1
|
Pandey PK, Jain M, Jha PK. Drug delivery from a ring implant attached to intraocular lens: An in-silico investigation. J Pharm Sci 2024; 113:3332-3343. [PMID: 39245324 DOI: 10.1016/j.xphs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Multiple iterations required to design ocular implants, which will last for the desired operational period of months or even years, necessitate the use of in-silico models for ocular drug delivery. In this study, we developed an in-silico model to simulate the flow of Aqueous Humor (AH) and drug delivery from an implant to the Trabecular Meshwork (TM). The implant, attached to the side of the intraocular lens (IOL), and the TM are treated as porous media, with their effects on AH flow accounted for using the Darcy equation. This model accurately predicts the physiological values of Intraocular Pressure (IOP) for both healthy individuals and glaucoma patients, as reported in the literature. Results reveal that the effective diffusivity of the drug within the implant is the critical parameter that can alter the bioavailability time period (BTP) from a few days to months. Intuitively, BTP should increase as effective diffusivity decreases. However, we discovered that with lower levels of initial drug loading, BTP declines when effective diffusivity falls below a specific threshold. Our findings further reveal that, while AH flow has a minimal effect on the drug release profile at the implant site, it significantly impacts drug availability at the TM.
Collapse
Affiliation(s)
- Pawan Kumar Pandey
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Prateek K Jha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Wang N, Zhang Y, Wang W, Ye Z, Chen H, Hu G, Ouyang D. How can machine learning and multiscale modeling benefit ocular drug development? Adv Drug Deliv Rev 2023; 196:114772. [PMID: 36906232 DOI: 10.1016/j.addr.2023.114772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Hongyu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Guanghui Hu
- Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences (FHS), University of Macau, Macau, China.
| |
Collapse
|
3
|
Abstract
Ophthalmology is the branch of medicine that deals with diseases of the eye, the organ responsible for vision, and its attachments. Biomaterials can be made with different types of materials and can replace or improve a function or an organ, specifically the eye in the case of ophthalmic biomaterials. Biomaterials are substances that interact with biological systems for a medical purpose, either as a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic agent, and have continued to improve over the years, leading to the creation of new biomaterials. With the arrival of new generations, biomaterials have succeeded in reducing complications and toxicity and improving biocompatibilities associated with older generations. With the aging population, eye problems are becoming more prevalent, and biomaterials have helped in recent years to improve or restore vision, improving the quality of life of many patients. This review focuses on the most clinically used ophthalmic biomaterials, including contact lenses, intraocular lenses, artificial tears, inlays and vitreous replacements. Tissue engineering is presented as a new tool that is able to be treat several ophthalmologic disorders.
Collapse
|
4
|
Loureiro J, Miguel SP, Seabra IJ, Ribeiro MP, Coutinho P. Single-Step Self-Assembly of Zein–Honey–Chitosan Nanoparticles for Hydrophilic Drug Incorporation by Flash Nanoprecipitation. Pharmaceutics 2022; 14:pharmaceutics14050920. [PMID: 35631506 PMCID: PMC9144985 DOI: 10.3390/pharmaceutics14050920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
Zein- and chitosan-based nanoparticles have been described as promising carrier systems for food, biomedical and pharmaceutical applications. However, the manufacture of size-controlled zein and chitosan particles is challenging. In this study, an adapted anti-solvent nanoprecipitation method was developed. The effects of the concentration of zein and chitosan and the pH of the collection solution on the properties of the zein–honey–chitosan nanoparticles were investigated. Flash nanoprecipitation was demonstrated as a rapid, scalable, single-step method to achieve the self-assembly of zein–honey–chitosan nanoparticles. The nanoparticles size was tuned by varying certain formulation parameters, including the total concentration and ratio of the polymers. The zein–honey–chitosan nanoparticles’ hydrodynamic diameter was below 200 nm and the particles were stable for 30 days. Vitamin C was used as a hydrophilic model substance and efficiently encapsulated into these nanoparticles. This study opens a promising pathway for one-step producing zein–honey–chitosan nanoparticles by flash nanoprecipitation for hydrophilic compounds’ encapsulation.
