1
|
Biasin A, Pribac F, Franceschinis E, Cortesi A, Grassi L, Voinovich D, Colombo I, Grassi G, Milcovich G, Grassi M, Abrami M. The Key Role of Wettability and Boundary Layer in Dissolution Rate Test. Pharmaceutics 2024; 16:1335. [PMID: 39458664 PMCID: PMC11511008 DOI: 10.3390/pharmaceutics16101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The present work proposes a mathematical model able to describe the dissolution of poly-disperse drug spherical particles in a solution (Dissolution Rate Test-DRT). DRT is a pivotal test performed in the pharmaceutical field to qualitatively assess drug bioavailability. METHODS The proposed mathematical model relies on the key hallmarks of DRT, such as particle size distribution, solubility, wettability, hydrodynamic conditions in the dissolving liquid of finite dimensions, and possible re-crystallization during the dissolution process. The spherical shape of the drug particles was the only cue simplification applied. Two model drugs were considered to check model robustness: theophylline (both soluble and wettable) and praziquantel (both poorly soluble and wettable). RESULTS The DRT data analysis within the proposed model allows us to understand that for theophylline, the main resistance to dissolution is due to the boundary layer surrounding drug particles, whereas wettability plays a negligible role. Conversely, the effect of low wettability cannot be neglected for praziquantel. These results are validated by the determination of drug wettability performed while measuring the solid-liquid contact angle on four liquids with decreasing polarities. Moreover, the percentage of drug polarity was determined. CONCLUSIONS The proposed mathematical model confirms the importance of the different physical phenomena leading the dissolution of poly-disperse solid drug particles in a solution. Although a comprehensive mathematical model was proposed and applied, the DRT data of theophylline and praziquantel was successfully fitted by means of just two fitting parameters.
Collapse
Affiliation(s)
- Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (A.B.); (F.P.); (A.C.); (L.G.); (I.C.); (M.A.)
| | - Federico Pribac
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (A.B.); (F.P.); (A.C.); (L.G.); (I.C.); (M.A.)
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy;
| | - Angelo Cortesi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (A.B.); (F.P.); (A.C.); (L.G.); (I.C.); (M.A.)
| | - Lucia Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (A.B.); (F.P.); (A.C.); (L.G.); (I.C.); (M.A.)
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, I-34127 Trieste, Italy;
| | - Italo Colombo
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (A.B.); (F.P.); (A.C.); (L.G.); (I.C.); (M.A.)
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy;
| | - Gesmi Milcovich
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, I-90128 Palermo, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (A.B.); (F.P.); (A.C.); (L.G.); (I.C.); (M.A.)
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (A.B.); (F.P.); (A.C.); (L.G.); (I.C.); (M.A.)
| |
Collapse
|
2
|
Polyzois H, Nguyen HT, Roberto de Alvarenga Junior B, Taylor LS. Amorphous Solid Dispersion Formation for Enhanced Release Performance of Racemic and Enantiopure Praziquantel. Mol Pharm 2024; 21:5285-5296. [PMID: 39292641 PMCID: PMC11462518 DOI: 10.1021/acs.molpharmaceut.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
Praziquantel (PZQ) is the treatment of choice for schistosomiasis, which affects more than 250 million people globally. Commercial tablets contain the crystalline racemic compound (RS-PZQ) which limits drug dissolution and oral bioavailability and can lead to unwanted side effects and poor patient compliance due to the presence of the S-enantiomer. While many approaches have been explored for improving PZQ's dissolution and oral bioavailability, studies focusing on investigating its release from amorphous solid dispersions (ASDs) have been limited. In this work, nucleation induction time experiments were performed to identify suitable polymers for preparing ASDs using RS-PZQ and R-PZQ, the therapeutically active enantiomer. Cellulose-based polymers, hydroxypropyl methylcellulose acetate succinate (HPMCAS, MF grade) and hydroxypropyl methylcellulose (HPMC, E5 LV grade), were the best crystallization inhibitors for RS-PZQ in aqueous media and were selected for ASD preparation using solvent evaporation (SE) and hot-melt extrusion (HME). ASDs prepared experimentally were subjected to X-ray powder diffraction to verify their amorphous nature and a selected number of ASDs were monitored and found to remain physically stable following several months of storage under accelerated-stability testing conditions. SE HPMCAS-MF ASDs of RS-PZQ and R-PZQ showed faster release than HPMC E5 LV ASDs and maintained good performance with an increase in drug loading (DL). HME ASDs of RS-PZQ formulated using HPMCAS-MF exhibited slightly enhanced release compared to that of SE ASDs. SE HPMCAS-MF ASDs showed a maximum release increase of the order of 6 times compared to generic and branded (Biltricide) PZQ tablets. More importantly, SE R-PZQ ASDs with HPMCAS-MF released the drug as effectively as RS-PZQ or better, depending on the DL used. These findings have significant implications for the development of commercial PZQ formulations comprised solely of the R-enantiomer, which can result in mitigation of the biopharmaceutical and compliance issues associated with current commercial tablets.
Collapse
Affiliation(s)
- Hector Polyzois
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Hanh Thuy Nguyen
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| | | | - Lynne S. Taylor
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Mureşan-Pop M, Simon S, Bodoki E, Simon V, Turza A, Todea M, Vulpoi A, Magyari K, Iacob BC, Bărăian AI, Gołdyn M, Gomes CSB, Susana M, Duarte MT, André V. Mechanochemical Synthesis of New Praziquantel Cocrystals: Solid-State Characterization and Solubility. CRYSTAL GROWTH & DESIGN 2024; 24:4668-4681. [PMID: 38855579 PMCID: PMC11157481 DOI: 10.1021/acs.cgd.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
New cocrystals of praziquantel with suberic, 3-hydroxybenzoic, benzene-1,2,4,5-tetracarboxylic, trimesic, and 5-hydroxyisophthalic acids were obtained through ball milling experiments. The optimal conditions for the milling process were chosen by changing the solvent volume and the mechanical action time. Supramolecular interactions in the new cocrystals are detailed based on single-crystal X-ray diffraction analysis, confirming the expected formation of hydrogen bonds between the praziquantel carbonyl group and the carboxyl (or hydroxyl) moieties of the coformers. Different structural characterization techniques were performed for all samples, but the praziquantel:suberic acid cocrystal includes a wider range of investigations such as thermal analysis, infrared and X-ray photoelectron spectroscopies, and SEM microscopy. The stability for up to five months was established by keeping it under extreme conditions of temperature and humidity. Solubility studies were carried out for all the new forms disclosed herein and compared with the promising cocrystals previously reported with salicylic, 4-aminosalicylic, vanillic, and oxalic acids. HPLC analyses revealed a higher solubility for most of the new cocrystal forms, as compared to pure praziquantel.
