1
|
Li XR, Deng QS, He SH, Liu PL, Gao Y, Wei ZY, Zhang CR, Wang F, Zhu TH, Dawes H, Rui BY, Tao SC, Guo SC. 3D cryo-printed hierarchical porous scaffolds provide immobilization of surface-functionalized sleep-inspired small extracellular vesicles: synergistic therapeutic strategies for vascularized bone regeneration based on macrophage phenotype modulation and angiogenesis-osteogenesis coupling. J Nanobiotechnology 2024; 22:764. [PMID: 39695679 DOI: 10.1186/s12951-024-02977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone. Melatonin (MT) has attracted attention in recent years as an excellent factor for promoting cell viability and tissue repair. In this study, porous scaffolds were prepared by cryogenic printing with poly(lactic-co-glycolic acid) and ultralong hydroxyapatite nanowires. The hierarchical pore size distribution of the scaffolds was evaluated by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Sleep-inspired small extracellular vesicles (MT-sEVs) were then obtained from MT-stimulated cells and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-inorganic pyrophosphate (DSPE-PEG-PPi) was used to modify the membrane of MT-sEVs to obtain PPi-MT-sEVs. RNA sequencing was performed to explore the potential mechanisms. The results demonstrated that PPi-MT-sEVs not only enhanced cell proliferation, migration and angiogenesis, but also regulated the osteogenic/adipogenic fate determination and M1/M2 macrophage polarization switch in vitro. PPi-MT-sEVs were used to coat scaffolds, enabled by the capacity of PPi to bind to hydroxyapatite, and computational simulations were used to analyze the interfacial bonding of PPi and hydroxyapatite. The macrophage phenotype-modulating and osteogenesis-angiogenesis coupling effects were evaluated in vivo. In summary, this study suggests that the combination of hierarchical porous scaffolds and PPi-MT-sEVs could be a promising candidate for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Xu-Ran Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qing-Song Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shu-Hang He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Po-Lin Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhan-Ying Wei
- Shanghai Clinical Research Centre of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chang-Ru Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Fei Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Tong-He Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Helen Dawes
- Faculty of Health and Life Science, Oxford Brookes University, Headington Road, Oxford, OX3 0BP, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, UK
- College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Bi-Yu Rui
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| | - Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China.
| | - Shang-Chun Guo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
2
|
Bonilla-Vidal L, Świtalska M, Espina M, Wietrzyk J, García ML, Souto EB, Gliszczyńska A, Sánchez-López E. Antitumoral melatonin-loaded nanostructured lipid carriers. Nanomedicine (Lond) 2024; 19:1879-1894. [PMID: 39092498 PMCID: PMC11457606 DOI: 10.1080/17435889.2024.2379757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Aim: Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity.Methods: MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and in vitro antitumoral efficacy against various cancer cell lines.Results: Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. In vitro studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells.Conclusion: MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Marta Świtalska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry & Biocatalysis, Wrocław University of Environmental & Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
3
|
Yi YJ, Tang H, Pi PL, Zhang HW, Du SY, Ge WY, Dai Q, Zhao ZY, Li J, Sun Z. Melatonin in cancer biology: pathways, derivatives, and the promise of targeted delivery. Drug Metab Rev 2024; 56:62-79. [PMID: 38226647 DOI: 10.1080/03602532.2024.2305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/β-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.
