1
|
Sarker B, Matiur Rahaman M, Alamin MH, Ariful Islam M, Nurul Haque Mollah M. Boosting edgeR (Robust) by dealing with missing observations and gene-specific outliers in RNA-Seq profiles and its application to explore biomarker genes for diagnosis and therapies of ovarian cancer. Genomics 2024; 116:110834. [PMID: 38527595 DOI: 10.1016/j.ygeno.2024.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
The edgeR (Robust) is a popular approach for identifying differentially expressed genes (DEGs) from RNA-Seq profiles. However, it shows weak performance against gene-specific outliers and is unable to handle missing observations. To address these issues, we proposed a pre-processing approach of RNA-Seq count data by combining the iLOO-based outlier detection and random forest-based missing imputation approach for boosting the performance of edgeR (Robust). Both simulation and real RNA-Seq count data analysis results showed that the proposed edgeR (Robust) outperformed than the conventional edgeR (Robust). To investigate the effectiveness of identified DEGs for diagnosis, and therapies of ovarian cancer (OC), we selected top-ranked 12 DEGs (IL6, XCL1, CXCL8, C1QC, C1QB, SNAI2, TYROBP, COL1A2, SNAP25, NTS, CXCL2, and AGT) and suggested hub-DEGs guided top-ranked 10 candidate drug-molecules for the treatment against OC. Hence, our proposed procedure might be an effective computational tool for exploring potential DEGs from RNA-Seq profiles for diagnosis and therapies of any disease.
Collapse
Affiliation(s)
- Bandhan Sarker
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Matiur Rahaman
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China.
| | - Muhammad Habibulla Alamin
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Ariful Islam
- Bioinformatics Laboratory (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Laboratory (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
2
|
Tavakoli S, Evans A, Oommen OP, Creemers L, Nandi JB, Hilborn J, Varghese OP. Unveiling extracellular matrix assembly: Insights and approaches through bioorthogonal chemistry. Mater Today Bio 2023; 22:100768. [PMID: 37600348 PMCID: PMC10432810 DOI: 10.1016/j.mtbio.2023.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Visualizing cells, tissues, and their components specifically without interference with cellular functions, such as biochemical reactions, and cellular viability remains important for biomedical researchers worldwide. For an improved understanding of disease progression, tissue formation during development, and tissue regeneration, labeling extracellular matrix (ECM) components secreted by cells persists is required. Bioorthogonal chemistry approaches offer solutions to visualizing and labeling ECM constituents without interfering with other chemical or biological events. Although biorthogonal chemistry has been studied extensively for several applications, this review summarizes the recent advancements in using biorthogonal chemistry specifically for metabolic labeling and visualization of ECM proteins and glycosaminoglycans that are secreted by cells and living tissues. Challenges, limitations, and future directions surrounding biorthogonal chemistry involved in the labeling of ECM components are discussed. Finally, potential solutions for improvements to biorthogonal chemical approaches are suggested. This would provide theoretical guidance for labeling and visualization of de novo proteins and polysaccharides present in ECM that are cell-secreted for example during tissue remodeling or in vitro differentiation of stem cells.
