1
|
Stasińska-Jakubas M, Dresler S, Strzemski M, Rubinowska K, Hawrylak-Nowak B. Differentiated response of Hypericum perforatum to foliar application of selected metabolic modulators: Elicitation potential of chitosan, selenium, and salicylic acid mediated by redox imbalance. PHYTOCHEMISTRY 2024; 227:114231. [PMID: 39068961 DOI: 10.1016/j.phytochem.2024.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Plants plastically alter their metabolism in response to environmental stimuli, which induces changes in the accumulation of specialized metabolites. This ability can be utilized to manipulate plant phytochemistry in a desired direction. However, the abundance of secondary metabolites in the different plant species, especially medicinal, is enormous; therefore, it is difficult to establish a clear direction for the effects of metabolic modulators on phytochemical composition, especially given the possibility of using different types thereof. In order to gain insight into these changes, we investigated the effects of foliar-applied chitosan (ChL, 100 mg/L), selenium (Se, 10 mg/L), salicylic acid (SA, 150 mg/L), or an equal volume mixture thereof on Hypericum perforatum L. metabolism. Selenium and SA proved to be the more effective than ChL in enhancing the accumulation of phenolic compounds. The greatest increase was found in the concentration of neochlorogenic acid after Se-spraying. The treatment with the elicitors generally increased the concentration of identified flavonoids, but not the level of naphthodianthrone or phloroglucinol metabolites. The most pronounced response was observed on day 10 following the application of the compounds, and is likely the consequence of elevated levels of O2-˙, free proline, and modulated activity of enzymatic antioxidants.
Collapse
Affiliation(s)
- Maria Stasińska-Jakubas
- Department of Botany and Plant Physiology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033, Lublin, Poland; Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Katarzyna Rubinowska
- Department of Botany and Plant Physiology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland.
| |
Collapse
|
2
|
Zernov N, Ghamaryan V, Melenteva D, Makichyan A, Hunanyan L, Popugaeva E. Discovery of a novel piperazine derivative, cmp2: a selective TRPC6 activator suitable for treatment of synaptic deficiency in Alzheimer's disease hippocampal neurons. Sci Rep 2024; 14:23512. [PMID: 39384900 PMCID: PMC11464757 DOI: 10.1038/s41598-024-73849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Alzheimer disease (AD) is characterized by progressive loss of memory. Synaptic loss is now the best correlate of cognitive dysfunction in patients with Alzheimer's disease. Thus, restoration or limitation of synapse loss is a promising strategy for pharmacotherapy of AD. N-N substituted piperazines are widely used chemical compounds for drug interventions to treat different illnesses including CNS diseases such as drug abuse, mental and anxiety disorders. Piperazine derivatives are small molecules that are usually well tolerated and cross blood brain barrier (BBB). Thus, disubstituted piperazines are good tools for searching and developing novel disease-modifying drugs. Previously, we have determined the piperazine derivative, 51164, as an activator of TRPC6 in dendritic spines. We have demonstrated synaptoprotective properties of 51164 in AD mouse models. However, 51164 was not able to cross BBB. Within the current study, we identified a novel piperazine derivative, cmp2, that is structurally similar to 51164 but is able to cross BBB. Cmp2 binds central part of monomeric TRPC6 in similar way as hypeforin does. Cmp2 selectively activates TRPC6 but not structurally related TRPC3 and TRPC7. Novel piperazine derivative exhibits synaptoprotective properties in culture and slices and penetrates the BBB. In vivo study indicated cmp2 (10 mg/kg I.P.) reversed deficits in synaptic plasticity in the 5xFAD mice. Thus, we suggest that cmp2 is a novel lead compound for drug development. The mechanism of cmp2 action is based on selective TRPC6 stimulation and it is expected to treat synaptic deficiency in hippocampal neurons.