Collapse
Affiliation(s)
- Jorge Loureiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
| | - Sónia P. Miguel
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Inês J. Seabra
- Bioengineering Department, Lehigh University, Bethlehem, PA 18015, USA;
| | - Maximiano P. Ribeiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-965544187
| |
Collapse
|
5
|
Eftimie Totu E, Mănuc D, Totu T, Cristache CM, Buga RM, Erci F, Cristea C, Isildak I. Considerations on the Controlled Delivery of Bioactive Compounds through Hyaluronic Acid Membrane. MEMBRANES 2022; 12:membranes12030303. [PMID: 35323778 PMCID: PMC8949277 DOI: 10.3390/membranes12030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: The standard treatment for periodontal disease, a chronic inflammatory state caused by the interaction between biofilms generated by organized oral bacteria and the local host defense response, consists of calculus and biofilm removal through mechanical debridement, associated with antimicrobial therapy that could be delivered either systemically or locally. The present study aimed to determine the effectiveness of a hyaluronic acid membrane matrix as a carrier for the controlled release of the active compounds of a formulation proposed as a topical treatment for periodontal disease, and the influence of pH on the complex system’s stability. (2) Methods: The obtained hyaluronic acid (HA) hydrogel membrane with dispersed melatonin (MEL), metronidazole (MZ), and tetracycline (T) was completely characterized through FTIR, XRD, thermal analysis, UV-Vis and fluorescence spectroscopy, fluorescence microscopy, zeta potential and dielectric analysis. The MTT viability test was applied to check the cytotoxicity of the obtained membranes, while the microbiological assessment was performed against strains of Staphylococcus spp. and Streptococcus spp. The spectrophotometric investigations allowed to follow up the release profile from the HA matrix for MEL, MZ, and T present in the topical treatment considered. We studied the behavior of the active compounds against the pH of the generated environment, and the release profile of the bioactive formulation based on the specific comportment towards pH variation. The controlled delivery of the bioactive compounds using HA as a supportive matrix was modeled applying Korsmeyer–Peppas, Higuchi, first-order kinetic models, and a newly proposed pseudo-first-order kinetic model. (3) Results: It was observed that MZ and T were released at higher active concentrations than MEL when the pH was increased from 6.75, specific for patients with periodontitis, to a pH of 7.10, characterizing the healthy patients. Additionally, it was shown that for MZ, there is a burst delivery up to 2.40 × 10−5 mol/L followed by a release decrease, while for MEL and T a short release plateau was recorded up to a concentration of 1.80 × 10−5 mol/L for MEL and 0.90 × 10−5 mol/L for T, followed by a continuous release; (4) Conclusions: The results are encouraging for the usage of the HA membrane matrix as releasing vehicle for the active components of the proposed topical treatment at a physiological pH.
Collapse
Affiliation(s)
- Eugenia Eftimie Totu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1–7 Polizu St., 011061 Bucharest, Romania
- Correspondence: (E.E.T.); (D.M.)
| | - Daniela Mănuc
- Department of Public Health, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Correspondence: (E.E.T.); (D.M.)
| | - Tiberiu Totu
- School of Life Sciences, Ecole Polytechnique Fédèrale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; (T.T.); (R.-M.B.)
| | - Corina Marilena Cristache
- Department of Dental Techniques, Faculty of Midwifery and Nursing (FMAM), “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Roxana-Mădălina Buga
- School of Life Sciences, Ecole Polytechnique Fédèrale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; (T.T.); (R.-M.B.)