Collapse
Affiliation(s)
- Shima Tavakoli
- Macromolecular Chemistry Division, Department of Chemistry–Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden
| | - Austin Evans
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Laura Creemers
- Department of Orthopedics, University Medical Center Utrecht, 3584, CX, Utrecht, the Netherlands
| | - Jharna Barman Nandi
- Department of Chemistry, Sarojini Naidu College for Women, 30 Jessore Road, Kolkata, 700028, India
| | - Jöns Hilborn
- Macromolecular Chemistry Division, Department of Chemistry–Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden
| | - Oommen P. Varghese
- Macromolecular Chemistry Division, Department of Chemistry–Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden
| |
Collapse
|
3
|
Obeng EM, Fulcher AJ, Wagstaff KM. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnol Adv 2023; 64:108108. [PMID: 36740026 DOI: 10.1016/j.biotechadv.2023.108108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The engineering of potent prophylactic and therapeutic complexes has always required careful protein modification techniques with seamless capabilities. In this light, methods that favor unobstructed multivalent targeting and correct antigen presentations remain essential and very demanding. Sortase A (SrtA) transpeptidation has exhibited these attributes in various settings over the years. However, its applications for engineering avidity-inspired therapeutics and potent vaccines have yet to be significantly noticed, especially in this era where active targeting and multivalent nanomedications are in great demand. This review briefly presents the SrtA enzyme and its associated transpeptidation activity and describes interesting sortase-mediated protein engineering and chemistry approaches for achieving multivalent therapeutic and antigenic responses. The review further highlights advanced applications in targeted delivery systems, multivalent therapeutics, adoptive cellular therapy, and vaccine engineering. These innovations show the potential of sortase-mediated techniques in facilitating the development of simple plug-and-play nanomedicine technologies against recalcitrant diseases and pandemics such as cancer and viral infections.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Brown Y, Hua S, Tanwar PS. Extracellular Matrix in High-Grade Serous Ovarian Cancer: Advances in Understanding of Carcinogenesis and Cancer Biology. Matrix Biol 2023; 118:16-46. [PMID: 36781087 DOI: 10.1016/j.matbio.2023.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is notoriously known as the "silent killer" of post-menopausal women as it has an insidious progression and is the deadliest gynaecological cancer. Although a dual origin of HGSOC is now widely accepted, there is growing evidence that most cases of HGSOC originate from the fallopian tube epithelium. In this review, we will address the fallopian tube origin and involvement of the extracellular matrix (ECM) in HGSOC development. There is limited research on the role of ECM at the earliest stages of HGSOC carcinogenesis. Here we aim to synthesise current understanding on the contribution of ECM to each stage of HGSOC development and progression, beginning at serous tubal intraepithelial carcinoma (STIC) precursor lesions and proceeding across key events including dissemination of tumourigenic fallopian tube epithelial cells to the ovary, survival of these cells in peritoneal fluid as multicellular aggregates, and colonisation of the ovary. Likewise, as part of the metastatic series of events, serous ovarian cancer cells survive travel in peritoneal fluid, attach to, migrate across the mesothelium and invade into the sub-mesothelial matrix of secondary sites in the peritoneal cavity. Halting cancer at the pre-metastatic stage and finding ways to stop the dissemination of ovarian cancer cells from the primary site is critical for improving patient survival. The development of drug resistance also contributes to poor survival statistics in HGSOC. In this review, we provide an update on the involvement of the ECM in metastasis and drug resistance in HGSOC. Interplay between different cell-types, growth factor gradients as well as evolving ECM composition and organisation, creates microenvironment conditions that promote metastatic progression and drug resistance of ovarian cancer cells. By understanding ECM involvement in the carcinogenesis and chemoresistance of HGSOC, this may prompt ideas for further research for developing new early diagnostic tests and therapeutic strategies for HGSOC with the end goal of improving patient health outcomes.
Collapse
Affiliation(s)
- Yazmin Brown
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Pradeep S Tanwar
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| |
Collapse
|
5
|
Mitry MMA, Greco F, Osborn HMI. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chemistry 2023; 29:e202203942. [PMID: 36656616 DOI: 10.1002/chem.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Bioorthogonal chemistry involves selective biocompatible reactions between functional groups that are not normally present in biology. It has been used to probe biomolecules in living systems, and has advanced biomedical strategies such as diagnostics and therapeutics. In this review, the challenges and opportunities encountered when translating in vitro bioorthogonal approaches to in vivo settings are presented, with a focus on methods to deliver the bioorthogonal reaction components. These methods include metabolic bioengineering, active targeting, passive targeting, and simultaneously used strategies. The suitability of bioorthogonal ligation reactions and bond cleavage reactions for in vivo applications is critically appraised, and practical considerations such as the optimum scheduling regimen in pretargeting approaches are discussed. Finally, we present our own perspectives for this area and identify what, in our view, are the key challenges that must be overcome to maximise the impact of these approaches.