Collapse
Affiliation(s)
- Marieta Mureşan-Pop
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Simion Simon
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Ede Bodoki
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Viorica Simon
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
| | - Alexandru Turza
- Mass
Spectrometry, Chromatography and Applied Physics Department, National Institute for Research and Development of
Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania
| | - Milica Todea
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
- Molecular
Sciences Department, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Adriana Vulpoi
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Klara Magyari
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
| | - Bogdan C. Iacob
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Alexandra Iulia Bărăian
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Mateusz Gołdyn
- Faculty of
Chemistry, Adam Mickiewicz University in
Poznań, Uniwersytetu
Poznańskiego 8, Poznań 61-614, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Clara S. B. Gomes
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology (NOVA
FCT), NOVA University of Lisbon, Caparica 2829-516, Portugal
| | - Margarida Susana
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - M. Teresa Duarte
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Vânia André
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associação
do Instituto Superior Técnico para a Investigação
e Desenvolvimento (IST-ID), Avenida António José de Almeida, 12, Lisboa 1000-043, Portugal
| |
Collapse
|
4
|
Jablan J, Marguí E, Posavec L, Klarić D, Cinčić D, Galić N, Jug M. Product contamination during mechanochemical synthesis of praziquantel co-crystal, polymeric dispersion and cyclodextrin complex. J Pharm Biomed Anal 2024; 238:115855. [PMID: 37948780 DOI: 10.1016/j.jpba.2023.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
This paper aims to evaluate the product contamination by elemental impurities during the mechanochemical synthesis of praziquantel (PZQ) co-crystal, polymeric dispersion and cyclodextrin complex by grinding. To assess that, PZQ was co-ground with malic acid (MA), Poloxamer F-127 (F-127) and hydroxypropyl-β-cyclodextrin (HPβCD) in high-energy vibrational mills using stainless steel and agate grinding tools, applying different processing time (30 and 90 min). Differential scanning calorimetry and X-ray powder diffraction confirmed the formation of the targeted products, regardless of applied processing time and grinding tool type. After digestion of the solid powder products, the levels of selected elemental impurities were analysed by inductively coupled plasma mass spectrometry (ICP-MS). The analysis revealed that the content of Mg, Ca, and V are below the limit of quantification in all samples analysed. The contents of P and Na are not related to the type of ball mill and reaction time, but to the starting materials themselves, considering that Na is found in HPβCD and MA, while P was found in F-127. The detected Si impurities in the co-ground products can be related to the use of the agate balls and jars, while the presence of Cr and Fe can be related to the use of the stainless steel grinding tools. The risk assessment showed that the oral administration of the prepared co-ground products in quantities corresponding to regular PZQ oral doses resulted in only insignificant exposure to Cr. Finally, the use of agate grinding tools should be preferred, as administration of such products results in lower Cr exposure. The presented elemental impurities did not lead to any significant drug degradation as PZQ content at the end of the six-month testing period was still in the range of 95-105 % of the initial content. Regardless, ICP-MS analysis of the elemental impurities should be considered in regular quality control procedures in the development and production of novel pharmaceutical products prepared by grinding.
Collapse
Affiliation(s)
- Jasna Jablan
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Eva Marguí
- University of Girona, Department of Chemistry, C/M.Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lidija Posavec
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - David Klarić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Dominik Cinčić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Nives Galić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Mario Jug
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
5
|
D’Abbrunzo I, Procida G, Perissutti B. Praziquantel Fifty Years on: A Comprehensive Overview of Its Solid State. Pharmaceutics 2023; 16:27. [PMID: 38258039 PMCID: PMC10821272 DOI: 10.3390/pharmaceutics16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review discusses the entire progress made on the anthelmintic drug praziquantel, focusing on the solid state and, therefore, on anhydrous crystalline polymorphs, amorphous forms, and multicomponent systems (i.e., hydrates, solvates, and cocrystals). Despite having been extensively studied over the last 50 years, new polymorphs and the greater part of their cocrystals have only been identified in the past decade. Progress in crystal engineering science (e.g., the use of mechanochemistry as a solid form screening tool and more strategic structure-based methods), along with the development of analytical techniques, including Synchrotron X-ray analyses, spectroscopy, and microscopy, have furthered the identification of unknown crystal structures of the drug. Also, computational modeling has significantly contributed to the prediction and design of new cocrystals by considering structural conformations and interactions energy. Whilst the insights on praziquantel polymorphs discussed in the present review will give a significant contribution to controlling their formation during manufacturing and drug formulation, the detailed multicomponent forms will help in designing and implementing future praziquantel-based functional materials. The latter will hopefully overcome praziquantel's numerous drawbacks and exploit its potential in the field of neglected tropical diseases.
Collapse
Affiliation(s)
| | | | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (G.P.)
| |
Collapse
|
6
|
D'Abbrunzo I, Bianco E, Gigli L, Demitri N, Birolo R, Chierotti MR, Škorić I, Keiser J, Häberli C, Voinovich D, Hasa D, Perissutti B. Praziquantel meets Niclosamide: A dual-drug Antiparasitic Cocrystal. Int J Pharm 2023; 644:123315. [PMID: 37579827 DOI: 10.1016/j.ijpharm.2023.123315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.
Collapse
Affiliation(s)
- Ilenia D'Abbrunzo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Emma Bianco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Lara Gigli
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy.
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy.
| | - Rebecca Birolo
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Jennifer Keiser
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, Basel 4000, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, Basel 4000, Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| |
Collapse
|
7
|
Cappuccino C, Spoletti E, Renni F, Muntoni E, Keiser J, Voinovich D, Perissutti B, Lusi M. Co-Crystalline Solid Solution Affords a High-Soluble and Fast-Absorbing Form of Praziquantel. Mol Pharm 2023; 20:2009-2016. [PMID: 36884008 PMCID: PMC10074383 DOI: 10.1021/acs.molpharmaceut.2c00984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Praziquantel (PZQ) is a chiral class-II drug, and it is used as a racemate for the treatment of schistosomiasis. The knowledge of several cocrystals with dicarboxylic acids has prompted the realization of solid solutions of PZQ with both enantiomers of malic acid and tartaric acid. Here, the solid form landscape of such a six-component system has been investigated. In the process, two new cocrystals were structural-characterized and three non-stoichiometric, mixed crystal forms identified and isolated. Thermal and solubility analysis indicates a fourfold solubility advantage for the newly prepared solid solutions over the pure drug. In addition, a pharmacokinetic study was conducted in rats, which involved innovative mini-capsules for the oral administration of the solid samples. The available data indicate that the faster dissolution rate of the solid solutions translates in faster absorption of the drug and helps maintain a constant steady-state concentration.