Collapse
Affiliation(s)
- Nikita Zernov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Viktor Ghamaryan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, 0051, Armenia
| | - Daria Melenteva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Ani Makichyan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, 0051, Armenia
| | - Lernik Hunanyan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, 0051, Armenia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
| |
Collapse
|
3
|
Zernov N, Popugaeva E. Role of Neuronal TRPC6 Channels in Synapse Development, Memory Formation and Animal Behavior. Int J Mol Sci 2023; 24:15415. [PMID: 37895105 PMCID: PMC10607207 DOI: 10.3390/ijms242015415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The transient receptor potential cation channel, subfamily C, member 6 (TRPC6), has been believed to adjust the formation of an excitatory synapse. The positive regulation of TRPC6 engenders synapse enlargement and improved learning and memory in animal models. TRPC6 is involved in different synaptoprotective signaling pathways, including antagonism of N-methyl-D-aspartate receptor (NMDAR), activation of brain-derived neurotrophic factor (BDNF) and postsynaptic store-operated calcium entry. Positive regulation of TRPC6 channels has been repeatedly shown to be good for memory formation and storage. TRPC6 is mainly expressed in the hippocampus, particularly in the dentate granule cells, cornu Ammonis 3 (CA3) pyramidal cells and gamma-aminobutyric acid (GABA)ergic interneurons. It has been observed that TRPC6 agonists have a great influence on animal behavior including memory formation and storage The purpose of this review is to collect the available information on the role of TRPC6 in memory formation in various parts of the brain to understand how TRPC6-specific pharmaceutical agents will affect memory in distinct parts of the central nervous system (CNS).
Collapse
Affiliation(s)
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
4
|
Wang AF, Tian JM, Zhao XJ, Li ZH, Zhang Y, Lu K, Wang H, Zhang SY, Tu YQ, Ding TM, Xie YY. Asymmetric Intramolecular Hydroalkylation of Internal Olefin with Cycloalkanone to Directly Access Polycyclic Systems. Angew Chem Int Ed Engl 2023; 62:e202308858. [PMID: 37462217 DOI: 10.1002/anie.202308858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
An asymmetric intramolecular hydroalkylation of unactivated internal olefins with tethered cyclic ketones was realized by the cooperative catalysis of a newly designed chiral amine (SPD-NH2 ) and PdII complex, providing straightforward access to either bridged or fused bicyclic systems containing three stereogenic centers with excellent enantioselectivity (up to 99 % ee) and diastereoselectivity (up to >20 : 1 dr). Notably, the bicyclic products could be conveniently transformed into a diverse range of key structures frequently found in bioactive terpenes, such as Δ6 -protoilludene, cracroson D, and vulgarisins. The steric hindrance between the Ar group of the SPD-NH2 catalyst and the branched chain of the substrate, hydrogen-bonding interactions between the N-H of the enamine motif and the C=O of the directing group MQ, and the counterion of the PdII complex were identified as key factors for excellent stereoinduction in this dual catalytic process by density functional theory calculations.
Collapse
Affiliation(s)
- Ai-Fang Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jin-Miao Tian
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Jing Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Li XX, Yan Y, Zhang J, Ding K, Xia CY, Pan XG, Shi YJ, Xu JK, He J, Zhang WK. Hyperforin: A natural lead compound with multiple pharmacological activities. PHYTOCHEMISTRY 2023; 206:113526. [PMID: 36442576 DOI: 10.1016/j.phytochem.2022.113526] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Hypericum perforatum L. (Clusiaceae), commonly known as St. John's wort, has a rich historical background as one of the oldest and most widely studied herbal medicines. Hyperforin is the main antidepressant active ingredient of St. John's wort. In recent years, hyperforin has attached increasing attention due to its multiple pharmacological activities. In this review, the information on hyperforin was systematically summarized. Hyperforin is considered to be a lead compound with diverse pharmacological activities including anti-depression, anti-tumor, anti-dementia, anti-diabetes and others. It can be obtained by extraction and synthesis. Further pharmacological studies and more precise detection methods will help develop a value for hyperforin. In addition, structural modification and pharmaceutical preparation technology will be beneficial to promoting the research progress of hyperforin based innovative drugs. Although these works are full of known and unknown challenges, researchers are still expected to make hyperforin play a greater value.