Collapse
Affiliation(s)
- Madonna M A Mitry
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
6
|
A mutated glycosaminoglycan-binding domain functions as a novel probe to selectively target heparin-like epitopes on tumor cells. J Biol Chem 2022; 298:102609. [PMID: 36265583 PMCID: PMC9672413 DOI: 10.1016/j.jbc.2022.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
The high heterogeneity and mutation rate of cancer cells often lead to the failure of targeted therapy, and therefore, new targets for multitarget therapy of tumors are urgently needed. Aberrantly expressed glycosaminoglycans (GAGs) have been shown to be involved in tumorigenesis and are promising new targets. Recently, the GAG-binding domain rVAR2 of the Plasmodium falciparum VAR2CSA protein was identified as a probe targeting cancer-associated chondroitin sulfate A-like epitopes. In this study, we found that rVAR2 could also bind to heparin (Hep) and chondroitin sulfate E. Therefore, we used rVAR2 as a model to establish a method based on random mutagenesis of the GAG-binding protein and phage display to identify and optimize probes targeting tumor GAGs. We identified a new probe, VAR2HP, which selectively recognized Hep by interacting with unique epitopes consisting of a decasaccharide structure that contains at least three HexA2S(1-4)GlcNS6S disaccharides. Moreover, we found that these Hep-like epitopes were overexpressed in various cancer cells. Most importantly, our in vivo experiments showed that VAR2HP had good biocompatibility and preferentially localizes to tumors, which indicates that VAR2HP has great application potential in tumor diagnosis and targeted therapy. In conclusion, this study provides a strategy for the discovery of novel tumor-associated GAG epitopes and their specific probes.
Collapse
|
7
|
Watanabe I. Properties of Monoclonal Antibodies Recognizing Chondroitin Sulfate E. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2120.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Watanabe I. Properties of Monoclonal Antibodies Recognizing Chondroitin Sulfate E. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2120.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Kronemberger GS, Miranda GASC, Tavares RSN, Montenegro B, Kopke ÚDA, Baptista LS. Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Front Bioeng Biotechnol 2021; 9:682498. [PMID: 34239860 PMCID: PMC8258101 DOI: 10.3389/fbioe.2021.682498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.
Collapse
Affiliation(s)
- Gabriela S. Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Guilherme A. S. C. Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Renata S. N. Tavares
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Bianca Montenegro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Úrsula de A. Kopke
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leandra S. Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
10
|
Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. J Pers Med 2021; 11:jpm11020088. [PMID: 33572559 PMCID: PMC7911184 DOI: 10.3390/jpm11020088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
The extracellular matrix (ECM) plays an active role in cell life through a tightly controlled reciprocal relationship maintained by several fibrous proteins, enzymes, receptors, and other components. It is also highly involved in cancer progression. Because of its role in cancer etiology, the ECM holds opportunities for cancer therapy on several fronts. There are targets in the tumor-associated ECM at the level of signaling molecules, enzyme expression, protein structure, receptor interactions, and others. In particular, the ECM is implicated in invasiveness of tumors through its signaling interactions with cells. By capitalizing on the biology of the tumor microenvironment and the opportunities it presents for intervention, the ECM has been investigated as a therapeutic target, to facilitate drug delivery, and as a prognostic or diagnostic marker for tumor progression and therapeutic intervention. This review summarizes the tumor ECM biology as it relates to drug delivery with emphasis on design parameters targeting the ECM.
Collapse
|
11
|
Li W, Zhang Y, Li Y, Cao Y, Zhou J, Sun Z, Wu W, Tan X, Shao Y, Xie K, Yan X. Profiling Analysis Reveals the Crucial Role of the Endogenous Peptides in Bladder Cancer Progression. Onco Targets Ther 2020; 13:12443-12455. [PMID: 33311987 PMCID: PMC7725083 DOI: 10.2147/ott.s281713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022] Open
Abstract
Background Peptide drugs provide promising regimes in bladder cancer. In order to identify potential bioactive peptides involved in bladder cancer, we performed the present study. Methods Liquid chromatography/mass spectrometry assay was used to compare the endogenous peptides between bladder cancer and normal control. The potential biological functions of these dysregulated peptides are assessed by GO analysis and KEGG pathway analysis of their precursors. The SMART and UniProt databases are used to identify the sequences of the dysregulated peptides located in the functional domains. The Open Targets Platform database was used to investigate the precursors related to metabolic diseases. Results A total of 9 up-regulated peptides and 110 down-regulated peptides in bladder cancer compared with normal control were identified (fold change > 1.2, P < 0.05). The MW of these dysregulated peptides ranged from 500 Da to 2500 Da and the MW of all identified peptides was below 3500 Da. The GO and KEGG pathway analysis indicated that these dysregulated peptides could play an important role in bladder cancer. Our further analysis revealed that 45HFNPRFNAHGDAN 57 derived from LGALS1 and those peptides derived from P4HB and SERPINA1 might be the promising diagnostic biomarkers and therapeutic targets of bladder cancer. Conclusion In the present study, we have identified the profile of the peptides significantly dysregulated in bladder cancer. Moreover, using bioinformatic analysis, we found the peptides derived from LGALS1, P4HB and SERPINA1 could be the promising diagnostic biomarkers and therapeutic targets of bladder cancer.