Collapse
Affiliation(s)
- Chiara Cappuccino
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Enrico Spoletti
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Fiammetta Renni
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, 10129 Turin, Italy
| | - Jennifer Keiser
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland.,University of Basel, Basel 4003 Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Lusi
- Department of Chemical Science and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
8
|
Albertini B, Bertoni S, Sangiorgi S, Nucci G, Passerini N, Mezzina E. NaDES as a green technological approach for the solubility improvement of BCS class II APIs: An insight into the molecular interactions. Int J Pharm 2023; 634:122696. [PMID: 36758882 DOI: 10.1016/j.ijpharm.2023.122696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Recently, Natural Deep Eutectic Solvents (NaDES) have emerged as potential solvents for boosting drug bioavailability. In this work, the mechanism of solubility enhancement of some APIs belonging to BCS class II (tolbutamide, nimesulide, domperidone and cinnarizine) in these eutectic bio-solvents was investigated in order to get deeper insights into the molecular interactions between the NaDES components and the selected drugs. Different NaDES formulations based on choline chloride, proline, solid organic acids (citric, tartaric and malic acid), sugars (glucose and xylitol) and water were prepared by mild heating (70 °C). Characterization of unloaded NaDES (pH, Karl Fisher titration, viscosity and FTIR analysis) indicated that the type of Hydrogen Bond Acceptor (HBA) and Hydrogen Bond Donor (HBD), their molar ratio as well as water amount strongly affect the extent of H-bonding interactions. Hard gelatin capsules filled with NaDES maintained their integrity until 6 months, proving that all water molecules participate in H-bond network. APIs' solubility enhancement was significant in all NaDES with respect to buffer solutions (pH 1.2 and 6.8). Analysing NaDES having Choline as HBA, it was found that the solubility of smaller molecules increased using larger HBD, while higher molecular weight APIs can be better inserted into the network formed by smaller HBD. NOE experiments demonstrated the formation of a robust supramolecular structure among the protons of choline, those of organic acid and water. In addition, 1D ROESY spectra revealed for the first time the crucial role of choline (methyl groups) in establishing hydrophobic interactions with the relative aliphatic or aromatic portion of the drugs. These data suggest the complex structure of the API-NaDES supramolecular assembly and underline that drug solubility is dependent on a balance network of H-bonds and hydrophobic interactions as well. Understanding the type of interactions between the API and NaDES is essential for their use as effective solubilisation aid.
Collapse
Affiliation(s)
- Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Serena Bertoni
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Stefano Sangiorgi
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Giorgia Nucci
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Elisabetta Mezzina
- Department of Chemistry "G. Ciamician", University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
9
|
Cedillo–Cruz A, Villalobos–López DC, Aguilar MI, Trejo–Soto PJ, Hernández–Campos A, Jung–Cook H. Praziquanamine enantiomers: crystal structure, Hirshfeld surface analysis, and quantum chemical studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
10
|
Silva ADA, Sarcinelli MA, de Carvalho Patricio BF, da Cunha Chaves MH, Lima LM, Parreiras PM, de Faria Pinto P, Prado LD, Rocha HVA. Pharmaceutical development of micro and nanocrystals of a poorly water-soluble drug: Dissolution rate enhancement of praziquantel. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Salazar-Rojas D, Kaufman TS, Maggio RM. A study of the heat-mediated phase transformations of praziquantel hydrates. Evaluation of their impact on the dissolution rate. Heliyon 2022; 8:e11317. [DOI: 10.1016/j.heliyon.2022.e11317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
|
12
|
Li J, Huang Y, An Q, Li W, Li J, Liu H, Yang D, Lu Y, Zhou Z. Discovered two polymorphs and two solvates of lamotrigine-tolfenamic acid salt: Thermal behavior and crystal morphological differences. Int J Pharm 2022; 628:122310. [DOI: 10.1016/j.ijpharm.2022.122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
|
13
|
Characterization, solubility and stability of amentoflavone polymorphs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
MacEachern L, Kermanshahi-Pour A, Mirmehrabi M. Transformation under pressure: Discovery of a novel crystalline form of anthelmintic drug Praziquantel using high-pressure supercritical carbon dioxide. Int J Pharm 2022; 619:121723. [PMID: 35395364 DOI: 10.1016/j.ijpharm.2022.121723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Supercritical carbon dioxide (CO2) has been used as a processing technique to control polymorphism of pharmaceuticals. However, there are fewer reports of novel polymorphs being discovered by supercritical CO2 processing. As supercritical crystallization methods gain attention for potential in pharmaceutical processing, they may become a critical screening tool for discovery of new polymorphs. In this work, a case study is presented for a novel crystalline form of the anthelmintic drug, Praziquantel, found through supercritical CO2 processing. The novel form of Praziquantel was characterized by chromatography, nuclear magnetic resonance and infrared spectroscopy, X-ray powder diffraction, thermal analysis, and scanning electron microscopy. Furthermore, the novel form exhibited 13-20% improved solubility compared to commercial Form A between pH 1.6 and 7.5 and was physically stable under stressed conditions (40 °C and 75% relative humidity) for 7.5 weeks. Overall, this work showed that supercritical CO2 processing is a valuable tool to screen for novel, and possibly viable polymorphs of pharmaceutical compounds with improved properties.
Collapse
Affiliation(s)
- Lauren MacEachern
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada; Solid State Pharma Inc., 1489 Hollis Street, Suite 300, Halifax, Nova Scotia B3J 3M5, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada.
| | - Mahmoud Mirmehrabi
- Solid State Pharma Inc., 1489 Hollis Street, Suite 300, Halifax, Nova Scotia B3J 3M5, Canada.
| |
Collapse
|
15
|
Mengarda AC, Iles B, F Longo JP, de Moraes J. Recent trends in praziquantel nanoformulations for helminthiasis treatment. Expert Opin Drug Deliv 2022; 19:383-393. [PMID: 35264036 DOI: 10.1080/17425247.2022.2051477] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Infections caused by parasitic flatworms impose a considerable worldwide health burden. Recently, World Health Organization launched its roadmap for neglected diseases for the period 2021 to 2030 and oral treatment with praziquantel (PZQ) in tablet form is the main drug therapy for combating these diseases, but its use is limited by many drawbacks, including the high therapeutic dose due to the drug's low solubility and bioavailability. Among the strategies to improve PZQ performance, the use of drug nanocarriers has been cited as an interesting approach to overcome these pharmacological issues. AREAS COVERED This review focuses on the various types of nanomaterials (polymeric, lipidic, inorganic nanoparticles, and nanocrystals) which have been recently used to improve PZQ therapy. In addition, recent advances in PZQ nanoformulations, developed to overcome the barriers of the conventional drug are described. EXPERT OPINION Considering the poor rate of discovery in the anthelmintic segment observed in recent decades, the effective management of existing drugs has become essential. The application of new strategies based on nanotechnology can extend the useful life of PZQ in new and more effective formulations. Pharmaceutical nanotechnology can solve the pharmacokinetic challenges characteristic of PZQ and improve its solubility and bioavailability.
