1
|
Villarraza J, Fuselli A, Gugliotta A, Garay E, Rodríguez MC, Fontana D, Antuña S, Gastaldi V, Battagliotti JM, Tardivo MB, Alvarez D, Castro E, Cassataro J, Ceaglio N, Prieto C. A COVID-19 vaccine candidate based on SARS-CoV-2 spike protein and immune-stimulating complexes. Appl Microbiol Biotechnol 2023; 107:3429-3441. [PMID: 37093307 PMCID: PMC10124706 DOI: 10.1007/s00253-023-12520-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.
Collapse
Affiliation(s)
- Javier Villarraza
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Antonela Fuselli
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Agustina Gugliotta
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina.
| | - Ernesto Garay
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Diego Fontana
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Victoria Gastaldi
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
| | | | | | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Claudio Prieto
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Cellargen Biotech SRL, Santa Fe, Pcia., Santa Fe, Argentina
| |
Collapse
|
2
|
Aguilar MF, Garay AS, Attallah C, Rodrigues DE, Oggero M. Changes in antibody binding and functionality after humanizing a murine scFv anti-IFN-α2: From in silico studies to experimental analysis. Mol Immunol 2022; 151:193-203. [PMID: 36166900 DOI: 10.1016/j.molimm.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/21/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
The structural and dynamic changes introduced during antibody humanization continue to be a topic open to new contributions. For this reason, the study of structural and functional changes of a murine scFv (mu.scFv) anti-rhIFN-α2b after humanization was carried out. As it was shown by long molecular dynamics simulations and circular dichroism analysis, changes in primary sequence affected the tertiary structure of the humanized scFv (hz.scFv): the position of the variable domain of light chain (VL) respective to the variable domain of heavy chain (VH) in each scFv molecule was different. This change mainly impacted on conformation and dynamics of the complementarity-determining region 3 of VH (CDR-H3) which led to changes in the specificity and affinity of humanized scFv (hz.scFv). These observations agree with experimental results that showed a decrease in the antigen-binding strength of hz.scFv, and different capacities of these molecules to neutralize the in vitro rhIFN-α2b biological activity. Besides, experimental studies to characterize antigen-antibody binding showed that mu.scFv and hz.scFv bind to the same antigen area and recognize a conformational epitope, which is evidence of docking results. Finally, the differences between these molecules to neutralize the in vitro rhIFN-α2b biological activity were described as a consequence of the blockade of certain functionally relevant amino acids of the cytokine, after scFv binding. All these observations confirmed that humanization affected the affinity and specificity of hz.scFv and pointed out that two specific changes in the frameworks would be responsible.
Collapse
Affiliation(s)
- María Fernanda Aguilar
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - A Sergio Garay
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina.
| | - Carolina Attallah
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - Daniel E Rodrigues
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina; INTEC, CONICET-UNL, Predio CONICET Santa Fe, Pje. "El Pozo", S3000 Santa Fe, Argentina
| | - Marcos Oggero
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina.
| |
Collapse
|
3
|
Villarraza CJ, Antuña S, Tardivo MB, Rodríguez MC, Mussio P, Cattaneo L, Fontana D, Díaz PU, Ortega HH, Tríbulo A, Macagno A, Bó GA, Ceaglio N, Prieto C. Development of a suitable manufacturing process for production of a bioactive recombinant equine chorionic gonadotropin (reCG) in CHO-K1 cells. Theriogenology 2021; 172:8-19. [PMID: 34082223 DOI: 10.1016/j.theriogenology.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Equine chorionic gonadotropin (eCG) is a heterodimeric glycoprotein hormone produced by pregnant mares that has been used to improve reproductive performance in different domestic species. Several strategies to produce the hormone in a recombinant way have been reported; nevertheless, no approach has been able to produce a recombinant eCG (reCG) with significant in vivo bioactivity or in sufficient quantities for commercial purposes. For this reason, the only current product available on the market consists of partially purified preparations from serum of pregnant mares (PMSG). Herein, we describe a highly efficient process based on third-generation lentiviral vectors as delivery method for the production of reCG in suspension CHO-K1 cells, with productivities above 20 IU 106 cell-1.d-1 and 70% purification yields after one purification step. Importantly, reCG demonstrated biological activity in cattle, since around 30 μg of reCG were needed to exert the same biologic effect of 400 IU of PMSG in an ovulation synchronization protocol. The results obtained demonstrate that the developed strategy represents an attractive option for the production of reCG and constitutes an auspicious alternative for the replacement of animals as a source of PMSG.
