1
|
Sarwinska D, Miller M, Arendt J, Markiewicz M, Michta K, Grimm M, Balwicki Ł, Weitschies W. Real-life dosing conditions in older adults and geriatric patients in Poland - An international questionnaire study to investigate the regional differences in drug intake behaviour in the older population. Eur J Pharm Sci 2024; 206:107001. [PMID: 39742891 DOI: 10.1016/j.ejps.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Older people represent approximately 20% of the Polish population and are the primary population using medications. Behaviours connected with drug intake (such as dosage form modifications, type and amount of fluid and/or food accompanying administration) are crucial for drug efficacy and avoidance of adverse effects. The presented study had three research aims; firstly, to investigate the real-life drug administration process among older adults and geriatric patients in Poland. Secondly, to compare data from Poland with data from a previous study performed in Germany, based on the same questionnaire. Thirdly, to discuss the potential influence of dosing conditions on the behaviour of orally administered medications (especially drug absorption) and identify potential problems with drug intake itself. This questionnaire-based study was conducted in the form of in-person interviews led by research team members. In this study, 174 participants, aged 65-94 years old were recruited from three settings in the Pomeranian region of Poland: home setting, nursing home and hospital. In Poland, the preferred method of medication intake was administration of all medications simultaneously. Patients were taking their medications most often directly after food ingestion, which commonly consisted of bread with butter, ham or cheese and black tea. The most common fluid for drug administration was either a few sips or 100 mL of non-carbonated water (mineral or tap water) as well as black tea. Dividing tablets (defined as splitting tablets in parts) was the most common modification. There were many similarities in the way of administering medications between the Polish and German older populations, specifically the use of non-carbonated water as the most common fluid for medication intake as well as bread as the main ingredient of breakfast and dinner. The biggest difference between populations was the choice of black tea as a medium for medication intake much more frequently in the Polish population than the German (who also preferred mint, herbal and fruit teas), and using a smaller volume of fluid. The presented study gives insight into the medication intake process in the older Polish population from the Pomeranian region in North Poland in comparison to the German population from the Pomeranian region in North East Germany. The results may help to identify factors that could decrease medication efficacy and safety, which is crucial, especially for the older population. Furthermore, the collected data may be useful for in vitro or in silico simulations to enhance drug development based on real-life data.
Collapse
Affiliation(s)
- Dorota Sarwinska
- Center of Drug Absorption and Transport, Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Marta Miller
- Medical Faculty, Medical University of Gdańsk, Poland
| | - Jagoda Arendt
- Medical Faculty, Medical University of Gdańsk, Poland
| | | | | | - Michael Grimm
- Center of Drug Absorption and Transport, Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Łukasz Balwicki
- Department of Public Health and Social Medicine, Medical University of Gdańsk, Poland
| | - Werner Weitschies
- Center of Drug Absorption and Transport, Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Sarwinska D, Grimm M, Krause J, Schick P, Gollasch M, Mannaa M, Ritter CA, Weitschies W. Investigation of real-life drug intake behaviour in older adults and geriatric patients in Northern Germany - A biopharmaceutical perspective. Eur J Pharm Sci 2024; 200:106814. [PMID: 38815699 DOI: 10.1016/j.ejps.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Dosing conditions (type and amount of accompanying fluid, the type of food, the time of administration, and dosage form modifications such as crushing tablets) are critical and affect the performance of oral dosage forms in the gastrointestinal tract and thus bioavailability. Because older adults are the primary users of medications and are more susceptible to adverse effects, it is important to understand how they take their medications in order to reduce risks and increase benefits of the pharmacotherapy. The aim of the study was to investigate the real-life drug intake behaviour in geriatric patients and older adults and discuss their influence on drug absorption after oral administration. The data from two settings home vs. hospital and genders women vs. men were presented. A questionnaire study was performed among people aged at least 65 years from two settings (hospital vs. home), recruited mostly from community pharmacies and a regional hospital in Mecklenburg - Western Pomerania. The obtained data demonstrates that older adults and geriatric patients take their medications in the same way regardless of the setting and gender. There were no significant differences. Interviewed participants were mostly adherent to the doctor's recommendations and mostly took their medications in the same way every day. Medications are most commonly taken with a small (100 mL) or large (200 mL) glass of noncarbonated water, after food (during or after breakfast 64 % of intakes in the morning and during or after dinner 81 % of intakes in the evening). Meal usually consisted of bread, either with jam or honey (breakfast), or ham and cheese (dinner). All reported dosage form modifications were made to tablets. In almost all cases it was splitting the tablet, which was performed due to doctor's indication.
