation for Science 48013 Bilbao Spain
| | - Martina C. Meinke
- Department of Dermatology, Venereology and Allergology Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ulrike Alexiev
- Freie Universität Berlin Institute of Experimental Physics Department of Physics Berlin Germany
| |
Collapse
|
6
|
Dong P, Stellmacher J, Bouchet LM, Nieke M, Kumar A, Osorio‐Blanco ER, Nagel G, Lohan SB, Teutloff C, Patzelt A, Schäfer‐Korting M, Calderón M, Meinke MC, Alexiev U. A Dual Fluorescence-Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM-EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:14938-14944. [PMID: 33544452 PMCID: PMC8251738 DOI: 10.1002/anie.202012852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/27/2021] [Indexed: 12/30/2022]
Abstract
Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo.
Collapse
Affiliation(s)
- Pin Dong
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Freie Universität BerlinInstitute of PharmacyBerlinGermany
| | - Johannes Stellmacher
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| | - Lydia M. Bouchet
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | - Marius Nieke
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
- Humboldt-Universität zu BerlinInstitute of BiologyBerlinGermany
| | - Amit Kumar
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | | | - Gregor Nagel
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
| | - Silke B. Lohan
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Christian Teutloff
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| | - Alexa Patzelt
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | | | - Marcelo Calderón
- Freie Universität BerlinInstitute of Chemistry and BiochemistryBerlinGermany
- POLYMATFaculty of ChemistryUniversity of the Basque CountryUPV/EHU20018Donostia-San SebastiánSpain
- IKERBASQUEBasque Foundation for Science48013BilbaoSpain
| | - Martina C. Meinke
- Department of Dermatology, Venereology and AllergologyCharité Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Ulrike Alexiev
- Freie Universität BerlinInstitute of Experimental PhysicsDepartment of PhysicsBerlinGermany
| |
Collapse
|
7
|
Rajes K, Walker KA, Hadam S, Zabihi F, Ibrahim-Bacha J, Germer G, Patoka P, Wassermann B, Rancan F, Rühl E, Vogt A, Haag R. Oxidation-Sensitive Core-Multishell Nanocarriers for the Controlled Delivery of Hydrophobic Drugs. ACS Biomater Sci Eng 2021; 7:2485-2495. [PMID: 33905661 DOI: 10.1021/acsbiomaterials.0c01771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A synthetic route for oxidation-sensitive core-multishell (osCMS) nanocarriers was established, and their drug loading and release properties were analyzed based on their structural variations. The nanocarriers showed a drug loading of 0.3-3 wt % for the anti-inflammatory drugs rapamycin and dexamethasone and the photosensitizer meso-tetra-hydroxyphenyl-porphyrin (mTHPP). Oxidative processes of the nanocarriers were probed in vitro by hydrogen peroxide, and the degradation products were identified by infrared spectroscopy supported by ab initio calculations, yielding mechanistic details on the chemical changes occurring in redox-sensitive nanocarriers. Oxidation-triggered drug release of the model drug Nile Red measured and assessed by time-dependent fluorescence spectroscopy showed a release of up to 80% within 24 h. The drug delivery capacity of the new osCMS nanocarriers was tested in ex vivo human skin with and without pretreatments to induce local oxidative stress. It was found that the delivery of mTHPP was selectively enhanced in skin under oxidative stress. The number and position of the thioether groups influenced the physicochemical as well as drug delivery properties of the carriers.
Collapse
Affiliation(s)
- Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Karolina A Walker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany.,Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jumana Ibrahim-Bacha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Gregor Germer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Piotr Patoka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Bernhard Wassermann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Eckart Rühl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| |
Collapse
|
8
|
Rajes K, Walker KA, Hadam S, Zabihi F, Rancan F, Vogt A, Haag R. Redox-Responsive Nanocarrier for Controlled Release of Drugs in Inflammatory Skin Diseases. Pharmaceutics 2020; 13:pharmaceutics13010037. [PMID: 33383706 PMCID: PMC7823658 DOI: 10.3390/pharmaceutics13010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
A synthetic route for redox-sensitive and non-sensitive core multi-shell (CMS) carriers with sizes below 20 nm and narrow molecular weight distributions was established. Cyclic voltammetric measurements were conducted characterizing the redox potentials of reduction-sensitive CMS while showcasing its reducibility through glutathione and tris(2-carboxyethyl)-phosphine as a proof of concept. Measurements of reduction-initiated release of the model dye Nile red by time-dependent fluorescence spectroscopy showed a pronounced release for the redox-sensitive CMS nanocarrier (up to 90% within 24 h) while the non-sensitive nanocarriers showed no release in PBS. Penetration experiments using ex vivo human skin showed that the redox-sensitive CMS nanocarrier could deliver higher percentages of the loaded macrocyclic dye meso-tetra (m-hydroxyphenyl) porphyrin (mTHPP) to the skin as compared to the non-sensitive CMS nanocarrier. Encapsulation experiments showed that these CMS nanocarriers can encapsulate dyes or drugs with different molecular weights and hydrophobicity. A drug content of 1 to 6 wt% was achieved for the anti-inflammatory drugs dexamethasone and rapamycin as well as fluorescent dyes such as Nile red and porphyrins. These results show that redox-initiated drug release is a promising strategy to improve the topical drug delivery of macrolide drugs.