Collapse
Affiliation(s)
- Yu-Juan Yi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Tang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng-Lai Pi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | - Si-Yu Du
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wei-Ye Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qi Dai
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zi-Yan Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jia Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zheng Sun
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Park JH, Hwang Y, Nguyen YND, Kim HC, Shin EJ. Ramelteon attenuates hippocampal neuronal loss and memory impairment following kainate-induced seizures. J Pineal Res 2024; 76:e12921. [PMID: 37846173 DOI: 10.1111/jpi.12921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Evidence suggests that the neuroprotective effects of melatonin involve both receptor-dependent and -independent actions. However, little is known about the effects of melatonin receptor activation on the kainate (KA) neurotoxicity. This study examined the effects of repeated post-KA treatment with ramelteon, a selective agonist of melatonin receptors, on neuronal loss, cognitive impairment, and depression-like behaviors following KA-induced seizures. The expression of melatonin receptors decreased in neurons, whereas it was induced in astrocytes 3 and 7 days after seizures elicited by KA (0.12 μg/μL) in the hippocampus of mice. Ramelteon (3 or 10 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) mitigated KA-induced oxidative stress and impairment of glutathione homeostasis and promoted the nuclear translocation and DNA binding activity of Nrf2 in the hippocampus after KA treatment. Ramelteon and melatonin also attenuated microglial activation but did not significantly affect astroglial activation induced by KA, despite the astroglial induction of melatonin receptors after KA treatment. However, ramelteon attenuated KA-induced proinflammatory phenotypic changes in astrocytes. Considering the reciprocal regulation of astroglial and microglial activation, these results suggest ramelteon inhibits microglial activation by regulating astrocyte phenotypic changes. These effects were accompanied by the attenuation of the nuclear translocation and DNA binding activity of nuclear factor κB (NFκB) induced by KA. Consequently, ramelteon attenuated the KA-induced hippocampal neuronal loss, memory impairment, and depression-like behaviors; the effects were comparable to those of melatonin. These results suggest that ramelteon-mediated activation of melatonin receptors provides neuroprotection against KA-induced neurotoxicity in the mouse hippocampus by activating Nrf2 signaling to attenuate oxidative stress and restore glutathione homeostasis and by inhibiting NFκB signaling to attenuate neuroinflammatory changes.
Collapse
Affiliation(s)
- Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Czerniel J, Gostyńska A, Jańczak J, Stawny M. A critical review of the novelties in the development of intravenous nanoemulsions. Eur J Pharm Biopharm 2023; 191:36-56. [PMID: 37586663 DOI: 10.1016/j.ejpb.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoemulsions have gained increasing attention in recent years as a drug delivery system due to their ability to improve the solubility and bioavailability of poorly water-soluble drugs. This systematic review aimed to collect and critically analyze recent novelties in developing, designing, and optimizing intravenous nanoemulsions appearing in articles published between 2017 and 2022. The applied methodology involved searching two electronic databases PubMed and Scopus, using the keyword "nanoemulsion" in combination with "intravenous" or "parenteral". The resulting original articles were classified by the method of preparation into different categories. An overview of the current methods used for the preparation of such formulations, including high- and low-energy emulsification, was provided. The advantages and disadvantages of these methods were discussed, as well as their potential impact on the properties of the developed intravenous nanoemulsions. The problem of inconsistency in intravenous nanoemulsion terminology may lead to misunderstandings and misinterpretations of their properties and applications was also undertaken. Finally, the regulatory aspects of intravenous nanoemulsions, the state of the art in the field of intravenous emulsifiers, and the future perspectives were presented.
Collapse
Affiliation(s)
- Joanna Czerniel
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Aleksandra Gostyńska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland.