Collapse
Affiliation(s)
- Dorota Sarwinska
- Center of Drug Absorption and Transport, Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Michael Grimm
- Center of Drug Absorption and Transport, Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Julius Krause
- Center of Drug Absorption and Transport, Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Philipp Schick
- Center of Drug Absorption and Transport, Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Marwan Mannaa
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Christoph A Ritter
- Clinical Pharmacy, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Werner Weitschies
- Center of Drug Absorption and Transport, Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany.
| |
Collapse
|
3
|
Staniszewska M, Myslitska D, Romański M, Polak S, Garbacz G, Dobosz J, Smoleński M, Paszkowska J, Danielak D. In Vitro Simulation of the Fasted Gastric Conditions and Their Variability to Elucidate Contrasting Properties of the Marketed Dabigatran Etexilate Pellet-Filled Capsules and Loose Pellets. Mol Pharm 2024; 21:2456-2472. [PMID: 38568423 DOI: 10.1021/acs.molpharmaceut.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Variability of the gastrointestinal tract is rarely reflected in in vitro test protocols but often turns out to be crucial for the oral dosage form performance. In this study, we present a generation method of dissolution profiles accounting for the variability of fasted gastric conditions. The workflow featured 20 biopredictive tests within the physiological variability. The experimental array was constructed with the use of the design of experiments, based on three parameters: gastric pH and timings of the intragastric stress event and gastric emptying. Then, the resulting dissolution profiles served as a training data set for the dissolution process modeling with the machine learning algorithms. This allowed us to generate individual dissolution profiles under a customizable gastric pH and motility patterns. For the first time ever, we used the method to successfully elucidate dissolution properties of two dosage forms: pellet-filled capsules and bare pellets of the marketed dabigatran etexilate product Pradaxa. We showed that the dissolution of capsules was triggered by mechanical stresses and thus was characterized by higher variability and a longer dissolution onset than observed for pellets. Hence, we proved the applicability of the method for the in vitro and in silico characterization of immediate-release dosage forms and, potentially, for the improvement of in vitro-in vivo extrapolation.
Collapse
Affiliation(s)
| | - Daria Myslitska
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | - Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| | - Sebastian Polak
- Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Grzegorz Garbacz
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | - Justyna Dobosz
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | - Michał Smoleński
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland
| | | | - Dorota Danielak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland
| |
Collapse
|
4
|
Hens B, Sarcevica I, Tomaszewska I, McAllister M. Digitalizing the TIM-1 Model Using Computational Approaches─Part Two: Digital TIM-1 Model in GastroPlus. Mol Pharm 2023; 20:5429-5439. [PMID: 37878668 DOI: 10.1021/acs.molpharmaceut.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A TIM-1 model is an in vitro gastrointestinal (GI) simulator considering crucial physiological parameters that will affect the in vivo drug release process. The outcome of these experiments can indicate the critical bioavailability attributes (CBAs) that will impact the fraction absorbed in vivo. The model is widely used in the nonclinical stage of drug product development to assess the bioaccessible fraction of drugs for numerous candidate formulations. In this work, we developed a digital TIM-1 model in the GastroPlus platform. In a first step, we performed validation experiments to assess the luminal concentrations and bioaccessible fractions for two marker compounds. The digital TIM-1 was able to adequately reflect the luminal concentrations and bioaccessible fractions of these markers under different prandial conditions, confirming the appropriate integration of mass transfer in the TIM-1 model. In a second set of experiments, a case example with PF-07059013 was performed, where luminal concentrations and bioaccessible fractions were predicted for 200 and 1000 mg doses under fasted and achlorhydric conditions. Experimental and simulated data pointed out that the achlorhydric effect was more pronounced at the 1000 mg dose, showing a solubility-limited dissolution and, consequently, decreased bioaccessible fraction. Toward future applications, the digital TIM-1 model will be thoroughly applied to explore a link between in vitro and in vivo outcomes based on more case examples with model compounds with the access of TIM-1 and plasma data. Ideally, this digital TIM-1 can be directly used in GastroPlus to explore an in vitro-in vivo correlation (IVIVC) between the fraction dissolved (digital TIM-1 settings) and the fraction absorbed (human PBPK settings).