Collapse
Affiliation(s)
- Xin-Xin Li
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China; School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yan-Jing Shi
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| |
Collapse
|
6
|
Zernov N, Veselovsky AV, Poroikov VV, Melentieva D, Bolshakova A, Popugaeva E. New Positive TRPC6 Modulator Penetrates Blood-Brain Barrier, Eliminates Synaptic Deficiency and Restores Memory Deficit in 5xFAD Mice. Int J Mol Sci 2022; 23:13552. [PMID: 36362339 PMCID: PMC9653995 DOI: 10.3390/ijms232113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Synapse loss in the brain of Alzheimer's disease patients correlates with cognitive dysfunctions. Drugs that limit synaptic loss are promising pharmacological agents. The transient receptor potential cation channel, subfamily C, member 6 (TRPC6) regulates the formation of an excitatory synapse. Positive regulation of TRPC6 results in increased synapse formation and enhances learning and memory in animal models. The novel selective TRPC6 agonist, 3-(3-,4-Dihydro-6,7-dimethoxy-3,3-dimethyl-1-isoquinolinyl)-2H-1-benzopyran-2-one, has recently been identified. Here we present in silico, in vitro, ex vivo, pharmacokinetic and in vivo studies of this compound. We demonstrate that it binds to the extracellular agonist binding site of the human TRPC6, protects hippocampal mushroom spines from amyloid toxicity in vitro, efficiently recovers synaptic plasticity in 5xFAD brain slices, penetrates the blood-brain barrier and recovers cognitive deficits in 5xFAD mice. We suggest that C20 might be recognized as the novel TRPC6-selective drug suitable to treat synaptic deficiency in Alzheimer's disease-affected hippocampal neurons.
Collapse
Affiliation(s)
- Nikita Zernov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Alexander V. Veselovsky
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vladimir V. Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Daria Melentieva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| |
Collapse
|
7
|
Cirak C, Seyis F, Özcan A, Yurteri E. Ontogenetic changes in phenolic contents and volatile composition of Hypericum androsaemum and Hypericum xylosteifolium. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
9
|
Saffariha M, Jahani A, Jahani R. A comparison of artificial intelligence techniques for predicting hyperforin content in Hypericum perforatum L. in different ecological habitats. PLANT DIRECT 2021; 5:e363. [PMID: 34849453 PMCID: PMC8611508 DOI: 10.1002/pld3.363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
Hyperforin, a major bioactive constituent of Hypericum concentration, is impacted by various phenological phases and soil characteristics. We aimed to design a model predicting hyperforin content in Hypericum perforatum based on different ecological and phenological conditions. We employed artificial intelligence modeling techniques including multilayer perceptron (MLP), radial basis function (RBF), and support vector machine (SVM) to examine the factors critical in predicting hyperforin content. We found that the MLP model (R 2 = .9) is the most suitable and precise model compared with RBF (R 2 = .81) and SVM (R 2 = .74) in predicting hyperforin in H. perforatum based on ecological conditions, plant growth, and soil features. Moreover, phenological stages, organic carbon, altitude, and total N are detected in sensitivity analysis as the main factors that have a considerable impact on hyperforin content. We also report that the developed graphical user interface would be adaptable for key stakeholders including producers, manufacturers, analytical laboratory managers, and pharmacognosists.