| | - Julia Jańczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| |
Collapse
|
6
|
Hoti G, Ferrero R, Caldera F, Trotta F, Corno M, Pantaleone S, Desoky MMH, Brunella V. A Comparison between the Molecularly Imprinted and Non-Molecularly Imprinted Cyclodextrin-Based Nanosponges for the Transdermal Delivery of Melatonin. Polymers (Basel) 2023; 15:polym15061543. [PMID: 36987322 PMCID: PMC10057034 DOI: 10.3390/polym15061543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Melatonin is a neurohormone that ameliorates many health conditions when it is administered as a drug, but its drawbacks are its oral and intravenous fast release. To overcome the limitations associated with melatonin release, cyclodextrin-based nanosponges (CD-based NSs) can be used. Under their attractive properties, CD-based NSs are well-known to provide the sustained release of the drug. Green cyclodextrin (CD)-based molecularly imprinted nanosponges (MIP-NSs) are successfully synthesized by reacting β-Cyclodextrin (β-CD) or Methyl-β Cyclodextrin (M-βCD) with citric acid as a cross-linking agent at a 1:8 molar ratio, and melatonin is introduced as a template molecule. In addition, CD-based non-molecularly imprinted nanosponges (NIP-NSs) are synthesized following the same procedure as MIP-NSs without the presence of melatonin. The resulting polymers are characterized by CHNS-O Elemental, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric (TGA), Differential Scanning Calorimetry (DSC), Zeta Potential, and High-Performance Liquid Chromatography (HPLC-UV) analyses, etc. The encapsulation efficiencies are 60-90% for MIP-NSs and 20-40% for NIP-NSs, whereas melatonin loading capacities are 1-1.5% for MIP-NSs and 4-7% for NIP-NSs. A better-controlled drug release performance (pH = 7.4) for 24 h is displayed by the in vitro release study of MIP-NSs (30-50% released melatonin) than NIP-NSs (50-70% released melatonin) due to the different associations within the polymeric structure. Furthermore, a computational study, through the static simulations in the gas phase at a Geometry Frequency Non-covalent interactions (GFN2 level), is performed to support the inclusion complex between βCD and melatonin with the automatic energy exploration performed by Conformer-Rotamer Ensemble Sampling Tool (CREST). A total of 58% of the CD/melatonin interactions are dominated by weak forces. CD-based MIP-NSs and CD-based NIP-NSs are mixed with cream formulations for enhancing and sustaining the melatonin delivery into the skin. The efficiency of cream formulations is determined by stability, spreadability, viscosity, and pH. This development of a new skin formulation, based on an imprinting approach, will be of the utmost importance in future research at improving skin permeation through transdermal delivery, associated with narrow therapeutic windows or low bioavailability of drugs with various health benefits.
Collapse
Affiliation(s)
- Gjylije Hoti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Riccardo Ferrero
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Marta Corno
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Stefano Pantaleone
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Mohamed M H Desoky
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Valentina Brunella
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
7
|
Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics 2023; 15:pharmaceutics15020443. [PMID: 36839768 PMCID: PMC9966342 DOI: 10.3390/pharmaceutics15020443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Contemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles. This review provides an overview of the methods most commonly utilized during the preclinical testing of liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers intended for the treatment of various CNS disorders via the parenteral route. In order to fully elucidate the structure, stability, safety profiles, biodistribution, metabolism, pharmacokinetics and immunological effects of such lipid-based nanoparticles, a transdisciplinary approach to preclinical characterization is mandatory, covering a comprehensive set of physical, chemical, in vitro and in vivo biological testing.
Collapse
|
8
|
Kannavou M, Karali K, Katsila T, Siapi E, Marazioti A, Klepetsanis P, Calogeropoulou T, Charalampopoulos I, Antimisiaris SG. Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery. Pharmaceutics 2023; 15:pharmaceutics15020419. [PMID: 36839740 PMCID: PMC9967044 DOI: 10.3390/pharmaceutics15020419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Intranasal administration offers an alternative and promising approach for direct nose-to-brain delivery. Herein, we developed two chitosan (CHT)-coated (and uncoated) nanoformulations of BNN27 (a synthetic C-17-spiro-dehydroepiandrosterone analogue), liposomes (LIPs), and nanoemulsions (NEs), and compared their properties and brain disposition (in vitro and in vivo). LIPs were formulated by thin film hydration and coated with CHT by dropwise addition. BNN27-loaded NEs (BNEs) were developed by spontaneous emulsification and optimized for stability and mucoadhesive properties. Mucoadhesive properties were evaluated by mucin adherence. Negatively charged CHT-coated LIPs (with 0.1% CHT/lipid) demonstrated the highest coating efficiency and mucoadhesion. BNEs containing 10% w/w Capmul-MCM and 0.3% w/w CHT demonstrated the optimal properties. Transport of LIP or NE-associated rhodamine-lipid across the blood-brain barrier (in vitro) was significantly higher for NEs compared to LIPs, and the CHT coating demonstrated a negative effect on transport. However, the CHT-coated BNEs demonstrated higher and faster in vivo brain disposition following intranasal administration compared to CHT-LIPs. For both BNEs and LIPs, CHT-coating resulted in the increased (in vivo) brain disposition of BNN27. Current results prove that CHT-coated NEs consisting of compatible nasal administration ingredients succeeded in to delivering more BNN27 to the brain (and faster) compared to the CHT-coated LIPs.