Collapse
Affiliation(s)
- Bart Hens
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Inese Sarcevica
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Irena Tomaszewska
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Mark McAllister
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| |
Collapse
|
5
|
Statelova M, Vertzoni M, Kourentas A. Simulation of Intraluminal Performance of Lipophilic Weak Bases in Fasted Healthy Adults Using DDDPlusTM. AAPS J 2022; 24:89. [DOI: 10.1208/s12248-022-00737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
|
6
|
Van Camp A, Vanuytsel T, Brouwers J, Augustijns P. The effect of esomeprazole on the upper GI tract release and systemic absorption of mesalazine from colon targeted formulations. Int J Pharm 2022; 619:121701. [PMID: 35339635 DOI: 10.1016/j.ijpharm.2022.121701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 01/31/2023]
Abstract
The aim of the present study was to investigate the effect of coadministration of the proton pump inhibitor (PPI) esomeprazole on the upper GI tract behavior and systemic exposure of mesalazine from two mechanistically different colon targeted delivery systems: Claversal (pH-dependent release) and Pentasa (prolonged release). To this end, gastric, jejunal and systemic concentrations of mesalazine and its metabolite N-acetyl mesalazine were monitored in 5 healthy volunteers following oral intake of Pentasa or Claversal with or without PPI pre-treatment (cross-over study). Our exploratory study demonstrated that pre-treatment with a PPI may affect the release and absorption of mesalazine from formulations with different modified release mechanisms. Upon intake of Claversal, the onset of mesalazine absorption was accelerated substantially by PPI pre-treatment. While the PPI-induced increase in pH initiated the disintegration process already in the upper GI tract, the release of mesalazine started beyond the proximal jejunum. Upon intake of Pentasa, PPI pre-treatment seemed to increase the systemic exposure, even though the underlying mechanism could not be revealed yet. The faster release of mesalazine in the GI tract and/or the increased systemic absorption following PPI pre-treatment may reduce the ability of mesalazine to reach the colon. Future research assessing mesalazine disposition in the lower GI tract is warranted.
Collapse
Affiliation(s)
- Arno Van Camp
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium.
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, TARGID, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium.
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Application of In Vivo Imaging Techniques and Diagnostic Tools in Oral Drug Delivery Research. Pharmaceutics 2022; 14:pharmaceutics14040801. [PMID: 35456635 PMCID: PMC9025904 DOI: 10.3390/pharmaceutics14040801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
Drug absorption following oral administration is determined by complex and dynamic interactions between gastrointestinal (GI) physiology, the drug, and its formulation. Since many of these interactions are not fully understood, the COST action on “Understanding Gastrointestinal Absorption-related Processes (UNGAP)” was initiated in 2017, with the aim to improve the current comprehension of intestinal drug absorption and foster future developments in this field. In this regard, in vivo techniques used for the characterization of human GI physiology and the intraluminal behavior of orally administered dosage forms in the GI tract are fundamental to gaining deeper mechanistic understanding of the interplay between human GI physiology and drug product performance. In this review, the potential applications, advantages, and limitations of the most important in vivo techniques relevant to oral biopharmaceutics are presented from the perspectives of different research fields.