Collapse
Affiliation(s)
| | - Ali Jahani
- Assessment and Environment Risks DepartmentResearch Center of Environment and Sustainable DevelopmentTehranIran
| | - Reza Jahani
- Department of Pharmacology and Toxicology, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Impacts of Drug Interactions on Pharmacokinetics and the Brain Transporters: A Recent Review of Natural Compound-Drug Interactions in Brain Disorders. Int J Mol Sci 2021; 22:ijms22041809. [PMID: 33670407 PMCID: PMC7917745 DOI: 10.3390/ijms22041809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Natural compounds such as herbal medicines and/or phyto-compounds from foods, have frequently been used to exert synergistic therapeutic effects with anti-brain disorder drugs, supplement the effects of nutrients, and boost the immune system. However, co-administration of natural compounds with the drugs can cause synergistic toxicity or impeditive drug interactions due to changes in pharmacokinetic properties (e.g., absorption, metabolism, and excretion) and various drug transporters, particularly brain transporters. In this review, natural compound–drug interactions (NDIs), which can occur during the treatment of brain disorders, are emphasized from the perspective of pharmacokinetics and cellular transport. In addition, the challenges emanating from NDIs and recent approaches are discussed.
Collapse
|
11
|
Singh P, Preu L, Beuerle T, Kaufholdt D, Hänsch R, Beerhues L, Gaid M. A promiscuous coenzyme A ligase provides benzoyl-coenzyme A for xanthone biosynthesis in Hypericum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1472-1490. [PMID: 33031578 DOI: 10.1111/tpj.15012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 05/09/2023]
Abstract
Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-β-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.
Collapse
Affiliation(s)
- Poonam Singh
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
| | - Lutz Preu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
| | - Till Beuerle
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
| | - David Kaufholdt
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, Braunschweig, 38106, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, Braunschweig, 38106, Germany
- Center of Molecular Ecophysiology (CMEP) - College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Chongqing, 400715, P.R. China
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
- Centre of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, Braunschweig, 38106, Germany
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
- Centre of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, Braunschweig, 38106, Germany
| |
Collapse
|
12
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
13
|
Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance. Life (Basel) 2020; 10:life10070106. [PMID: 32635538 PMCID: PMC7400069 DOI: 10.3390/life10070106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/20/2023] Open
Abstract
The therapeutic efficacy of a drug or its unexpected unwanted side effects may depend on the concurrent use of a medicinal plant. In particular, constituents in the medicinal plant extracts may influence drug bioavailability, metabolism and half-life, leading to drug toxicity or failure to obtain a therapeutic response. This narrative review focuses on clinical studies improving knowledge on the ability of selected herbal medicines to influence the pharmacokinetics of co-administered drugs. Moreover, in vitro studies are useful to anticipate potential herbal medicine-drug interactions. In particular, they help to elucidate the cellular target (metabolic or transporter protein) and the mechanism (induction or inhibition) by which a single constituent of the herbal medicine acts. The authors highlight the difficulties in predicting herbal–drug interactions from in vitro data where high concentrations of extracts or their constituents are used and pharmacokinetics are missed. Moreover, the difficulty to compare results from human studies where different kinds of herbal extracts are used is discussed. The herbal medicines discussed are among the best sellers and they are reported in the “Herbal Medicines for Human Use” section of the European Medicinal Agency (EMA).
Collapse
|
14
|
Amantino CF, de Baptista-Neto Á, Badino AC, Siqueira-Moura MP, Tedesco AC, Primo FL. Anthraquinone encapsulation into polymeric nanocapsules as a new drug from biotechnological origin designed for photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 31:101815. [PMID: 32407889 DOI: 10.1016/j.pdpdt.2020.101815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy has been applied for the treatment of many diseases, especially skin diseases. However, poor aqueous solubility and toxicity of some photosensitizer drugs are the main disadvantages for their direct clinical applications. Thus, biotechnology and nanotechnology are important tools in the development of new ways of obtaining photoactive compounds that are biocompatible. We investigated the potential of a new nanostructured photosensitizer, an anthraquinone derivative produced by biotechnological process; then we associated nanotechnology to obtain a nanostructured anthraquinone active molecule. For this, it was prepared a classical nanocapsule formulations containing poly(lactide-co-glycolide) (PLGA) coating for encapsulation of anthraquinone derivative. These formulations were characterized by their physicochemical, morphological, photophysical properties, and stability. We performed in vitro biocompatibility and photodynamic activity assays of free and nanostructured anthraquinone. Nanocapsule formulations containing anthraquinone derivative showed a nanometric profile with particle size around 250 nm, negative zeta potential around -30 mV, and partially monodisperse. Besides that, characteristic spherical morphology of nanocapsules and homogeneous particle surface were observed by AFM analyses. The in vitro biocompatibility assay showed absence of cytotoxicity for all tested RD/NC concentrations and also for unloaded/NC in NIH3T3 cells. In vitro photoactivation assay using NIH3T3 cells showed that nanocapsules promoted greater drug uptake by NIH3T3 cells, around of 87%, of cell death compared to free drug showed around 48% of cell death. The anthraquinone derivative showed potential for use in PDT. Besides the association with nanocapsules improved cell uptake of photosensitizer resulting in increased cell death compared to free anthraquinone.