Collapse
Affiliation(s)
- Weijian Li
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Yang Zhang
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China.,Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, People's Republic of China
| | - Youjian Li
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China.,Department of Urology Surgery, The People's Hospital of Xuancheng City, Xuancheng, People's Republic of China
| | - Yuepeng Cao
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, People's Republic of China
| | - Jun Zhou
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Zhongxu Sun
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Wanke Wu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaofang Tan
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Shao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Women's Health Care, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, People's Republic of China
| | - Xiang Yan
- Department of Nephrology and Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China.,Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
The role of caspase-8 in the tumor microenvironment of ovarian cancer. Cancer Metastasis Rev 2020; 40:303-318. [PMID: 33026575 PMCID: PMC7897206 DOI: 10.1007/s10555-020-09935-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is an aspartate-specific cysteine protease, which is best known for its apoptotic functions. Caspase-8 is placed at central nodes of multiple signal pathways, regulating not only the cell cycle but also the invasive and metastatic cell behavior, the immune cell homeostasis and cytokine production, which are the two major components of the tumor microenvironment (TME). Ovarian cancer often has dysregulated caspase-8 expression, leading to imbalance between its apoptotic and non-apoptotic functions within the tumor and the surrounding milieu. The downregulation of caspase-8 in ovarian cancer seems to be linked to high aggressiveness with chronic inflammation, immunoediting, and immune resistance. Caspase-8 plays therefore an essential role not only in the primary tumor cells but also in the TME by regulating the immune response, B and T lymphocyte activation, and macrophage differentiation and polarization. The switch between M1 and M2 macrophages is possibly associated with changes in the caspase-8 expression. In this review, we are discussing the non-apoptotic functions of caspase-8, highlighting this protein as a modulator of the immune response and the cytokine composition in the TME. Considering the low survival rate among ovarian cancer patients, it is urgently necessary to develop new therapeutic strategies to optimize the response to the standard treatment. The TME is highly heterogenous and provides a variety of opportunities for new drug targets. Given the variety of roles of caspase-8 in the TME, we should focus on this protein in the development of new therapeutic strategies against the TME of ovarian cancer.
Collapse
|
13
|
Gouarderes S, Mingotaud AF, Vicendo P, Gibot L. Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site. Expert Opin Drug Deliv 2020; 17:1703-1726. [PMID: 32838565 DOI: 10.1080/17425247.2020.1814735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Modern comprehensive studies of tumor microenvironment changes allowed scientists to develop new and more efficient strategies that will improve anticancer drug delivery on site. The tumor microenvironment, especially the dense extracellular matrix, has a recognized capability to hamper the penetration of conventional drugs. Development and co-applications of strategies aiming at remodeling the tumor microenvironment are highly demanded to improve drug delivery at the tumor site in a therapeutic prospect. AREAS COVERED Increasing indications suggest that classical physical approaches such as exposure to ionizing radiations, hyperthermia or light irradiation, and emerging ones as sonoporation, electric field or cold plasma technology can be applied as standalone or associated strategies to remodel the tumor microenvironment. The impacts on vasculature and extracellular matrix remodeling of these physical approaches will be discussed with the goal to improve nanotherapeutics delivery at the tumor site. EXPERT OPINION Physical approaches to modulate vascular properties and remodel the extracellular matrix are of particular interest to locally control and improve drug delivery and thus increase its therapeutic index. They are particularly powerful as adjuvant to nanomedicine delivery; the development of these technologies could have extremely widespread implications for cancer treatment.[Figure: see text].