Collapse
|
8
|
Characterizing the Physicochemical Properties of Two Weakly Basic Drugs and the Precipitates Obtained from Biorelevant Media. Pharmaceutics 2022; 14:pharmaceutics14020330. [PMID: 35214062 PMCID: PMC8879660 DOI: 10.3390/pharmaceutics14020330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Generally, some weakly basic insoluble drugs will undergo precipitate and redissolution after emptying from the stomach to the small intestinal, resulting in the limited ability to predict the absorption characteristics of compounds in advance. Absorption is determined by the solubility and permeability of compounds, which are related to physicochemical properties, while knowledge about the absorption of redissolved precipitate is poorly documented. Considering that biorelevant media have been widely used to simulate gastrointestinal fluids, sufficient precipitates can be obtained in biorelevant media in vitro. Herein, the purpose of this manuscript is to evaluate the physicochemical properties of precipitates obtained from biorelevant media and active pharmaceutical ingredients (API), and then to explore the potential absorption difference between API and precipitates. Precipitates can be formed by the interaction between compounds and intestinal fluid contents, leading to changes in the crystal structure, melting point, and melting process. However, the newly formed crystals have some advantageous properties compared with the API, such as the improved dissolved rate and the increased intrinsic dissolution rate. Additionally, the permeability of some precipitates obtained from biorelevant media was different from API. Meanwhile, the permeability of rivaroxaban and Drug-A was decreased by 1.92-fold and 3.53-fold, respectively, when the experiments were performed in a biorelevant medium instead of a traditional medium. Therefore, the absorption of precipitate may differ from that of API, and the permeability assay in traditional medium may be overestimated. Based on the research results, it is crucial to understand the physicochemical properties of precipitates and API, which can be used as the departure point to improve the prediction performance of absorption.
Collapse
|
9
|
Lehmann A, Krollik K, Beran K, Hirtreiter C, Kubas H, Wagner C. Increasing the Robustness of Biopharmaceutical Precipitation Assays - Part I: Derivative UV Spectrophotometric Method Development for in-line Measurements. J Pharm Sci 2021; 111:146-154. [PMID: 34464648 DOI: 10.1016/j.xphs.2021.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
In vitro precipitation assays are often applied to support drug and formulation development. Current methods applied to quantify the amount of dissolved drug, in particular (U)HPLC, require time-consuming sample preparation. Furthermore, small precipitates formed during the nucleation phase may not be removed quantitatively by filtration or centrifugation of the sample. Given the drawbacks of standard (U)HPLC analyses during the application in transfer experiments, it was the aim of this work to develop a robust and simple to implement in-line UV spectrophotometric method which accurately reflects the precipitation profile obtained from in vitro transfer assays. Based on the three model compounds cinnarizine, dipyridamole, and ketoconazole, the manuscript describes the development of a design of experiments (DoE) based approach to develop derivative UV spectrophotometric methods accounting for the change in media composition over time due to the dilution of simulated intestinal with simulated gastric fluid. An R script was developed which automatically identifies suitable wavelengths for in-line measurements. As an outcome of this study, a fast, robust, accurate, and specific derivative UV spectrophotometric methodology for measuring the concentration of dissolved drugs in in vitro transfer experiments was successfully developed. This method can flexibly be applied to multi-compartmental precipitation assays.