Collapse
Affiliation(s)
- Maria Kannavou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Eleni Siapi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Antonia Marazioti
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
| | - Pavlos Klepetsanis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Sophia G. Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
- Correspondence: ; Tel.: +30-610962332
| |
Collapse
|
9
|
Pluta R, Furmaga-Jabłońska W, Januszewski S, Tarkowska A. Melatonin: A Potential Candidate for the Treatment of Experimental and Clinical Perinatal Asphyxia. Molecules 2023; 28:1105. [PMID: 36770769 PMCID: PMC9919754 DOI: 10.3390/molecules28031105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Perinatal asphyxia is considered to be one of the major causes of brain neurodegeneration in full-term newborns. The worst consequence of perinatal asphyxia is neurodegenerative brain damage, also known as hypoxic-ischemic encephalopathy. Hypoxic-ischemic encephalopathy is the leading cause of mortality in term newborns. To date, due to the complex mechanisms of brain damage, no effective or causal treatment has been developed that would ensure complete neuroprotection. Although hypothermia is the standard of care for hypoxic-ischemic encephalopathy, it does not affect all changes associated with encephalopathy. Therefore, there is a need to develop effective treatment strategies, namely research into new agents and therapies. In recent years, it has been pointed out that natural compounds with neuroprotective properties, such as melatonin, can be used in the treatment of hypoxic-ischemic encephalopathy. This natural substance with anti-inflammatory, antioxidant, anti-apoptotic and neurofunctional properties has been shown to have pleiotropic prophylactic or therapeutic effects, mainly against experimental brain neurodegeneration in hypoxic-ischemic neonates. Melatonin is a natural neuroprotective hormone, which makes it promising for the treatment of neurodegeneration after asphyxia. It is supposed that melatonin alone or in combination with hypothermia may improve neurological outcomes in infants with hypoxic-ischemic encephalopathy. Melatonin has been shown to be effective in the last 20 years of research, mainly in animals with perinatal asphyxia but, so far, no clinical trials have been performed on a sufficient number of newborns. In this review, we summarize the advantages and limitations of melatonin research in the treatment of experimental and clinical perinatal asphyxia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Ecotech-Complex Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Marie Curie-Skłodowska University in Lublin, 20-612 Lublin, Poland
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Yang J, Tang Q, Zeng Y. Melatonin: Potential avenue for treating iron overload disorders. Ageing Res Rev 2022; 81:101717. [PMID: 35961513 DOI: 10.1016/j.arr.2022.101717] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Iron overload as a highly risk factor, can be found in almost all human chronic and common diseases. Iron chelators are often used to treat iron overload; however, patient adherence to these chelators is poor due to obvious side effects and other disadvantages. Numerous studies have shown that melatonin has a high iron chelation ability and direct free radical scavenging activity, and can inhibit the lipid peroxidation process caused by iron overload. Therefore, melatonin may become potential complementary therapy for iron overload-related disorders due to its iron chelating and antioxidant activities. Here, the research progress of iron overload is reviewed and the therapeutic potential of melatonin in the treatment of iron overload is analyzed. In addition, studies related to the protective effects of melatonin on oxidative damage induced by iron overload are discussed. This review provides a foundation for preventing and treating iron homeostasis disorders with melatonin.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Tang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
11
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
12
|
Kim E, Ban C, Kim SO, Lim S, Choi YJ. Applications and perspectives of polyphenol-loaded solid lipid nanoparticles and nanostructured lipid carriers for foods. Food Sci Biotechnol 2022; 31:1009-1026. [PMID: 35873373 PMCID: PMC9300790 DOI: 10.1007/s10068-022-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
Abstract
Imbalanced nutrition in modern society is one of the reasons for disorders, such as cancer, cardiovascular disease, and diabetes, which have attracted the interest in bioactives (particularly polyphenols) to assist in the balanced diet of modern people. Although stability can be maintained during preparation and storage, the ingested polyphenols undergo harsh gastrointestinal digestion processes, resulting in limited bioaccessibility and low gut-epithelial permeation and bioavailability. Several lipid-based formulations have been proposed to overcome these issues. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have also been highlighted as carrier systems for the oral delivery of lipophilic bioactives, including polyphenols. This paper summarizes the research on the ingredients, production methods, post-processing procedures, general characteristics, and advantages and disadvantages of SLNs and NLCs. Overall, this paper reviews the applications and perspectives of polyphenol-loaded SLNs and NLCs in foods, as well as their regulation, production, storage, and economic feasibility.