| | - Fatih Erci
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Yeni Meram Boulevard Kasim Halife Street, Meram, Konya 42090, Turkey;
| | - Camelia Cristea
- Biotechnologies Center, University of Agriculture and Veterinary Medicine, 42 Blvd. Mărăşti, 011464 Bucharest, Romania;
| | - Ibrahim Isildak
- Department of Bioengineering, Yildiz Campus Barbaros Bulvari, Yildiz Technical University, Istanbul 34343, Turkey;
| |
Collapse
|
6
|
Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Escalating medical expenses due to infectious diseases are causing huge socioeconomic pressure on mankind globally. The emergence of antibiotic resistance has further aggravated this problem. Drug-resistant pathogens are also capable of forming thick biofilms on biotic and abiotic surfaces to thrive in a harsh environment. To address these clinical problems, various strategies including antibacterial agent delivering matrices and bactericidal coatings strategies have been developed. In this review, we have discussed various types of polymeric vehicles such as hydrogels, sponges/cryogels, microgels, nanogels, and meshes, which are commonly used to deliver antibiotics, metal nanoparticles, and biocides. Compositions of these polymeric matrices have been elaborately depicted by elucidating their chemical interactions and potential activity have been discussed. On the other hand, various implant/device-surface coating strategies which exploit the release-active mechanism of bacterial killing are discussed in elaboration. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Dipanjana Patra
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Toffoletto N, Salema-Oom M, Anguiano Igea S, Alvarez-Lorenzo C, Saramago B, Serro AP. Drug-Loaded Hydrogels for Intraocular Lenses with Prophylactic Action against Pseudophakic Cystoid Macular Edema. Pharmaceutics 2021; 13:976. [PMID: 34203367 PMCID: PMC8309109 DOI: 10.3390/pharmaceutics13070976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023] Open
Abstract
Pseudophakic cystoid macular edema (PCME), caused by chronic inflammation, is the most common cause of visual impairment in the medium-term after cataract surgery. Therefore, the prophylactic topical administration of combined steroidal and non-steroidal anti-inflammatory drugs is commonly done. Drug-eluting intraocular lenses (IOLs) gained interest as an efficient way to overcome the compliance issues related to the use of ocular drops without the need for additional surgical steps. The incorporation of functional monomers and molecular imprinting were herein applied to design hydrogels suitable as IOLs and able to co-deliver steroidal (dexamethasone sodium phosphate) and non-steroidal (bromfenac sodium) drugs. The incorporation of N-(2-aminopropyl) methacrylamide (APMA) increased the drug uptake and improved the in vitro release kinetics. Imprinting with bromfenac resulted in a decreased drug release due to permanent drug bonding, while imprinting with dexamethasone increased the amount of dexamethasone released after dual-drug loading. The application of a mathematical model to predict the in vivo drug release behavior suggests the feasibility of achieving therapeutic drug concentrations of bromfenac and dexamethasone in the aqueous humor for about 2 and 8 weeks, respectively, which is compatible with the current topical prophylaxis after cataract surgery.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Avenue Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal;
| | - Soledad Anguiano Igea
- HGBeyond Materials Science S.L., Edificio EMPRENDIA, 15782 Santiago de Compostela, Spain;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I + D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Avenue Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Avenue Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal;
| |
Collapse
|
8
|
Intraocular lenses as drug delivery devices. Int J Pharm 2021; 602:120613. [PMID: 33865952 DOI: 10.1016/j.ijpharm.2021.120613] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022]
Abstract
Cataract surgery is one of the most common and safe surgical procedures nowadays. However, it is not free of risks as endophthalmitis, ocular inflammation and posterior capsule opacification (PCO) can appear as post-surgery complications. The usual eye drop therapy used as prophylaxis for the former two complications has limited bioavailability. In turn, the prevention of PCO involves an adequate surgical technique and a careful choice of intraocular lens (IOL) design and material. Also, different drugs have been tested to reduce incidence of PCO, but no prophylaxis demonstrated to be completely effective. In the past few years, IOLs have been proposed as drug delivery devices to replace or/assist the usual eye drop therapy in the post-operatory period. The great advantage of drug loaded IOLs would be to ensure a continuous drug delivery, independent of patient's compliance without requiring any further action besides IOL implantation. The biggest challenge of drug loaded IOLs production is to achieve a controlled and extended release that meet therapeutic needs without inducing toxicity to the surrounding ocular tissues or affecting the physical properties of the lens. This review starts by addressing the possible complications after cataract surgery, as well as the most commonly adopted prophylaxis for each of them. The various types of IOLs are described and their main advantages/disadvantages are discussed. The different strategies pursued to incorporate drugs into the IOLs and control their release, which include soaking the IOL in the drugs solution, supercritical impregnation, surface modifications, and attachment of drug reservoirs to the IOL, among others, are reported. For each strategy, a summary of the publications is presented, which includes the target complication, the types and amounts of released drugs and the IOL materials. A brief description of each individual study is given afterwards. Optimization of drug loaded IOLs through mathematical modelling and possible issues raised by their sterilization are also tackled. At the end, the future commercialization of drug loaded IOLs is commented.