Collapse
Affiliation(s)
- Carlos Javier Villarraza
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, (S3000ZAA), Santa Fe, Argentina
| | - Sebastián Antuña
- Biotecnofe S.A., PTLC, Ruta 168 Pje El Pozo, (CP3000), Santa Fe, Argentina
| | | | - María Celeste Rodríguez
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, (S3000ZAA), Santa Fe, Argentina
| | - Pablo Mussio
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | | | - Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, (S3000ZAA), Santa Fe, Argentina; Cellargen Biotech S.R.L., Antonia Godoy 6369 (S3000ZAA), Santa Fe, Argentina; Biotecnofe S.A., PTLC, Ruta 168 Pje El Pozo, (CP3000), Santa Fe, Argentina
| | - Pablo U Díaz
- UNL, FCV, R.P. Kreder, 2805, Esperanza, Santa Fe, Argentina; Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet Litoral), Universidad Nacional Del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- UNL, FCV, R.P. Kreder, 2805, Esperanza, Santa Fe, Argentina; Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet Litoral), Universidad Nacional Del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Andres Tríbulo
- Instituto de Reproducción Animal Córdoba (IRAC), Paraje Pozo Del Tigre, Zona Rural Gral, Paz, (X5145), Córdoba, Argentina
| | - Alejandro Macagno
- Instituto AP de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María (UNVM), Villa Del Rosario, (X5963), Córdoba, Argentina
| | - Gabriel A Bó
- Instituto AP de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María (UNVM), Villa Del Rosario, (X5963), Córdoba, Argentina; Instituto de Reproducción Animal Córdoba (IRAC), Paraje Pozo Del Tigre, Zona Rural Gral, Paz, (X5145), Córdoba, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, (S3000ZAA), Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina; Cellargen Biotech S.R.L., Antonia Godoy 6369 (S3000ZAA), Santa Fe, Argentina; Biotecnofe S.A., PTLC, Ruta 168 Pje El Pozo, (CP3000), Santa Fe, Argentina.
| |
Collapse
|
4
|
Pharmacokinetics Versus In Vitro Antiproliferative Potency to Design a Novel Hyperglycosylated hIFN-α2 Biobetter. Pharm Res 2021; 38:37-50. [PMID: 33443683 DOI: 10.1007/s11095-020-02978-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE IFN4N is a glycoengineered version of recombinant human interferon alpha 2 (rhIFN-α2) that was modified to exhibit four N-glycosylation sites. It shows reduced in vitro specific biological activity (SBA) mainly due to R23 mutation by N23. However, it has improved pharmacokinetics and led to a high in vivo antitumor activity in mice. In order to prepare a new IFN-based biobetter, this work compares the influence of glycosylation (affecting pharmacokinetics) with the in vitro antiproliferative SBA on the in vivo efficacy. METHODS Based on IFN4N, three groups of muteins were designed, produced, and characterized. Group A: variants with the same glycosylation degree (4N) but higher in vitro antiproliferative SBA (R23 restored); group B: muteins with higher glycosylation degree (5N) but similar in vitro antiproliferative activity; and group C: variants with improved glycosylation (5N and 6N) and in vitro antiproliferative bioactivity. RESULTS Glycoengineering was successful for improving pharmacokinetics, and R23 restoration considerably increased in vitro antiproliferative activity of new muteins compared to IFN4N. Hyperglycosylation was able to improve the in vivo efficacy similarly to or even better than R23 restoration. Additionally, the highest glycosylated mutein exhibited the lowest immunogenicity. CONCLUSIONS Hyperglycosylation constitutes a successful strategy to prepare a novel IFN biobetter.