Collapse
Affiliation(s)
- Eunghee Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, Dongdaemungu, Seoul, 02504 Republic of Korea
| | - Sang-Oh Kim
- Department of Plant and Food Sciences, Sangmyung University, Cheonan, Chungnam 31066 Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeonggi 13120 Republic of Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Gwanakgu, Seoul, 08826 Republic of Korea
| |
Collapse
|
13
|
Ajoolabady A, Bi Y, McClements DJ, Lip GYH, Richardson DR, Reiter RJ, Klionsky DJ, Ren J. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacol Res 2022; 176:106072. [PMID: 35007709 DOI: 10.1016/j.phrs.2022.106072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerosis refers to a unique form of chronic proinflammatory anomaly of the vasculature, presented as rupture-prone or occlusive lesions in arteries. In advanced stages, atherosclerosis leads to the onset and development of multiple cardiovascular diseases with lethal consequences. Inflammatory cytokines in atherosclerotic lesions contribute to the exacerbation of atherosclerosis. Pharmacotherapies targeting dyslipidemia, hypercholesterolemia, and neutralizing inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, and IL-12/23) have displayed proven promises although contradictory results. Moreover, adjuvants such as melatonin, a pluripotent agent with proven anti-inflammatory, anti-oxidative and neuroprotective properties, also display potentials in alleviating cytokine secretion in macrophages through mitophagy activation. Here, we share our perspectives on this concept and present melatonin-based therapeutics as a means to modulate mitophagy in macrophages and, thereby, ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - David J McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory Y H Lip
- University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA.
| |
Collapse
|
14
|
Huang Y, Ma M, Zhu X, Li M, Guo M, Liu P, He Z, Fu Q. Effectiveness of idebenone nanorod formulations in the treatment of Alzheimer's disease. J Control Release 2021; 336:169-180. [PMID: 34157335 DOI: 10.1016/j.jconrel.2021.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Idebenone (IDB) has demonstrated the potential to treat mitochondrial and neurodegenerative diseases, including Alzheimer's disease (AD). However, its therapeutic effects are compromised by poor compliance due to low bioavailability. The objective of this study is to fabricate IDB nanorods (IDBNRs) to improve oral bioavailability and increase concentrations in the brain in order to enhance therapeutic effects of IDB in the treatment of AD. IDBNRs showed desired sizes and rod-shaped morphologies. The release rate and the antioxidant activity of IDBNRs were improved relative to other delivery routes. The plasma and brain concentrations were enhanced due to rapid release into the systemic circulation. In behavioral tests, mice treated orally with IDBNRs showed amelioration of AD-induced impairment of learning and memory. Thus, because of improved efficiency of drug delivery, doses can be reduced, and the compliance and therapeutic experience of patients can be improved. IDBNRs may provide effective and convenient treatments for AD patients in the future.