Collapse
Affiliation(s)
- Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, SP, Brazil
| | - Bruno Iles
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - João Paulo F Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
16
|
Praziquantel-loaded calcite crystals: Synthesis, physicochemical characterization, and biopharmaceutical properties of inorganic biomaterials for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Bertoni S, Hasa D, Albertini B, Perissutti B, Grassi M, Voinovich D, Passerini N. Better and greener: sustainable pharmaceutical manufacturing technologies for highly bioavailable solid dosage forms. Drug Deliv Transl Res 2022; 12:1843-1858. [PMID: 34988827 DOI: 10.1007/s13346-021-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
In the last decades, Green Chemistry has been gaining widespread attention within the pharmaceutical field. It is thus very important to bring more sustainable approaches into the design and manufacture of effective oral drug delivery systems. This review focuses on spray congealing and mechanochemical activation, two technologies endorsing different principles of green chemistry, and at the same time, addressing some of the challenges related to the transformation of poorly water-soluble drugs in highly bioavailable solid dosage forms. We therefore present an overview of the basic principles, equipment, and application of these particle-engineering technologies, with specific attention to case studies carried out by the groups working in Italian Universities.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127, Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy.
| |
Collapse
|
18
|
Salas-Zúñiga R, Mondragón-Vásquez K, Alcalá-Alcalá S, Lima E, Höpfl H, Herrera-Ruiz D, Morales-Rojas H. Nanoconfinement of a Pharmaceutical Cocrystal with Praziquantel in Mesoporous Silica: The Influence of the Solid Form on Dissolution Enhancement. Mol Pharm 2021; 19:414-431. [PMID: 34967632 DOI: 10.1021/acs.molpharmaceut.1c00606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoconfinement is a recent strategy to enhance solubility and dissolution of active pharmaceutical ingredients (APIs) with poor biopharmaceutical properties. In this work, we combine the advantage of cocrystals of racemic praziquantel (PZQ) containing a water-soluble coformer (i.e., increased solubility and supersaturation) and its confinement in a mesoporous silica material (i.e., increased dissolution rate). Among various potential cocrystalline phases of PZQ with dicarboxylic acid coformers, the cocrystal with glutaric acid (PZQ-GLU) was selected and successfully loaded by the melting method into nanopores of SBA-15 (experimental pore size of 5.6 nm) as suggested by physical and spectroscopic characterization using various complementary techniques like N2 adsorption, powder X-ray diffraction (PXRD), infrared spectroscopy (IR), solid-state NMR (ss-NMR), differential scanning calorimetry (DSC), and field emission-scanning electron microscopy (FE-SEM) analysis. The PZQ-GLU phase confined in SBA-15 presents more mobility according to ss-NMR studies but still retains its cocrystal-like features in the IR spectra, and it also shows depression of the melting transition temperature in DSC. On the contrary, pristine PZQ loaded into SBA-15 was found only in the amorphous state, according to the aforementioned studies. This dissimilar behavior of the composites was attributed to the larger crystal lattice of PZQ over the PZQ-GLU cocrystal (3320.1 vs 1167.9 Å3) and to stronger intermolecular interactions between PZQ and GLU, facilitating the confinement of a more mobile solid-like phase in the constrained channels. Powder dissolution studies under extremely nonsink conditions (SI = 0.014) of the confined PZQ-GLU and amorphous PZQ phases embedded in mesoporous silica showed transient supersaturation behavior when dissolving in simulated gastric fluid (HCl pH 1.2 at 37 ± 0.5 °C) in a similar fashion to the bare cocrystal PZQ-GLU. A comparison of the area under the curve (AUC0-90 min) of the dissolution profiles afforded a dissolution advantage of 2-fold (p < 0.05) of the new solid phases over pristine racemic PZQ after 90 min; under these conditions, the solubilized API reprecipitated as the recently discovered PZQ hemihydrate (PZQ-HH). In the presence of a cellulosic polymer, sustained solubilization of PZQ from composites SBA-15/PZQ or SBA-15/PZQ-GLU was observed, increasing AUC0-90 min up to 5.1-fold in comparison to pristine PZQ. The combination of a confined solid phase in mesoporous silica and a methylcellulose polymer in the dissolution medium effectively maintained the drug solubilized during times significant to promote absorption. Finally, powder dissolution studies under intermediate nonsink conditions (SI = 1.99) showed a fast release profile from the nanoconfined PZQ-GLU phase in SBA-15, which reached rapid saturation (95% drug dissolved at 30 min); the amorphous PZQ composite and bare PZQ-GLU also displayed an immediate release of the API but at a lower rate (69% drug dissolved at 30 min). In all of these cases, a large dissolution advantage was observed from any of the novel solid phases over PZQ.
Collapse
Affiliation(s)
- Reynaldo Salas-Zúñiga
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México.,Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | | | - Sergio Alcalá-Alcalá
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Coyoacán, Ciudad de México 04510, México
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Dea Herrera-Ruiz
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Hugo Morales-Rojas
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| |
Collapse
|
19
|
Shi L, Zhou J, Guo J, Gladden I, Kong L. Starch inclusion complex for the encapsulation and controlled release of bioactive guest compounds. Carbohydr Polym 2021; 274:118596. [PMID: 34702447 DOI: 10.1016/j.carbpol.2021.118596] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
The linear component of starch, especially amylose, is capable of forming inclusion complex (IC) with various small molecules. It could significantly modify the structure and properties of starch, and it could bring beneficial effects when bioactive compounds can be encapsulated. This review discusses the formation and characterization of the starch-guest IC and focuses on the recent developments in the use of starch ICs for the encapsulation and controlled release of bioactive guest compounds. A great number of guest compounds, such as lipids, aroma compounds, pharmaceuticals, and phytochemicals, were studied for their ability to be complexed with starch and/or amylose and some of the formed ICs were evaluated for the chemical stability improvement and the guest release regulation. Starch-guest ICs has a great potential to be a delivery system, as most existing studies demonstrated the enhancement on guest retention and the possibility of controlled release.
Collapse
Affiliation(s)
- Linfan Shi
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingyi Zhou
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jiayue Guo
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Isabella Gladden
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
20
|
Mechanochemical Synthesis and Physicochemical Characterization of Previously Unreported Praziquantel Solvates with 2-Pyrrolidone and Acetic Acid. Pharmaceutics 2021; 13:pharmaceutics13101606. [PMID: 34683899 PMCID: PMC8540171 DOI: 10.3390/pharmaceutics13101606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Two new solvates of the widely used anthelminthic Praziquantel (PZQ) were obtained through mechanochemical screening with different liquid additives. Specifically, 2-pyrrolidone and acetic acid gave solvates with 1:1 stoichiometry (PZQ-AA and PZQ-2P, respectively). A wide-ranging characterization of the new solid forms was carried out by means of powder X-ray diffraction, differential scanning calorimetry, FT-IR, solid-state NMR and biopharmaceutical analyses (solubility and intrinsic dissolution studies). Besides, the crystal structures of the two new solvates were solved from their Synchrotron-PXRD pattern: the solvates are isostructural, with equivalent triclinic packing. In both structures acetic acid and 2-pyrrolidone showed a strong interaction with the PZQ molecule via hydrogen bond. Even though previous studies have shown that PZQ is conformationally flexible, the same syn conformation as the PZQ Form A of the C=O groups of the piperazinone-cyclohexylcarbonyl segment is involved in these two new solid forms. In terms of biopharmaceutical properties, PZQ-AA and PZQ-2P exhibited water solubility and intrinsic dissolution rate much greater than those of anhydrous Form A.