Collapse
Affiliation(s)
- Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany;
| | - Karolina A. Walker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany;
- Correspondence: (K.A.W.); (R.H.); Tel.: +49-030-8385-2633 (R.H.)
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Fatemeh Zabihi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany;
- Correspondence: (K.A.W.); (R.H.); Tel.: +49-030-8385-2633 (R.H.)
| |
Collapse
|
9
|
Nanocrystals for Improved Drug Delivery of Dexamethasone in Skin Investigated by EPR Spectroscopy. Pharmaceutics 2020; 12:pharmaceutics12050400. [PMID: 32349460 PMCID: PMC7284345 DOI: 10.3390/pharmaceutics12050400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 01/29/2023] Open
Abstract
Nanocrystals represent an improvement over the traditional nanocarriers for dermal application, providing the advantages of 100% drug loading, a large surface area, increased adhesion, and the potential for hair follicle targeting. To investigate their advantage for drug delivery, compared to a base cream formulation, dexamethasone (Dx), a synthetic glucocorticoid frequently used for the treatment of inflammatory skin diseases, was covalently linked with the paramagnetic probe 3-(carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) to DxPCA. To investigate the penetration efficiency between these two vehicles, electron paramagnetic resonance (EPR) spectroscopy was used, which allows the quantification of a spin-labeled drug in different skin layers and the monitoring of the drug release. The penetration behavior in excised healthy and barrier-disrupted porcine skin was monitored by EPR, and subsequently analyzed using a numerical diffusion model. As a result, diffusion constants and free energy values in the different layers of the skin were identified for both formulations. Dx-nanocrystals showed a significantly increased drug amount that penetrated into viable epidermis and dermis of intact (factor 3) and barrier-disrupted skin (factor 2.1) compared to the base cream formulation. Furthermore, the observed fast delivery of the spin-labeled drug into the skin (80% DxPCA within 30 min) and a successive release from the aggregate unit into the viable tissue makes these nanocrystals very attractive for clinical applications.
Collapse
|
10
|
Frombach J, Unbehauen M, Kurniasih IN, Schumacher F, Volz P, Hadam S, Rancan F, Blume-Peytavi U, Kleuser B, Haag R, Alexiev U, Vogt A. Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin. J Control Release 2019; 299:138-148. [PMID: 30797867 DOI: 10.1016/j.jconrel.2019.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/30/2022]
Abstract
In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 μg DXM/cm2 skin encapsulated in CMS-NC (12 nm diameter, 5.8% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25% CD1a+ cells were found within the epidermal CMS-NC+ population compared to approximately 3% CD1a+/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.
Collapse
Affiliation(s)
- Janna Frombach
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Unbehauen
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Indah N Kurniasih
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany; Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Pierre Volz
- Department of Physics, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Rainer Haag
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ulrike Alexiev
- Department of Physics, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
11
|
Walker KA, Unbehauen ML, Lohan SB, Saeidpour S, Meinke MC, Zimmer R, Haag R. Spin-labeling of Dexamethasone: Radical Stability vs. Temporal Resolution of EPR-Spectroscopy on Biological Samples. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2017-1076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Spin-labeling active compounds is a convenient way to prepare them for EPR spectroscopy with minimal alteration of the target molecule. In this study we present the labeling reaction of dexamethasone (Dx) with either TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) or PCA (3-(carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy) with high yields. According to NMR data, both labels are attached at the primary hydroxy group of the steroid. In subsequent spin-stability measurements both compounds were applied onto HaCaT cells. When the signal of Dx-TEMPO decreased below the detection limit within 3 h, the signal of Dx-PCA remained stable for the same period of time.