Collapse
Affiliation(s)
- Camila F Amantino
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, 14800-903, São Paulo, Brazil
| | - Álvaro de Baptista-Neto
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, 14800-903, São Paulo, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, 13565-905, São Paulo, Brazil
| | - Marigilson P Siqueira-Moura
- College of Pharmaceutical Sciences, Federal University of Sao Francisco Valley - UNIVASF, Petrolina, 56304-917, Pernambuco, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, 14010-100, São Paulo, Brazil
| | - Fernando L Primo
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, 14800-903, São Paulo, Brazil.
| |
Collapse
|
15
|
Liu S, Zhao W, Li Y, Li X, Li J, Cao H, Yang Z, Xu Y. Improve cognition of depressive patients through the regulation of basal ganglia connectivity: Combined medication using Shuganjieyu capsule. J Psychiatr Res 2020; 123:39-47. [PMID: 32035307 DOI: 10.1016/j.jpsychires.2020.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 01/25/2023]
Abstract
Shuganjieyu capsule (Shugan) is a combined extract of Hypericum perforatum (HP) and Eleutherococcus senticosus (ES). Both HP and ES have been proven effective in the treatment of depression and impaired cognition. However, for mild to moderate depression (MMD), the treatment effect and underlying mechanism by combining both HP and ES are largely unknown. Here, we aim to evaluate the therapeutic effects on impaired cognition using Shugan, a combined medication of HP and ES. Resting-state magnetic resonance imaging (MRI) data and cognitive assessment have been collected from 54 healthy controls and 55 MMD patients that have been undergoing 8-week Shugan-treatment. The functional connectivity (FC) and brain region volume changes of the basal ganglia seeded circuit have been measured, and their relation with the cognitive assessment score was calculated. After that, a literature-based pathway analysis has been conducted to explore the biological relations among Shugan, brain regions, and depression. Compared to healthy controls, MMD patients demonstrated a significantly higher FC (P= 0.0025) between right ventral caudate (vCa) and left orbitofrontal cortex (OFC), which was decreased after the treatment (P < 0.001). A volume of the right caudate, which is increased in MMD, has also been reduced by Shugan treatment (P= 0.017). Importantly, the cognitive scores were strongly correlated with both Shugan treatment and the FC between vCa and OFC (r= 0.321, P= 0.02). Besides, we identified multiple signaling pathways, through which Shugan might improve the cognition of MMD patients. Our results support the therapeutic effects of Shugan on cognition in MMD, which may be realized partly through the regulation within two brain regions, vCa and OFC.