Collapse
|
21
|
Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations. Pharmaceutics 2021; 13:pharmaceutics13081114. [PMID: 34452075 PMCID: PMC8398999 DOI: 10.3390/pharmaceutics13081114] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022] Open
Abstract
For the last 40 years, praziquantel has been the standard treatment for schistosomiasis, a neglected parasitic disease affecting more than 250 million people worldwide. However, there is no suitable paediatric formulation on the market, leading to off-label use and the splitting of commercial tablets for adults. In this study, we use a recently available technology, direct powder extrusion (DPE) three-dimensional printing (3DP), to prepare paediatric Printlets™ (3D printed tablets) of amorphous solid dispersions of praziquantel with Kollidon® VA 64 and surfactants (Span™ 20 or Kolliphor® SLS). Printlets were successfully printed from both pellets and powders obtained from extrudates by hot melt extrusion (HME). In vitro dissolution studies showed a greater than four-fold increase in praziquantel release, due to the formation of amorphous solid dispersions. In vitro palatability data indicated that the printlets were in the range of praziquantel tolerability, highlighting the taste masking capabilities of this technology without the need for additional taste masking excipients. This work has demonstrated the possibility of 3D printing tablets using pellets or powder forms obtained by HME, avoiding the use of filaments in fused deposition modelling 3DP. Moreover, the main formulation hurdles of praziquantel, such as low drug solubility, inadequate taste, and high and variable dose requirements, can be overcome using this technology.
Collapse
|
22
|
Devogelaer JJ, Charpentier MD, Tijink A, Dupray V, Coquerel G, Johnston K, Meekes H, Tinnemans P, Vlieg E, ter Horst JH, de Gelder R. Cocrystals of Praziquantel: Discovery by Network-Based Link Prediction. CRYSTAL GROWTH & DESIGN 2021; 21:3428-3437. [PMID: 34276256 PMCID: PMC8276530 DOI: 10.1021/acs.cgd.1c00211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Cocrystallization has been promoted as an attractive early development tool as it can change the physicochemical properties of a target compound and possibly enable the purification of single enantiomers from racemic compounds. In general, the identification of adequate cocrystallization candidates (or coformers) is troublesome and hampers the exploration of the solid-state landscape. For this reason, several computational tools have been introduced over the last two decades. In this study, cocrystals of Praziquantel (PZQ), an anthelmintic drug used to treat schistosomiasis, are predicted with network-based link prediction and experimentally explored. Single crystals of 12 experimental cocrystal indications were grown and subjected to a structural analysis with single-crystal X-ray diffraction. This case study illustrates the power of the link-prediction approach and its ability to suggest a diverse set of new coformer candidates for a target compound when starting from only a limited number of known cocrystals.
Collapse
Affiliation(s)
- Jan-Joris Devogelaer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Maxime D. Charpentier
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallization (CMAC), Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Arnoud Tijink
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Valérie Dupray
- Laboratoire
Sciences et Méthodes Séparatives, Normandie Univ, UNIROUEN, SMS, 76000 Rouen, France
| | - Gérard Coquerel
- Laboratoire
Sciences et Méthodes Séparatives, Normandie Univ, UNIROUEN, SMS, 76000 Rouen, France
| | - Karen Johnston
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Hugo Meekes
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Paul Tinnemans
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Elias Vlieg
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joop H. ter Horst
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallization (CMAC), Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
- Laboratoire
Sciences et Méthodes Séparatives, Normandie Univ, UNIROUEN, SMS, 76000 Rouen, France
| | - René de Gelder
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
23
|
Šagud I, Zanolla D, Zingone G, Perissutti B, Škorić I. Impact of mesoporous silica on the chemical degradation of Praziquantel upon grinding. CR CHIM 2021. [DOI: 10.5802/crchim.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Gaggero A, Jurišić Dukovski B, Radić I, Šagud I, Škorić I, Cinčić D, Jug M. Co-grinding with surfactants as a new approach to enhance in vitro dissolution of praziquantel. J Pharm Biomed Anal 2020; 189:113494. [PMID: 32745904 DOI: 10.1016/j.jpba.2020.113494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
This paper evaluates the process of co-grinding with a surfactant as a new approach to enhance physicochemical and biopharmaceutical properties of praziquantel (PZQ), a poorly soluble drug that is essential for the treatment of schistosomiasis, a neglected tropical disease. Surfactants used in this study were poloxamer F-127 and sucrose stearate (C-1816), selected based on their well-documented biocompatibility and solubilizing activity. A series of products were prepared by mechanochemical activation using vibrational ball-mill at different drug to surfactant ratio and milling times. The obtained products were characterised in terms of drug recovery, solubility and in vitro dissolution rates. The obtained results were correlated to solid-state properties of the products analysed by differential scanning calorimetry, powder X-ray diffraction and particle size analysis. Results of UPLC-MS analysis and 1H-NMR spectroscopy showed that the used surfactants and applied grinding procedures caused no chemical degradation of the PZQ. The physicochemical properties, solubility and the in vitro dissolution enhancement of the co-ground products were related to the drug to surfactant ratio and the grinding protocol applied. The highest enhancement of the in vitro dissolution rate was achieved at the drug to surfactant ratio of 10:3 and 10:2 for F-127 and C-1816, respectively with the milling time of 30 min. The MTT assay on Caco-2 cell line demonstrated the biocompatibility of both co-ground products. Furthermore, the surfactants used did not change intrinsically high intestinal permeability of PZQ (Papp ∼ 4.00 × 10-5 cm s-1). The presented results confirmed that the co-grinding with surfactant is a promising new approach in enhancing in vitro dissolution of poorly soluble drugs like PZQ.
Collapse
Affiliation(s)
- Alessio Gaggero
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Bisera Jurišić Dukovski
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Irena Radić
- Pliva Croatia Ltd., Teva Api R&D, Zagreb, Croatia
| | - Ivana Šagud
- Pliva Croatia Ltd., Teva Api R&D, Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
25
|
Xu J, Gong XF, Li P, Chen XF, Wang HP, Ning LF. Mifepristone polymorph with enhanced solubility, dissolution and oral bioavailability. Steroids 2020; 159:108649. [PMID: 32389717 DOI: 10.1016/j.steroids.2020.108649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Mifepristone is one of potent anti-progesterone agents, which binds to progesterone receptors and glucocorticoid receptors. Until now, there are a lot of research focusing on enhancing the solubility and oral bioavailability of Mifepristone. However, poor solubility and oral bioavailability has some undesirable consequences. In this work, Mifepristone in form D was discovered for the first time and characterized by PXRD, TGA, DSC, FT-IR, SEM and SS NMR. Form D was a metastable crystal type which manifested favorable stability under ambient conditions. Form D had better dissolution characteristic compared with commercial Mifepristone in 0.5% SDS solution. In addition, Mifepristone in form D exhibited a 1.43-fold higher peak plasma concentration (Cmax) and 1.46-fold higher area under the curve (AUC) in rats. The work in this paper is a complement to the present understanding of drug polymorphism on the in vitro and in vivo behavior, and establishes the ground work for future development of Mifepristone in form D as a promising drug for the market.