Collapse
Affiliation(s)
- Yuying Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Minchao Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaolei Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Mengran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
15
|
Chuffa LGDA, Seiva FRF, Novais AA, Simão VA, Martín Giménez VM, Manucha W, Zuccari DAPDC, Reiter RJ. Melatonin-Loaded Nanocarriers: New Horizons for Therapeutic Applications. Molecules 2021; 26:molecules26123562. [PMID: 34200947 PMCID: PMC8230720 DOI: 10.3390/molecules26123562] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The use of nanosized particles has emerged to facilitate selective applications in medicine. Drug-delivery systems represent novel opportunities to provide stricter, focused, and fine-tuned therapy, enhancing the therapeutic efficacy of chemical agents at the molecular level while reducing their toxic effects. Melatonin (N-acetyl-5-methoxytriptamine) is a small indoleamine secreted essentially by the pineal gland during darkness, but also produced by most cells in a non-circadian manner from which it is not released into the blood. Although the therapeutic promise of melatonin is indisputable, aspects regarding optimal dosage, biotransformation and metabolism, route and time of administration, and targeted therapy remain to be examined for proper treatment results. Recently, prolonged release of melatonin has shown greater efficacy and safety when combined with a nanostructured formulation. This review summarizes the role of melatonin incorporated into different nanocarriers (e.g., lipid-based vesicles, polymeric vesicles, non-ionic surfactant-based vesicles, charge carriers in graphene, electro spun nanofibers, silica-based carriers, metallic and non-metallic nanocomposites) as drug delivery system platforms or multilevel determinations in various in vivo and in vitro experimental conditions. Melatonin incorporated into nanosized materials exhibits superior effectiveness in multiple diseases and pathological processes than does free melatonin; thus, such information has functional significance for clinical intervention.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP-São Paulo State University, Botucatu, São Paulo 18618-689, Brazil; (L.G.d.A.C.); (V.A.S.)
| | - Fábio Rodrigues Ferreira Seiva
- Biological Science Center, Department of Biology, Luiz Meneghel Campus, Universidade Estadual do Norte do Paraná-UENP, Bandeirantes 86360-000, PR, Brazil;
| | - Adriana Alonso Novais
- Health Sciences Institute, Federal University of Mato Grosso, UFMT, Sinop 78607-059, MG, Brazil;
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP-São Paulo State University, Botucatu, São Paulo 18618-689, Brazil; (L.G.d.A.C.); (V.A.S.)
| | - Virna Margarita Martín Giménez
- Facultad de Ciencias Químicas y Tecnológicas, Instituto de Investigaciones en Ciencias Químicas, Universidad Católica de Cuyo, Sede San Juan 5400, Argentina;
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza 5500, Argentina
| | | | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
- Correspondence:
| |
Collapse
|
16
|
Toxicology of Blister Agents: Is Melatonin a Potential Therapeutic Option? Diseases 2021; 9:diseases9020027. [PMID: 33920224 PMCID: PMC8167553 DOI: 10.3390/diseases9020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Blister or vesicant chemical warfare agents (CWAs) have been widely used in different military conflicts, including World War I and the Iran-Iraq War. However, their mechanism of action is not fully understood. Sulfur and nitrogen mustard exert toxic effects not only through the alkylation of thiol-bearing macromolecules, such as DNA and proteins, but also produce free radicals that can develop direct toxic effects in target organs such as the eyes, skin, and respiratory system. The lack of effective treatments against vesicant CWAs-induced injury makes us consider, in this complex scenario, the use and development of melatonin-based therapeutic strategies. This multifunctional indoleamine could facilitate neutralization of the oxidative stress, modulate the inflammatory response, and prevent the DNA damage, as well as the long-term health consequences mediated by vesicant CWAs-induced epigenetic mechanisms. In this context, it would be essential to develop new galenic formulations for the use of orally and/or topically applied melatonin for the prophylaxis against vesicant CWAs, as well as the development of post-exposure treatments in the near future.