Collapse
Affiliation(s)
- Sara Gouarderes
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| |
Collapse
|
14
|
Kim HJ, Park JS, Yi SW, Go M, Kim HR, Lee SJ, Park JM, Cha DH, Shim SH, Park KH. A transport system based on a quantum dot-modified nanotracer is genetically and developmentally stable in pregnant mice. Biomater Sci 2020; 8:3392-3403. [PMID: 32377654 DOI: 10.1039/d0bm00311e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of nanoscale materials (NMs) could cause problems such as cytotoxicity, genomic aberration, and effects on human health, but the impacts of NM exposure during pregnancy remain uncharacterized in the context of clinical applications. It was sought to determine whether nanomaterials pass through the maternal-fetal junction at any stage of pregnancy. Quantum dots (QDs) coated with heparinized Pluronic 127 nanogels and polyethyleneimine (PEI) were administered to pregnant mice. The biodistribution of QDs, as well as their biological impacts on maternal and fetal health, was evaluated. Encapsulation of QDs with a nanogel coating produces a petal-like nanotracer (PNt), which could serve as a nano-carrier of genes or drugs. PNts were injected through the tail vein and accumulated in the liver, kidneys, and lungs. QD accumulation in reproductive organs (uterus, placenta, and fetus) differed among phases of pregnancy. In phase I (7 days of pregnancy), the QDs did not accumulate in the placenta or fetus, but by phase III (19 days) they had accumulated at high levels in both tissues. Karyotype analysis revealed that the PNt-treated pups did not have genetic abnormalities when dams were treated at any phase of pregnancy. PNts have the potential to serve as carriers of therapeutic agents for the treatment of the mother or fetus and these results have a significant impact on the development and application of QD-based NPs in pregnancy.
Collapse
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano-regenerative Medical Engineering, Department of Biomedical Science, College of Life Science, CHA University, 618, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gupta S, Pathak Y, Gupta MK, Vyas SP. Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4066-4088. [PMID: 31625408 DOI: 10.1080/21691401.2019.1677680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the second most common gynaecological malignancy. It usually occurs in women older than 50 years, and because 75% of cases are diagnosed at stage III or IV it is associated with poor diagnosis. Despite the chemosensitivity of intraperitoneal chemotherapy, the majority of patients is relapsed and eventually dies. In addition to the challenge of early detection, its treatment presents several challenges like the route of administration, resistance to therapy with recurrence and specific targeting of cancer to reduce cytotoxicity and side effects. In ovarian cancer therapy, nanocarriers help overcome problems of poor aqueous solubility of chemotherapeutic drugs and enhance their delivery to the tumour sites either by passive or active targeting, and thus reducing adverse side effects to the healthy tissues. Moreover, the bioavailability to the tumour site is increased by the enhanced permeability and retention (EPR) mechanism. The present review aims to describe the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors designed against ovarian cancer to overcome the drawbacks of conventional delivery. Conclusively, targeted nanocarriers would optimise the intra-tumour distribution, followed by drug delivery into the intracellular compartment. These features may contribute to greater therapeutic effect.
Collapse
Affiliation(s)
- Swati Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh , Noida , India
| | - Yashwant Pathak
- College of Pharmacy, University of South Florida Health , Tampa , FL , USA.,Faculty of Pharmacy, University of Airlangga , Surabaya , Indonesia
| | - Manish K Gupta
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute (TERI), Gual Pahari, TERI Gram , Gurugram , India
| | - Suresh P Vyas
- Department of Pharmaceutical Sciences, Dr H.S. Gour University , Sagar , India
| |
Collapse
|
16
|
Briquez PS, Hauert S, de Titta A, Gray LT, Alpar AT, Swartz MA, Hubbell JA. Engineering Targeting Materials for Therapeutic Cancer Vaccines. Front Bioeng Biotechnol 2020; 8:19. [PMID: 32117911 PMCID: PMC7026271 DOI: 10.3389/fbioe.2020.00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Therapeutic cancer vaccines constitute a valuable tool to educate the immune system to fight tumors and prevent cancer relapse. Nevertheless, the number of cancer vaccines in the clinic remains very limited to date, highlighting the need for further technology development. Recently, cancer vaccines have been improved by the use of materials, which can strongly enhance their intrinsic properties and biodistribution profile. Moreover, vaccine efficacy and safety can be substantially modulated through selection of the site at which they are delivered, which fosters the engineering of materials capable of targeting cancer vaccines to specific relevant sites, such as within the tumor or within lymphoid organs, to further optimize their immunotherapeutic effects. In this review, we aim to give the reader an overview of principles and current strategies to engineer therapeutic cancer vaccines, with a particular focus on the use of site-specific targeting materials. We will first recall the goal of therapeutic cancer vaccination and the type of immune responses sought upon vaccination, before detailing key components of cancer vaccines. We will then present how materials can be engineered to enhance the vaccine's pharmacokinetic and pharmacodynamic properties. Finally, we will discuss the rationale for site-specific targeting of cancer vaccines and provide examples of current targeting technologies.