Collapse
Affiliation(s)
- Juan Xu
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Xiao-Fang Gong
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Peng Li
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Xiao-Feng Chen
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Hui-Ping Wang
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Li-Feng Ning
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China.
| |
Collapse
|
26
|
Hodgkinson P. NMR crystallography of molecular organics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:10-53. [PMID: 32883448 DOI: 10.1016/j.pnmrs.2020.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Developments of NMR methodology to characterise the structures of molecular organic structures are reviewed, concentrating on the previous decade of research in which density functional theory-based calculations of NMR parameters in periodic solids have become widespread. With a focus on demonstrating the new structural insights provided, it is shown how "NMR crystallography" has been used in a spectrum of applications from resolving ambiguities in diffraction-derived structures (such as hydrogen atom positioning) to deriving complete structures in the absence of diffraction data. As well as comprehensively reviewing applications, the different aspects of the experimental and computational techniques used in NMR crystallography are surveyed. NMR crystallography is seen to be a rapidly maturing subject area that is increasingly appreciated by the wider crystallographic community.
Collapse
Affiliation(s)
- Paul Hodgkinson
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
27
|
Salazar-Rojas D, Maggio RM, Kaufman TS. Preparation and characterization of a new solid form of praziquantel, an essential anthelmintic drug. Praziquantel racemic monohydrate. Eur J Pharm Sci 2020; 146:105267. [PMID: 32061654 DOI: 10.1016/j.ejps.2020.105267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022]
Abstract
Praziquantel (PZQ) is a highly effective low-cost anthelmintic agent used as the first-choice treatment against schistosomiasis. The low solubility of the active is a major drawback for pharmaceutical formulation. A valid approach of the pharmaceutical industry for the improvement of the pharmacotechnical features of the active principles (such as solubility, processability, stability, among others), is the preparation of new solid forms, such as salts, polymorph, and pseudo-polymorph. Herein we report the preparation and characterization of a new solid form PZQ. The PZQ monohydrate (PZQ-MH) was prepared by a solventless procedure from the commercial racemate and the product was characterized at the solid-state employing optical digital microscopy, thermal methods (melting point, differential scanning calorimetry and thermogravimetric analysis), as well as and mid-infrared and near infrared spectroscopies. The chemical structure and content of water were full assessed by 1H nuclear magnetic resonance (NMR) in solution. The amount of water in PZQ-was also determined by different approaches, including thermogravimetric analysis and the loss on drying test. Solid-state 13C NMR (ssNMR) and X-ray powder diffraction (XRPD) completed the structural characterization of the new monohydrate. PZQ-MH showed a crystalline behavior during XRPD experiments and showed relevant differences in spectroscopic, calorimetric, ssNMR and XRPD signals when it was compared with the known crystal (Form A) and amorphous forms of PZQ. The determination of the intrinsic dissolution rate (IDR) of PZQ-MH was carried out as a functional characterization, observing that the new form had slightly higher IDR than Form A.
Collapse
Affiliation(s)
- Duvernis Salazar-Rojas
- Pharmaceutical Analysis, Department of Organic Chemistry, School of Pharmaceutical and Biochemical Sciences, National University of Rosario and Institute of Chemistry of Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario, S2002LRK, Argentina
| | - Rubén M Maggio
- Pharmaceutical Analysis, Department of Organic Chemistry, School of Pharmaceutical and Biochemical Sciences, National University of Rosario and Institute of Chemistry of Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario, S2002LRK, Argentina.
| | - Teodoro S Kaufman
- Pharmaceutical Analysis, Department of Organic Chemistry, School of Pharmaceutical and Biochemical Sciences, National University of Rosario and Institute of Chemistry of Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
28
|
Zanolla D, Hasa D, Arhangelskis M, Schneider-Rauber G, Chierotti MR, Keiser J, Voinovich D, Jones W, Perissutti B. Mechanochemical Formation of Racemic Praziquantel Hemihydrate with Improved Biopharmaceutical Properties. Pharmaceutics 2020; 12:pharmaceutics12030289. [PMID: 32210129 PMCID: PMC7151222 DOI: 10.3390/pharmaceutics12030289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
Praziquantel (PZQ) is the first-line drug used against schistosomiasis, one of the most common parasitic diseases in the world. A series of crystalline structures including two new polymorphs of the pure drug and a series of cocrystals of PZQ have been discovered and deposited in the Cambridge Structural Database (CSD). This work adds to the list of multicomponent forms of PZQ a relevant example of a racemic hemihydrate (PZQ-HH), obtainable from commercial PZQ (polymorphic Form A) through mechanochemistry. Noteworthy, the formation of the new hemihydrate strongly depends on the initial polymorphic form of PZQ and on the experimental conditions used. The new PZQ-HH has been fully characterized by means of HPLC, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Hot-Stage Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), FT-IR, polarimetry, solid-state NMR (SS-NMR), solubility and intrinsic dissolution rate (IDR), and in vitro tests on Schistosoma mansoni adults. The crystal structure was solved from the powder X-ray diffraction pattern and validated by periodic-DFT calculations. The new bioactive hemihydrate was physically stable for three months and showed peculiar biopharmaceutical features including enhanced solubility and a double intrinsic dissolution rate in water in comparison to the commercially available PZQ Form A.
Collapse
Affiliation(s)
- Debora Zanolla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
| | - Mihails Arhangelskis
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland;
| | - Gabriela Schneider-Rauber
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2-1EW Cambridge, UK; (G.S.-R.); (W.J.)
| | - Michele R. Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy;
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002 Basel; Switzerland;
- Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
- Correspondence: (D.V.); (B.P.); Tel.: +39-040-558-3106 (D.V. & B.P.)
| | - William Jones
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2-1EW Cambridge, UK; (G.S.-R.); (W.J.)