Collapse
Affiliation(s)
- Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Wentao Zhao
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yaojun Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Hongbao Cao
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; School of Systems Biology, George Mason University (GMU), Fairfax, VA, USA
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University Medical School, Shanghai, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
16
|
Gaid M, Grosch JH, Möller S, Beerhues L, Krull R. Toward enhanced hyperforin production in St. John's wort root cultures. Eng Life Sci 2019; 19:916-930. [PMID: 32624982 DOI: 10.1002/elsc.201900043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
During the past decades, several trials targeted a stable, sustainable and economic production of St. John's wort (Hypericum perforatum) extract. The value of this extract stems from its use to treat depression and skin irritation due to its hyperforin content. Previously, hyperforin-forming in vitro root cultures were established. Here, detailed growth and production kinetics have been analyzed over 40 days of cultivation. In the first 10 days, sucrose was completely hydrolyzed to glucose and fructose. The ammonium consumption supported the increase in the biomass and hyperforin production. When sucrose was replaced with glucose/fructose, the linear growth phase started 6 days earlier and resulted in a higher space-time-yield. The maximum hyperforin production was 0.82 mg L-1 day-1, which was 67 % higher than in the sucrose-supplemented standard cultivation. Buffering the sucrose-supplemented medium with phosphate caused a 2.7-fold increase in the product to biomass yield coefficient. However, the combination of monosaccharides and buffering conditions did not cause an appreciable improvements in the production performance of the shake flask approaches. A potential scalability from flask to lab-scale stirred bioreactors has been demonstrated. The results obtained offer a basis for a scalable production of hyperforin and a sustainable source for a tissue culture-based phytomedicine.
Collapse
Affiliation(s)
- Mariam Gaid
- Institute of Pharmaceutical Biology Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| | - Jan-Hendrik Grosch
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany.,Braunschweig Centre of Systems Biology (BRICS) Technische Universität Braunschweig Braunschweig Germany
| | - Steve Möller
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany.,Braunschweig Centre of Systems Biology (BRICS) Technische Universität Braunschweig Braunschweig Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany
| | - Rainer Krull
- Institute of Biochemical Engineering Technische Universität Braunschweig Braunschweig Germany.,Center of Pharmaceutical Engineering (PVZ) Technische Universität Braunschweig Braunschweig Germany.,Braunschweig Centre of Systems Biology (BRICS) Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
17
|
Downstream processing of hyperforin from Hypericum perforatum root cultures. Eur J Pharm Biopharm 2018; 126:104-107. [DOI: 10.1016/j.ejpb.2017.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 06/28/2017] [Indexed: 01/30/2023]
|
18
|
Tocci N, Gaid M, Kaftan F, Belkheir AK, Belhadj I, Liu B, Svatoš A, Hänsch R, Pasqua G, Beerhues L. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. THE NEW PHYTOLOGIST 2018; 217:1099-1112. [PMID: 29210088 DOI: 10.1111/nph.14929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/20/2017] [Indexed: 05/09/2023]
Abstract
Xanthones are specialized metabolites with antimicrobial properties, which accumulate in roots of Hypericum perforatum. This medicinal plant provides widely taken remedies for depressive episodes and skin disorders. Owing to the array of pharmacological activities, xanthone derivatives attract attention for drug design. Little is known about the sites of biosynthesis and accumulation of xanthones in roots. Xanthone biosynthesis is localized at the transcript, protein, and product levels using in situ mRNA hybridization, indirect immunofluorescence detection, and high lateral and mass resolution mass spectrometry imaging (AP-SMALDI-FT-Orbitrap MSI), respectively. The carbon skeleton of xanthones is formed by benzophenone synthase (BPS), for which a cDNA was cloned from root cultures of H. perforatum var. angustifolium. Both the BPS protein and the BPS transcripts are localized to the exodermis and the endodermis of roots. The xanthone compounds as the BPS products are detected in the same tissues. The exodermis and the endodermis, which are the outermost and innermost cell layers of the root cortex, respectively, are not only highly specialized barriers for controlling the passage of water and solutes but also preformed lines of defence against soilborne pathogens and predators.
Collapse
Affiliation(s)
- Noemi Tocci
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Filip Kaftan
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Asma K Belkheir
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Ines Belhadj
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Benye Liu
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, 38106, Braunschweig, Germany
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| |
Collapse
|