Collapse
|
17
|
Lewińska A, Domżał-Kędzia M, Kierul K, Bochynek M, Pannert D, Nowaczyk P, Łukaszewicz M. Targeted Hybrid Nanocarriers as a System Enhancing the Skin Structure. Molecules 2021; 26:1063. [PMID: 33670519 PMCID: PMC7923190 DOI: 10.3390/molecules26041063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
The skin is constantly exposed to external and internal factors that disturb its function. In this work, two nanosystems-levan nanoparticles and a surfactin-stabilized nanoemulsion were preserved (tested for microbial growth) and characterized (size, polydispersity, Zeta potential, and stability). The nanosystems were introduced in the model formulations-cream, tonic, and gel, and confirmed by TEM. The analysis showed that nanoemulsion has a spherical morphology and size 220-300 nm, while levan nanoparticles had irregular shapes independently of the use of matrix and with particle size (130-260 nm). Additionally, we examined the antiradical effect of levan nanoparticles and nanoemulsion in the prototype of formulations by scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl; EPR spectroscopy). The model cream with both nanosystems and the whole range of products with nanosystems were evaluated in vivo for hydration, elasticity, smoothness, wrinkles and vascular lesions, discoloration, respectively. The cream improved skin condition in all tested parameters in at least 50% of volunteers. The use of more comprehensive care, additionally consisting of a tonic and gel, reduced the previously existing skin discoloration to 10.42 ± 0.58%. The presented prototype formulations are promising in improving skin conditions.
Collapse
Affiliation(s)
- Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Marta Domżał-Kędzia
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.D.-K.); (M.B.)
| | - Kinga Kierul
- InventionBio Sp. z o.o., Wojska Polskiego 65 st., 85-825 Bydgoszcz, Poland; (K.K.); (D.P.)
| | - Michał Bochynek
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.D.-K.); (M.B.)
| | - Dominika Pannert
- InventionBio Sp. z o.o., Wojska Polskiego 65 st., 85-825 Bydgoszcz, Poland; (K.K.); (D.P.)
| | - Piotr Nowaczyk
- Faculty of Health Science, University of Opole, ul. Katowicka 68, 45-060 Opole, Poland;
- Dr. Nowaczyk Research and Innovation Center Sp. z o.o. Sp. K., ul. Żmigrodzka 81-83 lok. 205, 51-130 Wroclaw, Poland
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.D.-K.); (M.B.)
| |
Collapse
|
18
|
Ajoolabady A, Aslkhodapasandhokmabad H, Aghanejad A, Zhang Y, Ren J. Mitophagy Receptors and Mediators: Therapeutic Targets in the Management of Cardiovascular Ageing. Ageing Res Rev 2020; 62:101129. [PMID: 32711157 DOI: 10.1016/j.arr.2020.101129] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Mitophagy serves as a cardinal regulator in the maintenance of mitochondrial integrity, function, and cardiovascular homeostasis, through the fine control and governance of cellular metabolism, ATP production, redox balance, and mitochondrial quality and quantity control. As a unique form of selective autophagy, mitophagy specifically recognizes and engulfs long-lived or damaged (depolarized) mitochondria through formation of the double-membraned intracellular organelles - mitophagosomes, ultimately resulting in lysosomal degradation. Levels of mitophagy are reported to be altered in pathological settings including cardiovascular diseases and biological ageing although the precise nature of mitophagy change in ageing and ageing-associated cardiovascular deterioration remains poorly defined. Ample clinical and experimental evidence has depicted a convincing tie between cardiovascular ageing and altered mitophagy. In particular, ageing perturbs multiple enigmatic various signal machineries governing mitophagy, mitochondrial quality, and mitochondrial function, contributing to ageing-elicited anomalies in the cardiovascular system. This review will update novel regulatory mechanisms of mitophagy especially in the perspective of advanced ageing, and discuss how mitophagy dysregulation may be linked to cardiovascular abnormalities in ageing. We hope to pave the way for development of new therapeutic strategies against the growing health and socieconomical issue of cardiovascular ageing through targeting mitophagy.
Collapse
|