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
- Correspondence: (D.V.); (B.P.); Tel.: +39-040-558-3106 (D.V. & B.P.)
| |
Collapse
|
29
|
Zanolla D, Perissutti B, Vioglio PC, Chierotti MR, Gigli L, Demitri N, Passerini N, Albertini B, Franceschinis E, Keiser J, Voinovich D. Exploring mechanochemical parameters using a DoE approach: Crystal structure solution from synchrotron XRPD and characterization of a new praziquantel polymorph. Eur J Pharm Sci 2019; 140:105084. [PMID: 31626966 DOI: 10.1016/j.ejps.2019.105084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022]
Abstract
A rotated Doehlert matrix was utilized to explore the experimental design space around the milling parameters of Praziquantel (PZQ) polymorph B formation in terms of frequency and milling time. Three experimental responses were evaluated on the resulting ground samples: two quantitative responses, i.e. median particle size by Laser Light scattering (LLS) and drug recovery by HPLC, and one qualitative dependent variable, i.e. the obtained PZQ crystalline form, characterized through X-Ray Powder Diffraction (XRPD) and confirmed by Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). Temperature inside the jars was kept under constant control during the milling process by using temperature sensor equipped jars (thermojars), thus allowing evaluation of the obtained solid states at each experimental point, considering the specific temperature of the process. This explorative analysis led to the finding of a novel PZQ polymorph, named "Form C", produced without degradation, then fully characterized, including by means of Synchrotron XRPD, Polarimetric, FT-IR, SS-NMR, ESEM and saturation solubility. Crystal structure was solved from XRPD data and its geometry was optimized by DFT calculations (CASTEP). Finally, Form C and Form A activity against adult schistosoma mansoni were compared through in vitro testing, and Form C's physical stability checked. The new polymorph, crystallizing in space group I2/c, physically stable for approximately 2 months, showed a m.p. of 106.84 °C and displayed excellent biopharmaceutical properties (water solubility of 382.69±9.26 mg/l), while preserving excellent activity levels against adult schistosoma mansoni.
Collapse
Affiliation(s)
- Debora Zanolla
- University of Trieste, Dept. of Chemical and Pharmaceutical Sciences, P.le Europa 1, Trieste, Italy
| | - Beatrice Perissutti
- University of Trieste, Dept. of Chemical and Pharmaceutical Sciences, P.le Europa 1, Trieste, Italy.
| | | | - Michele R Chierotti
- University of Torino, Dept. of Chemistry and NIS Centre, V. Giuria 7, Torino, Italy
| | - Lara Gigli
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy
| | - Nadia Passerini
- University of Bologna Dept. of Pharmacy and BioTechnology, Via S. Donato 19/2, Bologna, Italy
| | - Beatrice Albertini
- University of Bologna Dept. of Pharmacy and BioTechnology, Via S. Donato 19/2, Bologna, Italy
| | - Erica Franceschinis
- University of Padova Dept. of Pharmaceutical and Pharmacological Sciences, via Marzolo 5, Padova, Italy
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute Helminth Drug Development Unit, Dept. Medical Parasitology and Infection Biology, Basel, Switzerland; Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland
| | - Dario Voinovich
- University of Trieste, Dept. of Chemical and Pharmaceutical Sciences, P.le Europa 1, Trieste, Italy
| |
Collapse
|
30
|
Borrego-Sánchez A, Sánchez-Espejo R, Albertini B, Passerini N, Cerezo P, Viseras C, Sainz-Díaz CI. Ground Calcium Carbonate as a Low Cost and Biosafety Excipient for Solubility and Dissolution Improvement of Praziquantel. Pharmaceutics 2019; 11:pharmaceutics11100533. [PMID: 31615087 PMCID: PMC6835254 DOI: 10.3390/pharmaceutics11100533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/22/2023] Open
Abstract
Calcium carbonate is an abundant mineral with several advantages to be a successful carrier to improve oral bioavailability of poorly water-soluble drugs, such as praziquantel. Praziquantel is an antiparasitic drug classified in group II of the Biopharmaceutical Classification System hence characterized by high-permeability and low-solubility. Therefore, the dissolution rate is the limiting factor for the gastrointestinal absorption that contributes to the low bioavailability. Consequently, the therapeutic dose of the praziquantel must be high and big tablets and capsules are required, which are difficult to swallow, especially for pediatric and elderly patients. Mixtures of praziquantel and calcium carbonate using solid-solid physical mixtures and solid dispersions were prepared and characterized using several techniques (X-ray diffraction differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, laser diffraction, Fourier transform infrared and Raman spectroscopies). Solubility of these formulations evidenced that the solubility of praziquantel-calcium carbonate interaction product increased in physiological media. In vitro dissolution tests showed that the interaction product increased the dissolution rate of the drug in acidic medium. Theoretical models were studied to understand this experimental behavior. Cytotoxicity and cell cycle studies were performed, showing that praziquantel-calcium carbonate physical mixture and interaction product were biocompatible with the HTC116 cells, because it did not produce a decrease in cell viability or alterations in the cell cycle.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Granada, Spain.
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Rita Sánchez-Espejo
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Granada, Spain.
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - César Viseras
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Granada, Spain.
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Granada, Spain.
| |
Collapse
|
31
|
Lombardo FC, Perissutti B, Keiser J. Activity and pharmacokinetics of a praziquantel crystalline polymorph in the Schistosoma mansoni mouse model. Eur J Pharm Biopharm 2019; 142:240-246. [PMID: 31265895 DOI: 10.1016/j.ejpb.2019.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023]
Abstract
Schistosomiasis is a global disease of significant public health relevance. Only one racemic drug, praziquantel, characterized by low bioavailability, low water solubility and extensive first pass metabolism, is currently available. We studied a new praziquantel formulation (polymorph B), which is based on a racemic praziquantel crystalline polymorph (TELCEU01). Its in vitro activity was tested on newly transformed schistosomula (NTS) and adult Schistosoma mansoni. In vivo studies were conducted in mice harboring chronic S. mansoni infections. Pharmacokinetic (PK) profiles of R- and S-praziquantel and R- and S- polymorph B following oral administration with both formulations were generated by sampling mice at 30, 60, 240 min and 24 h post-treatment, followed by LC-MS/MS analysis. PK parameters were calculated using a non-compartmental analysis with a linear trapezoidal model. In vitro, commercial praziquantel and the polymorph B performed similarly on both NTS (IC50 = 2.58 and 2.40 µg/mL at 72 h) and adults (IC50 = 0.05 and 0.07 µg/mL at 72 h). Praziquantel showed higher in vivo efficacy with an ED50 of 58.75 mg/kg compared to an ED50 of 122.61 mg/kg for the polymorph B. The PK profiles of the two drugs exhibited differences: R-praziquantel showed an overall 40% higher area under the plasma drug concentration-time curve (AUC0→24) (R-praziquantel = 3.42; R-polymorph B = 2.05 h*µg/mL) and an overall 30% lower apparent clearance (Cl/F) (R-praziquantel = 70.68 and R-polymorph B = 97.63 (mg)/(µg/mL)/h). Despite the lack of improved activity and PK properties of polymorph B against S. mansoni, here presented; research on pharmaceutical polymorphism remains a valid and cost-effective option for the development of new praziquantel formulations with enhanced properties such as increased solubility and/or dissolution.