Collapse
|
5
|
Schmitt MG, White RN, Barnard GC. Development of a high cell density transient CHO platform yielding mAb titers greater than 2 g/L in only 7 days. Biotechnol Prog 2021; 36:e3047. [PMID: 33411420 DOI: 10.1002/btpr.3047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
We developed a simple transient Chinese Hamster Ovary expression platform. Titers for a random panel of 20 clinical monoclonal antibodies (mAbs) ranged from 0.6 to 2.7 g/L after 7 days. Two factors were the key in obtaining these high titers. First, we utilized an extremely high starting cell density (20 million cells/ml), and then arrested further cell growth by employing mild hypothermic conditions (32°C). Second, we performed a 6-variable Design of Experiments to find optimal concentrations of plasmid DNA (coding DNA), boost DNA (DNA encoding the XBP1S transcription factor), transfection reagent (polyethylenimine [PEI]), and nutrient feed amounts. High coding DNA concentrations (12.5 mg/L) were found to be optimal. We therefore diluted expensive coding DNA with inexpensive inert filler DNA (herring sperm DNA). Reducing the coding DNA concentration by 70% from 12.5 to 3.75 mg/L did not meaningfully reduce mAb titers. Titers for the same panel of 20 clinical mAbs ranged from 0.7 to 2.2 g/L after reducing the coding DNA concentration to 3.75 mg/L. Finally, we found that titer and product quality attributes were similar for a clinical mAb (rituximab) expressed at very different scales (volumes ranging from 3 ml to 2 L).
Collapse
Affiliation(s)
- Matthew G Schmitt
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Technology Center, Indianapolis, Indiana, USA
| | - Regina N White
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Technology Center, Indianapolis, Indiana, USA
| | - Gavin C Barnard
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Technology Center, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Sales MDLM, Kratje R, Oggero M, Ceaglio N. Bifunctional GM-CSF-derived peptides as tools for O-glycoengineering and protein tagging. J Biotechnol 2020; 327:18-27. [PMID: 33387593 DOI: 10.1016/j.jbiotec.2020.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Rapid development of effective biotherapeutics has been a concern during the last couple decades. In our work we designed two novel peptide tags, GMOP and mGMOP, derived from the N-terminal region of human granulocyte and macrophage colony stimulating factor (hGM-CSF), which contain four and six potential O-glycosylation sites, respectively. These peptide tags were fused to the N-terminus of human interferon-α2b (hIFN-α2b), a therapeutic antiviral and antiproliferative protein rapidly cleared from circulation. Two new molecules were obtained which, consistently with the presence of O-glycans, showed higher molecular masses, more negatively charged isoforms, and higher sialic acid content compared to wild-type IFN. In vitro bioactivity of purified chimeras revealed a similar antiviral specific biological activity (SBA) compared to unmodified IFN. A reduction of antiproliferative SBA was only observed for mGMOP-IFN. Pharmacokinetic studies in rats showed a notable improvement in terminal half-life (t1/2elim) (3.3 and 2.8 times-longer) and a marked reduction of the apparent clearance (CLapp, 3.7 and 4.1-fold lower for GMOP-IFN and mGMOP-IFN in comparison with native IFN, respectively). Furthermore, the in vitro thermal and plasma stability of both proteins was improved. Finally, a monoclonal antibody (mAb) that recognizes an N-terminal GM-CSF epitope was able to bind both chimeras in western blots and ELISAs. This demonstrates the potential of both peptides to behave as bifunctional tags to create novel long-acting biotherapeutics and to facilitate detection and purification.