Collapse
Affiliation(s)
- Priscilla S. Briquez
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Sylvie Hauert
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | | | - Laura T. Gray
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Aaron T. Alpar
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Mohtashami Z, Esmaili Z, Vakilinezhad MA, Seyedjafari E, Akbari Javar H. Pharmaceutical implants: classification, limitations and therapeutic applications. Pharm Dev Technol 2019; 25:116-132. [DOI: 10.1080/10837450.2019.1682607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zahra Mohtashami
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaili
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamid Akbari Javar
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Ghanemi A, Melouane A, Yoshioka M, St-Amand J. Secreted protein acidic and rich in cysteine and bioenergetics: Extracellular matrix, adipocytes remodeling and skeletal muscle metabolism. Int J Biochem Cell Biol 2019; 117:105627. [PMID: 31589923 DOI: 10.1016/j.biocel.2019.105627] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) remodeling plays important roles in both adipocytes shape/expansion remodeling and the skeletal muscle (SM) metabolism. Secreted protein acidic and rich in cysteine (SPARC) is expressed in divers tissues including adipose tissue (AT) and SM where it impacts a variety of remodeling as well as metabolic functions. SPARC, also known as osteonectin or BM-40, is a glycoprotein associated with the ECM. Numerous researches attempted to elucidate the implications of SPARC in these two key metabolic tissues under different conditions. Whereas SPARC deficiency tends to shape the remodeling of the adipocytes and the fat distribution, this deficiency decreases SM metabolic properties. On the other hand, SPARC seems to be an enhancer of the metabolism and a mediator of the exercise-induced adaptation in the SM and as well as an adipogenesis inhibitor. Some findings about the SPARC effects on AT and SM seem "contradictory" in terms of tissue development and energy profile therefore highlighting the mechanistic role of SPARC in both is a priority. Yet, within this review, we expose selected researches and compare the results. We conclude with explanations to "reconcile" the different observations, hypothesize the feedback and regulatory character of SPARC and put its roles within the energetic and structural maps of both adipocytes and myocytes in homeostasis and in situations such as obesity or exercise. These properties explain the modifications and the remodeling seen in AT and SM undergoing adaptive changes (obesity, exercise, etc.) and represent a starting point for precise therapeutic targeting of SPARC-related pathways is conditions such as obesity, sarcopenia and diabetes.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Québec G1V 0A6, Canada
| | - Aicha Melouane
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Québec G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
19
|
Bazylińska U, Kulbacka J, Chodaczek G. Nanoemulsion Structural Design in Co-Encapsulation of Hybrid Multifunctional Agents: Influence of the Smart PLGA Polymers on the Nanosystem-Enhanced Delivery and Electro-Photodynamic Treatment. Pharmaceutics 2019; 11:pharmaceutics11080405. [PMID: 31405247 PMCID: PMC6723278 DOI: 10.3390/pharmaceutics11080405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 01/25/2023] Open
Abstract
In the present study, we examined properties of poly(lactide-co-glycolide) (PLGA)-based nanocarriers (NCs) with various functional or “smart” properties, i.e., coated with PLGA, polyethylene glycolated PLGA (PEG-PLGA), or folic acid-functionalized PLGA (FA-PLGA). NCs were obtained by double emulsion (water-in-oil-in-water) evaporation process, which is one of the most suitable approaches in nanoemulsion structural design. Nanoemulsion surface engineering allowed us to co-encapsulate a hydrophobic porphyrin photosensitizing dye—verteporfin (VP) in combination with low-dose cisplatin (CisPt)—a hydrophilic cytostatic drug. The composition was tested as a multifunctional and synergistic hybrid agent for bioimaging and anticancer treatment assisted by electroporation on human ovarian cancer SKOV-3 and control hamster ovarian fibroblastoid CHO-K1 cell lines. The diameter of PLGA NCs with different coatings was on average 200 nm, as shown by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. We analyzed the effect of the nanocarrier charge and the polymeric shield variation on the colloidal stability using microelectrophoretic and turbidimetric methods. The cellular internalization and anticancer activity following the electro-photodynamic treatment (EP-PDT) were assessed with confocal microscopy and flow cytometry. Our data show that functionalized PLGA NCs are biocompatible and enable efficient delivery of the hybrid cargo to cancer cells, followed by enhanced killing of cells when supported by EP-PDT.