Collapse
Affiliation(s)
- Karolina A. Walker
- Institute for Chemistry and Biochemistry , Freie Universität Berlin, Takustrasse 3 , 14195 Berlin , Germany
| | - Michael L. Unbehauen
- Institute for Chemistry and Biochemistry , Freie Universität Berlin, Takustrasse 3 , 14195 Berlin , Germany
| | - Silke B. Lohan
- Department of Dermatology, Venerology and Allergology , Center of Experimental and Applied Cutaneous Physiology, Charité – Universitätsmedizin Berlin, Charitéplatz 1 , 10117 Berlin , Germany
| | - Siavash Saeidpour
- Department of Physics , Freie Universität Berlin, Arnimallee 14 , 14195 Berlin , Germany
| | - Martina C. Meinke
- Department of Dermatology, Venerology and Allergology , Center of Experimental and Applied Cutaneous Physiology, Charité – Universitätsmedizin Berlin, Charitéplatz 1 , 10117 Berlin , Germany
| | - Reinhold Zimmer
- Institute for Chemistry and Biochemistry , Freie Universität Berlin, Takustrasse 3 , 14195 Berlin , Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry , Freie Universität Berlin, Takustrasse 3 , 14195 Berlin , Germany
| |
Collapse
|
12
|
Iqbal B, Ali J, Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol 2018; 57:646-660. [DOI: 10.1111/ijd.13902] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Babar Iqbal
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Javed Ali
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| |
Collapse
|
13
|
Giulbudagian M, Hönzke S, Bergueiro J, Işık D, Schumacher F, Saeidpour S, Lohan SB, Meinke MC, Teutloff C, Schäfer-Korting M, Yealland G, Kleuser B, Hedtrich S, Calderón M. Enhanced topical delivery of dexamethasone by β-cyclodextrin decorated thermoresponsive nanogels. NANOSCALE 2017; 10:469-479. [PMID: 29227500 DOI: 10.1039/c7nr04480a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly hydrophilic, responsive nanogels are attractive as potential systems for the topical delivery of bioactives encapsulated in their three-dimensional polymeric scaffold. Yet, these drug carrier systems suffer from drawbacks for efficient delivery of hydrophobic drugs. Addressing this, β-cyclodextrin (βCD) could be successfully introduced into the drug carrier systems by exploiting its unique affinity toward dexamethasone (DXM) as well as its role as topical penetration enhancer. The properties of βCD could be combined with those of thermoresponsive nanogels (tNGs) based on dendritic polyglycerol (dPG) as a crosslinker and linear thermoresponsive polyglycerol (tPG) inducing responsiveness to temperature changes. Electron paramagnetic resonance (EPR) studies localized the drug within the hydrophobic cavity of βCD by differences in its mobility and environmental polarity. In fact, the fabricated carriers combining a particulate delivery system with a conventional penetration enhancer, resulted in an efficient delivery of DXM to the epidermis and the dermis of human skin ex vivo (enhancement compared to commercial DXM cream: ∼2.5 fold in epidermis, ∼30 fold in dermis). Furthermore, DXM encapsulated in βCD tNGs applied to skin equivalents downregulated the expression of proinflammatory thymic stromal lymphopoietin (TSLP) and outperformed a commercially available DXM cream.
Collapse
Affiliation(s)
- M Giulbudagian
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jager J, Obst K, Lohan SB, Viktorov J, Staufenbiel S, Renz H, Unbehauen M, Haag R, Hedtrich S, Teutloff C, Meinke MC, Danker K, Dommisch H. Characterization of hyperbranched core-multishell nanocarriers as an innovative drug delivery system for the application at the oral mucosa. J Periodontal Res 2017; 53:57-65. [PMID: 28898420 DOI: 10.1111/jre.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES In the oral cavity, the mucosal tissues may develop a number of different pathological conditions, such as inflammatory diseases (gingivitis, periodontitis) and autoimmune disorders (eg, oral lichen planus) that require therapy. The application of topical drugs is one common therapeutic approach. However, their efficacy is limited. Dilution effects due to saliva hinder the adherence and the penetration of drug formulations. Therefore, the bioavailability of oral topical drugs is insufficient, and patients may suffer from disease over years, if not life-long. MATERIAL AND METHODS In the present study, we characterized core-multishell (CMS) nanocarriers for their potential use as drug delivery systems at oral mucosal tissues. For this purpose, we prepared porcine masticatory as well as buccal mucosa and performed Franz cell diffusion experiments. Penetration of fluorescently labeled CMS nanocarriers into the mucosal tissue was analyzed using confocal laser scanning microscopy. Upon exposure to CMS nanocarriers, the metabolic and proliferative activity of gingival epithelial cells was determined by MTT and sulforhodamine B assays, respectively. RESULTS Here, we could show that the carriers penetrate into both mucosal tissues, while particles penetrate deeper into the masticatory mucosa. Electron paramagnetic resonance spectroscopy revealed that the 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy-labeled glucocorticoid dexamethasone loaded on to the CMS nanocarriers was released from the carriers in both mucosal tissues but with a higher efficiency in the buccal mucosa. The release from the nanocarriers is in both cases superior compared to the release from a conventional cream, which is normally used for the treatment of inflammatory conditions in the oral cavity. The CMS nanocarriers exhibited neither cytotoxic nor proliferative effects in vitro. CONCLUSION These findings suggested that CMS nanocarriers might be an innovative approach for topical drug delivery in the treatment of oral inflammatory diseases.
Collapse
Affiliation(s)
- J Jager
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - K Obst
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - S B Lohan
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - J Viktorov
- Department of Periodontology and Synoptic Dentistry, Charité - Medical University Berlin, Berlin, Germany
| | - S Staufenbiel
- Institute of Pharmacy, Pharmaceutical Technology, Freie Universität Berlin, Berlin, Germany
| | - H Renz
- Department of Craniofacial Developmental Biology, Charité - Medical University Berlin, Berlin, Germany
| | - M Unbehauen
- Institute for Organic Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - R Haag
- Institute for Organic Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - S Hedtrich
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - C Teutloff
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - M C Meinke
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - K Danker
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - H Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité - Medical University Berlin, Berlin, Germany.,Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Naolou T, Rühl E, Lendlein A. Nanocarriers: Architecture, transport, and topical application of drugs for therapeutic use. Eur J Pharm Biopharm 2017; 116:1-3. [DOI: 10.1016/j.ejpb.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|