Collapse
Affiliation(s)
- María de Los Milagros Sales
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Marcos Oggero
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina.
| |
Collapse
|
7
|
Wintjens R, Bifani AM, Bifani P. Impact of glycan cloud on the B-cell epitope prediction of SARS-CoV-2 Spike protein. NPJ Vaccines 2020; 5:81. [PMID: 32944295 PMCID: PMC7474083 DOI: 10.1038/s41541-020-00237-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2 outbreak originated in China in late 2019 and has since spread to pandemic proportions. Diagnostics, therapeutics and vaccines are urgently needed. We model the trimeric Spike protein, including flexible loops and all N-glycosylation sites, in order to elucidate accessible epitopes for antibody-based diagnostics, therapeutics and vaccine development. Based on published experimental data, six homogeneous glycosylation patterns and two heterogeneous ones were used for the analysis. The glycan chains alter the accessible surface areas on the S-protein, impeding antibody-antigen recognition. In presence of glycan, epitopes on the S1 subunit, that notably contains the receptor binding domain, remain mostly accessible to antibodies while those present on the S2 subunit are predominantly inaccessible. We identify 28 B-cell epitopes in the Spike structure and group them as non-affected by the glycan cloud versus those which are strongly masked by the glycan cloud, resulting in a list of favourable epitopes as targets for vaccine development, antibody-based therapy and diagnostics.
Collapse
Affiliation(s)
- René Wintjens
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development (RD3), Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Amanda Makha Bifani
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Pablo Bifani
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Immunos Building, Singapore, 138648 Singapore
- Infectious Diseases Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077 Singapore
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
8
|
Cipollo JF, Parsons LM. Glycomics and glycoproteomics of viruses: Mass spectrometry applications and insights toward structure-function relationships. MASS SPECTROMETRY REVIEWS 2020; 39:371-409. [PMID: 32350911 PMCID: PMC7318305 DOI: 10.1002/mas.21629] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 05/21/2023]
Abstract
The advancement of viral glycomics has paralleled that of the mass spectrometry glycomics toolbox. In some regard the glycoproteins studied have provided the impetus for this advancement. Viral proteins are often highly glycosylated, especially those targeted by the host immune system. Glycosylation tends to be dynamic over time as viruses propagate in host populations leading to increased number of and/or "movement" of glycosylation sites in response to the immune system and other pressures. This relationship can lead to highly glycosylated, difficult to analyze glycoproteins that challenge the capabilities of modern mass spectrometry. In this review, we briefly discuss five general areas where glycosylation is important in the viral niche and how mass spectrometry has been used to reveal key information regarding structure-function relationships between viral glycoproteins and host cells. We describe the recent past and current glycomics toolbox used in these analyses and give examples of how the requirement to analyze these complex glycoproteins has provided the incentive for some advances seen in glycomics mass spectrometry. A general overview of viral glycomics, special cases, mass spectrometry methods and work-flows, informatics and complementary chemical techniques currently used are discussed. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- John F. Cipollo
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| | - Lisa M. Parsons
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| |
Collapse
|
9
|
Silva FD, Oliveira JE, Freire RP, Suzuki MF, Soares CR, Bartolini P. Expression of glycosylated human prolactin in HEK293 cells and related N-glycan composition analysis. AMB Express 2019; 9:135. [PMID: 31468229 PMCID: PMC6715758 DOI: 10.1186/s13568-019-0856-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/12/2019] [Indexed: 11/11/2022] Open
Abstract
Prolactin (PRL) is a hormone produced by the pituitary gland with innumerable functions, such as lactation, reproduction, osmotic and immune regulation. The present work describes the synthesis of hPRL in human embryonic kidney (HEK293) cells, transiently transfected with the pcDNA-3.4-TOPO® vector carrying the hPRL cDNA. A concentration of ~ 20 mg/L, including glycosylated (G-hPRL) and non-glycosylated (NG-hPRL) human prolactin, was obtained, with ~ 19% of G-hPRL, which is higher than that observed in CHO-derived hPRL (~ 10%) and falling within the wide range of 5–30% reported for pituitary-derived hPRL. N-Glycoprofiling analysis of G-hPRL provided: (i) identification of each N-glycan structure and relative intensity; (ii) average N-glycan mass; (iii) molecular mass of the whole glycoprotein and relative carbohydrate mass fraction; (iv) mass fraction of each monosaccharide. The data obtained were compared to pituitary- and CHO-derived G-hPRL. The whole MM of HEK-derived G-hPRL, determined via MALDI–TOF-MS, was 25,123 Da, which is 0.88% higher than pit- and 0.61% higher than CHO-derived G-hPRL. The main difference with the latter was due to sialylation, which was ~ sevenfold lower, but slightly higher than that observed in native G-hPRL. The “in vitro” bioactivity of HEK-G-hPRL was ~ fourfold lower than that of native G-hPRL, with which it had in common also the number of N-glycan structures.