Collapse
Affiliation(s)
- Flavio C Lombardo
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; Universität Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, p.le Europa 1, 34127 Trieste, Italy
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; Universität Basel, Petersplatz 1, CH-4001 Basel, Switzerland.
| |
Collapse
|
32
|
Usnic Acid Potassium Salt: Evaluation of the Acute Toxicity and Antinociceptive Effect in Murine Model. Molecules 2019; 24:molecules24112042. [PMID: 31142045 PMCID: PMC6600509 DOI: 10.3390/molecules24112042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/22/2023] Open
Abstract
To obtain usnic acid potassium salt (PS-UA), the usnic acid (UA) was extracted and purified from the lichen Cladonia substellata, and modified to produce PS-UA. The structure was determined by 1H-NMR, IR and elemental analysis, ratified through computational models, as well as identification the site of K+ insertion in the molecule. Antinociceptive activity was detected through contortions in mice induced by acetic acid and formalin (phases I and II) after treatments with 10 and 20 mg/kg of PS-UA, indicating interference in both non-inflammatory and inflammatory pain. After oral administration at doses of 500, 1000 and 2000 mg/kg, no deaths of mice with treatments below 2000 mg/kg were observed. Except for body weight gain, food and water consumption decreased with treatments of 1000 and 2000 mg/kg, and the number of segmented leukocytes was higher for both treatments. Regarding serum levels, cholesterol and triglycerides decreased, however, there was an increase in hepatic transaminases with both treatments. Liver and kidney histological changes were detected in treatments of 2000 mg/kg, while the spleen was preserved. The PS-UA demonstrated antinociceptive activity while the acute toxicity at the concentration of 2000 mg/kg was the only dose that presented morphological changes in the liver and kidney.
Collapse
|
33
|
Albertini B, Perissutti B, Bertoni S, Zanolla D, Franceschinis E, Voinovich D, Lombardo F, Keiser J, Passerini N. Combining Mechanochemistry and Spray Congealing for New Praziquantel Pediatric Formulations in Schistosomiasis Treatment. Int J Mol Sci 2019; 20:ijms20051233. [PMID: 30870971 PMCID: PMC6429213 DOI: 10.3390/ijms20051233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022] Open
Abstract
Praziquantel (PZQ) is the first line drug for the treatment of schistosome infections and is included in the WHO Model List of Essential Medicines for Children. In this study, the association of mechanochemical activation (MA) and the spray congealing (SC) technology was evaluated for developing a child-friendly PZQ dosage form, with better product handling and biopharmaceutical properties, compared to MA materials. A 1:1 by wt PZQ—Povidone coground—was prepared in a vibrational mill under cryogenic conditions, for favoring amorphization. PZQ was neat ground to obtain its polymorphic form (Form B), which has an improved solubility and bioactivity. Then, activated PZQ powders were loaded into microparticles (MPs) by the SC technology, using the self-emulsifying agent Gelucire® 50/13 as a carrier. Both, the activated powders and the corresponding loaded MPs were characterized for morphology, wettability, solubility, dissolution behavior, drug content, and drug solid state (Hot Stage Microscopy (HSM), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction Studies (PXRD), and FT-IR). Samples were also in vitro tested for a comparison with PZQ against Schistosoma mansoni newly transformed schistosomula (NTS) and adults. MPs containing both MA systems showed a further increase of biopharmaceutical properties, compared to the milled powders, while maintaining PZQ bioactivity. MPs containing PZQ Form B represented the most promising product for designing a new PZQ formulation.
Collapse
Affiliation(s)
- Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Serena Bertoni
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Debora Zanolla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Flavio Lombardo
- Helminth Drug Development Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstr.57, CH-4051 Basel, Switzerland.
- Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland.
| | - Jennifer Keiser
- Helminth Drug Development Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstr.57, CH-4051 Basel, Switzerland.
- Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland.
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| |
Collapse
|
34
|
Rietveld IB, Barrio M, Lloveras P, Céolin R, Tamarit JL. Polymorphism of spironolactone: An unprecedented case of monotropy turning to enantiotropy with a huge difference in the melting temperatures. Int J Pharm 2018; 552:193-205. [DOI: 10.1016/j.ijpharm.2018.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
35
|
Borrego-Sánchez A, Carazo E, Albertini B, Passerini N, Perissutti B, Cerezo P, Viseras C, Hernández-Laguna A, Aguzzi C, Sainz-Díaz CI. Conformational polymorphic changes in the crystal structure of the chiral antiparasitic drug praziquantel and interactions with calcium carbonate. Eur J Pharm Biopharm 2018; 132:180-191. [PMID: 30267834 DOI: 10.1016/j.ejpb.2018.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022]
Abstract
Praziquantel is an antiparasitic drug used for decades. Currently, the praziquantel commercial preparation is a racemic mixture, in which only the levo-enantiomer possesses anthelmintic activity. The knowledge of its properties in the solid state and other chemical-physical properties is necessary for improving its efficacy and applications. Drug solid dispersions were prepared with calcium carbonate at 1:5 drug to excipient weight ratio by solvent evaporation method. Then, the modification of the crystal structure of the racemic polymorph of praziquantel in presence of calcium carbonate has been studied by means of several analytical techniques (DSC, TGA, XRD, SEM, FTIR, Raman spectroscopy and chiral liquid chromatography). This study has been completed with atomistic calculations based on empirical interatomic force fields and quantum mechanics methods applied to the crystal structure of praziquantel and of intermolecular interactions. The results evidenced that calcium carbonate provoked a conformational change in the praziquantel molecule yielding the formation of different polymorphs of praziquantel crystal. These alterations were not observed replacing calcium carbonate with colloidal silica as excipient in the solid dispersion.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Esperanza Carazo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - César Viseras
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Armilla, Granada, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - A Hernández-Laguna
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Armilla, Granada, Spain
| |
Collapse
|
36
|
Šagud I, Zanolla D, Perissutti B, Passerini N, Škorić I. Identification of degradation products of praziquantel during the mechanochemical activation. J Pharm Biomed Anal 2018; 159:291-295. [PMID: 30007178 DOI: 10.1016/j.jpba.2018.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022]
Abstract
Praziquantel (PZQ) is an inexpensive, low toxicity BCS II class anthelmintic drug used for the treatment of neglected tropical diseases. In earlier papers a mechanochemical activation has been used to induce physical transformations on the drug which would ameliorate its solubility and hence its bioavailability and a systematic study of the effects of varying temperature, frequency and time of milling on drug melting enthalpy and drug recovery was given. In this communication, the focus is on the degradation products that are formed during this mechanical treatment of Praziquantel. In the cogrinding process with povidone and crospovidone several degradation products are formed. Different degradation products are formed, which depend on the type of polymer rather than the process conditions. Two of the most prominent degradation products were identified and their structure proposed on the basis of information obtained from GC-MS, UPLC-MS and 1H NMR techniques.
Collapse
Affiliation(s)
- Ivana Šagud
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Debora Zanolla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| |
Collapse
|