Collapse
|
9
|
Toffoletto N, Saramago B, Serro AP. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020; 13:36. [PMID: 33379411 PMCID: PMC7824655 DOI: 10.3390/pharmaceutics13010036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
An increasing incidence of eye diseases has been registered in the last decades in developed countries due to the ageing of population, changes in lifestyle, environmental factors, and the presence of concomitant medical conditions. The increase of public awareness on ocular conditions leads to an early diagnosis and treatment, as well as an increased demand for more effective and minimally invasive solutions for the treatment of both the anterior and posterior segments of the eye. Despite being the most common route of ophthalmic drug administration, eye drops are associated with compliance issues, drug wastage by lacrimation, and low bioavailability due to the ocular barriers. In order to overcome these problems, the design of drug-eluting ophthalmic lenses constitutes a non-invasive and patient-friendly approach for the sustained drug delivery to the eye. Several examples of therapeutic contact lenses and intraocular lenses have been developed, by means of different strategies of drug loading, leading to promising results. This review aims to report the recent advances in the development of therapeutic ophthalmic lenses for the treatment and/or prophylaxis of eye pathologies (i.e., glaucoma, cataract, corneal diseases, or posterior segment diseases) and it gives an overview of the future perspectives and challenges in the field.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
10
|
Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020; 12:pharmaceutics12121188. [PMID: 33297493 PMCID: PMC7762425 DOI: 10.3390/pharmaceutics12121188] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
Owing to their tunable properties, controllable degradation, and ability to protect labile drugs, hydrogels are increasingly investigated as local drug delivery systems. However, a lack of standardized methodologies used to characterize and evaluate drug release poses significant difficulties when comparing findings from different investigations, preventing an accurate assessment of systems. Here, we review the commonly used analytical techniques for drug detection and quantification from hydrogel delivery systems. The experimental conditions of drug release in saline solutions and their impact are discussed, along with the main mathematical and statistical approaches to characterize drug release profiles. We also review methods to determine drug diffusion coefficients and in vitro and in vivo models used to assess drug release and efficacy with the goal to provide guidelines and harmonized practices when investigating novel hydrogel drug delivery systems.
Collapse
|
11
|
Saraswathy K, Agarwal G, Srivastava A. Hyaluronic acid microneedles‐laden collagen cryogel plugs for ocular drug delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.49285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Krishnapriya Saraswathy
- Department of Medical deviceNational Institute of Pharmaceutical Education and Research Gandhinagar India
| | - Gopal Agarwal
- Department of BiotechnologyNational Institute of Pharmaceutical Education and Research Gandhinagar India
| | - Akshay Srivastava
- Department of Medical deviceNational Institute of Pharmaceutical Education and Research Gandhinagar India
| |
Collapse
|
12
|
Ghnatios C, Alfaro I, González D, Chinesta F, Cueto E. Data-Driven GENERIC Modeling of Poroviscoelastic Materials
. ENTROPY 2019. [PMCID: PMC7514510 DOI: 10.3390/e21121165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the indentation forces are a function of the indentation depth. Later on, the atomic force microscopy results are used in a GENERIC general equation for non-equilibrium reversible–irreversible coupling (GENERIC) formalism to identify the best model conserving basic thermodynamic laws. The data-driven GENERIC analysis identifies the material behavior with high fidelity for both data fitting and prediction.
Collapse
Affiliation(s)
- Chady Ghnatios
- Mechanical Engineering Department, Notre Dame University-Louaizé, Zouk Mosbeh P.O. Box 72, Lebanon
- Correspondence: ; Tel.: +961-3-179672
| | - Iciar Alfaro
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain; (I.A.); (E.C.)
| | - David González
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain; (I.A.); (E.C.)
| | - Francisco Chinesta
- ESI Chair @ ENSAM Arts et Metiers Institute of Technology, 151 Boulevard de l’Hôpital, F-75013 Paris, France;
| | - Elias Cueto
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain; (I.A.); (E.C.)
| |
Collapse
|