Collapse
|
10
|
Gurevich Messina JM, Giudicessi SL, Martínez Ceron MC, Urtasun N, Forno G, Mauro L, Cascone O, Camperi SA. Recombinant human follicle stimulating hormone purification by a short peptide affinity chromatography. J Pept Sci 2018; 24:e3128. [DOI: 10.1002/psc.3128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Juan M. Gurevich Messina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología; Junín 956 1113 Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica; Junín 956 1113 Buenos Aires Argentina
| | - Silvana L. Giudicessi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología; Junín 956 1113 Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica; Junín 956 1113 Buenos Aires Argentina
| | - María C. Martínez Ceron
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología; Junín 956 1113 Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica; Junín 956 1113 Buenos Aires Argentina
| | - Nicolás Urtasun
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología; Junín 956 1113 Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica; Junín 956 1113 Buenos Aires Argentina
| | - Guillermina Forno
- R&D Zelltek S.A., Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje el Pozo; CC 242 Santa Fe Argentina
| | - Laura Mauro
- R&D Zelltek S.A., Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje el Pozo; CC 242 Santa Fe Argentina
| | - Osvaldo Cascone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología; Junín 956 1113 Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica; Junín 956 1113 Buenos Aires Argentina
| | - Silvia A. Camperi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología; Junín 956 1113 Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica; Junín 956 1113 Buenos Aires Argentina
| |
Collapse
|
11
|
Sant'Ana PM, Oliveira JE, Lima ER, Soares CRJ, Peroni CN, Bartolini P, Ribela MTCP. Human thyroid-stimulating hormone synthesis in human embryonic kidney cells and related N-glycoprofiling analysis for carbohydrate composition determination. Appl Microbiol Biotechnol 2017; 102:1215-1228. [PMID: 29247366 DOI: 10.1007/s00253-017-8684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/01/2022]
Abstract
A strain of embryonic human kidney cells (HEK293) was transiently co-transfected with the expression vectors coding for the α- and β-subunits of human thyroid-stimulating hormone (hTSH), and, for the first time, a human cell-derived recombinant hTSH was synthesized and extensively characterized. The purification strategy involving two steps provided an overall yield of 55% and a purity level > 90%. The purified material (hTSH-HEK) was analyzed and compared to a CHO-derived recombinant preparation (hTSH-CHO) and to a pituitary-derived (hTSH-Pit) preparation. The three preparations showed an equivalent purity (> 95%) with a hTSH-HEK molecular mass 2.1% lower than that of hTSH-CHO and 2.7% higher than that of hTSH-Pit. Remarkable differences were found in the carbohydrate moiety, the lowest sialic acid content and highest fucose content being observed in hTSH-HEK. In vivo biological activity was confirmed for the three preparations, the hTSH-HEK bioactivity being 39 and 16% lower than those of hTSH-CHO and hTSH-Pit, respectively. The hTSH-HEK circulatory half-life (t 1/2) was also shorter than those of hTSH-CHO (1.5-fold) and hTSH-Pit (1.2-fold). According to these findings, HEK-293-derived hTSH can be considered to be useful for clinical applications, in view as well of its human origin and particular carbohydrate composition.
Collapse
Affiliation(s)
- P M Sant'Ana
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - J E Oliveira
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - E R Lima
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - C R J Soares
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - C N Peroni
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - P Bartolini
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Maria Teresa C P Ribela
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|