Collapse
Affiliation(s)
| | - Katharina Krollik
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany; Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Strasse 3, Greifswald, Germany
| | - Kristian Beran
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany; Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | | | - Holger Kubas
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | | |
Collapse
|
10
|
Augustijns P, Vertzoni M, Reppas C, Langguth P, Lennernäs H, Abrahamsson B, Hasler WL, Baker JR, Vanuytsel T, Tack J, Corsetti M, Bermejo M, Paixão P, Amidon GL, Hens B. Unraveling the behavior of oral drug products inside the human gastrointestinal tract using the aspiration technique: History, methodology and applications. Eur J Pharm Sci 2020; 155:105517. [DOI: 10.1016/j.ejps.2020.105517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 02/08/2023]
|
11
|
Enright EF, Joyce SA, Gahan CG, Taylor LS. Impact of phospholipid digests and bile acid pool variations on the crystallization of atazanavir from supersaturated solutions. Eur J Pharm Biopharm 2020; 153:68-83. [DOI: 10.1016/j.ejpb.2020.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 05/24/2020] [Indexed: 11/25/2022]
|
12
|
Hens B, Bermejo M, Cristofoletti R, Amidon GE, Amidon GL. Application of the Gastrointestinal Simulator (GIS) Coupled with In Silico Modeling to Measure the Impact of Coca-Cola ® on the Luminal and Systemic Behavior of Loratadine (BCS Class 2b). Pharmaceutics 2020; 12:pharmaceutics12060566. [PMID: 32570975 PMCID: PMC7355706 DOI: 10.3390/pharmaceutics12060566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 01/07/2023] Open
Abstract
In the present work, we explored if Coca-Cola® had a beneficial impact on the systemic outcome of the weakly basic drug loratadine (Wal-itin®, immediate-release formulation, 10 mg, generic drug product). To map the contribution of underlying physiological variables that may positively impact the intestinal absorption of loratadine, a multi-compartmental and dynamic dissolution device was built, namely the Gastrointestinal Simulator (GIS). The luminal behavior of one immediate-release (IR) tablet of 10 mg of loratadine was tested under four different fasted state test conditions in the GIS: (i) with 250 mL of water and applying a predetermined gastric half-life (t1/2,G) of 15 min; (ii) with 250 mL of water and applying a t1/2,G of 30 min; (iii) with 250 mL of Coca-Cola® and a t1/2,G of 15 min; (iv) with 250 mL of Coca-Cola® and a t1/2,G of 30 min. After initiating the experiments, solution concentrations and solubility were measured in the withdrawn samples, and pH was monitored. To address the impact of the present CO2 in Coca-Cola® on the disintegration time of the tablet, additional disintegration experiments were performed in a single-vessel applying tap water and sparkling water as dissolution media. These experiments demonstrated the faster disintegration of the tablet in the presence of sparkling water, as the present CO2 facilitates the release of the drug. The buffer capacity of Coca-Cola® in the presence of FaSSGF was 4-fold higher than the buffer capacity of tap water in the presence of FaSSGF. After performing the in vitro experiments, the obtained results were used as input for a two-compartmental pharmacokinetic (PK) modeling approach to predict the systemic concentrations. These simulations pointed out that (i) the present CO2 in Coca-Cola® is responsible for the enhancement in drug release and dissolution and that (ii) a delay in gastric emptying rate will sustain the supersaturated concentrations of loratadine in the intestinal regions of the GI tract, resulting in an enhanced driving force for intestinal absorption. Therefore, co-administration of loratadine with Coca-Cola® will highly likely result in an increased systemic exposure compared to co-administration of loratadine with tap water. The mechanistic insights that were obtained from this work will serve as a scientific basis to evaluate the impact of Coca-Cola® on the systemic exposure of weakly basic drugs for patients on acid-reducing agents in future work.
Collapse
Affiliation(s)
- Bart Hens
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; (B.H.); (M.B.); (G.E.A.)
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Pharmaceutical Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Marival Bermejo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; (B.H.); (M.B.); (G.E.A.)
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA;
| | - Gregory E. Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; (B.H.); (M.B.); (G.E.A.)
| | - Gordon L. Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; (B.H.); (M.B.); (G.E.A.)
- Correspondence: ; Tel.: +1-734-764-2226; Fax: +1-734-764-6282
| |
Collapse
|