Collapse
Affiliation(s)
- Urszula Bazylińska
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Grzegorz Chodaczek
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland
| |
Collapse
|
20
|
Dai X, Böker A, Glebe U. Broadening the scope of sortagging. RSC Adv 2019; 9:4700-4721. [PMID: 35514663 PMCID: PMC9060782 DOI: 10.1039/c8ra06705h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.
Collapse
Affiliation(s)
- Xiaolin Dai
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| |
Collapse
|
21
|
Hoosen Y, Pradeep P, Kumar P, du Toit LC, Choonara YE, Pillay V. Nanotechnology and Glycosaminoglycans: Paving the Way Forward for Ovarian Cancer Intervention. Int J Mol Sci 2018; 19:E731. [PMID: 29510526 PMCID: PMC5877592 DOI: 10.3390/ijms19030731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer (OC) has gained a great deal of attention due to its aggressive proliferative capabilities, high death rates and poor treatment outcomes, rendering the disease the ultimate lethal gynaecological cancer. Nanotechnology provides a promising avenue to combat this malignancy by the niche fabrication of optimally-structured nanomedicines that ensure potent delivery of chemotherapeutics to OC, employing nanocarriers to act as "intelligent" drug delivery vehicles, functionalized with active targeting approaches for precision delivery of chemotherapeutics to overexpressed biomarkers on cancer cells. Recently, much focus has been implemented to optimize these active targeting mechanisms for treatment/diagnostic purposes employing nanocarriers. This two-part article aims to review the latest advances in active target-based OC interventions, where the impact of the newest antibody, aptamer and folate functionalization on OC detection and treatment is discussed in contrast to the limitations of this targeting mechanism. Furthermore, we discuss the latest advances in nanocarrier based drug delivery in OC, highlighting their commercial/clinical viability of these systems beyond the realms of research. Lastly, in the second section of this review, we comprehensively discussed a focus shift in OC targeting from the well-studied OC cells to the vastly neglected extracellular matrix and motivate the potential for glycosaminoglycans (GAGs) as a more focused extracellular molecular target.
Collapse
Affiliation(s)
- Yasar Hoosen
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
22
|
Sulfated polysaccharide of Sepiella Maindroni ink inhibits the migration, invasion and matrix metalloproteinase-2 expression through suppressing EGFR-mediated p38/MAPK and PI3K/Akt/mTOR signaling pathways in SKOV-3 cells. Int J Biol Macromol 2018; 107:349-362. [DOI: 10.1016/j.ijbiomac.2017.08.178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
|
23
|
Raavé R, van Kuppevelt TH, Daamen WF. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting. J Control Release 2018; 274:1-8. [PMID: 29382546 DOI: 10.1016/j.jconrel.2018.01.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/17/2022]
Abstract
Systemic chemotherapy is a primary strategy in the treatment of cancer, but comes with a number of limitations such as toxicity and unfavorable biodistribution. To overcome these issues, numerous targeting systems for specific delivery of chemotherapeutics to tumor cells have been designed and evaluated. Such strategies generally address subsets of tumor cells, still allowing the progressive growth of tumor cells not expressing the target. Moreover, tumor stem cells and tumor supportive cells, such as cancer associated fibroblasts and cancer associated macrophages, are left unaffected by this approach. In this review, we discuss an alternative targeting strategy aimed at delivery of anti-tumor drugs to the tumoral extracellular matrix with the potential to eliminate all cell types. The extracellular matrix of tumors is vastly different from that of healthy tissue and offers hooks for targeted drug delivery. It is concluded that matrix targeting is promising, but that clinical studies are required to evaluate translation.
Collapse
Affiliation(s)
- René Raavé
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Department of Biochemistry, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Toin H van Kuppevelt
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Department of Biochemistry, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Department of Biochemistry, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|