1
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. This chapter reviews the literature describing these acute and chronic synaptic effects of EtOH and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, NIAAA, 5625 Fishers Lane, Room TS-13A, Rockville, MD 20852, USA.
| | | |
Collapse
|
2
|
Verheij MMM, de Mulder ELW, De Leonibus E, van Loo KMJ, Cools AR. Rats that differentially respond to cocaine differ in their dopaminergic storage capacity of the nucleus accumbens. J Neurochem 2010; 105:2122-33. [PMID: 18315567 PMCID: PMC2492658 DOI: 10.1111/j.1471-4159.2008.05323.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cocaine (COC) inhibits the re-uptake of dopamine. However, the dopamine response to COC also depends on dopamine inside storage vesicles. The aim of this study was to investigate whether rats that differentially respond to COC differ in their dopaminergic storage capacity of the nucleus accumbens. Total and vesicular levels of accumbal dopamine as well as accumbal vesicular monoamine transporter-2 levels were established in high (HR) and low responders (LR) to novelty rats. Moreover, the effects of reserpine (RES) on the COC-induced increase of extracellular accumbal dopamine were investigated. HR displayed higher accumbal levels of total and vesicular dopamine than LR. Moreover, HR displayed more accumbal vesicular monoamine transporters-2 than LR. COC increased extracellular accumbal dopamine more strongly in HR than in LR. A low dose of RES prevented the COC-induced increase of accumbal dopamine in LR, but not in HR. A higher dose of RES was required to inhibit the COC-induced increase of accumbal dopamine in HR. These data demonstrate that HR were marked by a larger accumbal dopaminergic storage pool than LR. It is hypothesized that HR are more sensitive to COC than LR, because COC can release more dopamine from accumbal storage vesicles in HR than in LR. J. Neurochem. (2008) 105, 2122–2133.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience, Division of Psychoneuropharmacology, Faculty of Medicine, Radboud University of Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
3
|
Verheij MMM, Cools AR. Mesolimbic alpha-, but not beta-adrenoceptors control the accumbal release of dopamine that is derived from reserpine-sensitive storage vesicles. Neuroscience 2009; 162:1163-73. [PMID: 19464350 DOI: 10.1016/j.neuroscience.2009.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 05/16/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Mesolimbic beta-, but not alpha-adrenoceptors control the accumbal release of dopamine that is derived from alpha-methyl-para-tyrosine-sensitive pools of newly synthesized neurotransmitter. The aim of this study was to investigate which of these adrenoceptors control the accumbal release of dopamine that is derived from reserpine-sensitive pools of previously stored neurotransmitter. Rats, that were divided in low-responders and high-responders to novelty, were pretreated with 1 mg/kg of reserpine before the alpha-adrenergic-agent phentolamine or the beta-adrenergic-agent isoproterenol was locally applied into the nucleus accumbens. The original finding that phentolamine and isoproterenol increased accumbal dopamine levels in low-responders and high-responders was replicated. Reserpine reduced the phentolamine-induced increase of accumbal dopamine in both types of rat. However, phentolamine could still increase accumbal dopamine levels in reserpine-treated high-responders, but not anymore in reserpine-treated low-responders. Reserpine did not reduce the isoproterenol-induced increase of accumbal dopamine in any type of rat. This study demonstrates that mesolimbic alpha-, but not beta-adrenoceptors control the accumbal release of dopamine that is derived from reserpine-sensitive storage vesicles. In addition, these data confirm our previous finding that dopamine can still be released from storage vesicles of reserpinized high-responders, but not of reserpinized low-responders. The collected data underline our notion that alpha- and beta-adrenergic drugs may have therapeutic effects in patients suffering from diseases in which accumbal dopamine is involved.
Collapse
Affiliation(s)
- M M M Verheij
- Radboud University Nijmegen Medical Center, Department of Cognitive Neuroscience, Division of Psychoneuropharmacology, 6525 EZ, Nijmegen, The Netherlands.
| | | |
Collapse
|
4
|
You ZB, Wang B, Zitzman D, Wise RA. Acetylcholine release in the mesocorticolimbic dopamine system during cocaine seeking: conditioned and unconditioned contributions to reward and motivation. J Neurosci 2008; 28:9021-9. [PMID: 18768696 PMCID: PMC2562350 DOI: 10.1523/jneurosci.0694-08.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 01/30/2023] Open
Abstract
Microdialysis was used to assess the contribution to cocaine seeking of cholinergic input to the mesocorticolimbic dopamine system in ventral tegmental area (VTA). VTA acetylcholine (ACh) was elevated in animals lever pressing for intravenous cocaine and in cocaine-experienced and cocaine-naive animals passively receiving similar "yoked" injections. In cocaine-trained animals, the elevations comprised an initial (first hour) peak to approximately 160% of baseline and a subsequent plateau of 140% of baseline for the rest of the cocaine intake period. In cocaine-naive animals, yoked cocaine injections raised ACh levels to the 140% plateau but did not cause the initial 160% peak. In cocaine-trained animals that received unexpected saline (extinction conditions) rather than the expected cocaine, the initial peak was seen but the subsequent plateau was absent. VTA ACh levels played a causal role and were not just a correlate of cocaine seeking. Blocking muscarinic input to the VTA increased cocaine intake; the increase in intake offset the decrease in cholinergic input, resulting in the same VTA dopamine levels as were seen in the absence of the ACh antagonists. Increased VTA ACh levels (resulting from 10 microM VTA neostigmine infusion) increased VTA dopamine levels and reinstated cocaine seeking in cocaine-trained animals that had undergone extinction; these effects were strongly attenuated by local infusion of a muscarinic antagonist and weakly attenuated by a nicotinic antagonist. These findings identify two cholinergic responses to cocaine self-administration, an unconditioned response to cocaine itself and a conditioned response triggered by cocaine-predictive cues, and confirm that these cholinergic responses contribute to the control of cocaine seeking.
Collapse
Affiliation(s)
- Zhi-Bing You
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
5
|
Thanos PK, Michaelides M, Umegaki H, Volkow ND. D2R DNA transfer into the nucleus accumbens attenuates cocaine self-administration in rats. Synapse 2008; 62:481-6. [PMID: 18418874 DOI: 10.1002/syn.20523] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dopamine (DA) D2 receptor (D2R) agonists and antagonists can modulate self-administration behavior, conditioned place preference, and locomotor responses to cocaine. Low levels of D2R have also been observed in cocaine addicted subjects and in non human primates after chronic cocaine exposures. Prior studies had shown that D2R upregulation in the nucleus accumbens (NAc) in rodents trained to self-administer alcohol markedly attenuated alcohol preference and intake. Here we assess the effects of D2R upregulation in the NAc on cocaine intake in rats trained to self-administer cocaine. Following 2 weeks of i.v. cocaine self-administration (CSA), rats were stereotaxically treated with an adenovirus that carried the D2R gene to upregulate D2R in the NAc. D2R vector treatment resulted in a significant decrease (75%) in cocaine infusions and lever presses (70%) for cocaine. This effect lasted 6 days before cocaine consumption returned to baseline levels, which corresponds roughly to the time it takes D2R to return to baseline levels. These findings show that CSA and D2R in the NAc are negatively correlated and suggest that cocaine intake is modulated in part by D2R levels in NAc. Thus strategies aimed at increasing D2R expression in NAc may be beneficial in treating cocaine abuse and addiction.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | | | | | | |
Collapse
|
6
|
Verheij MMM, Cools AR. Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 2008; 585:228-44. [PMID: 18423601 DOI: 10.1016/j.ejphar.2008.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/07/2008] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Individual differences in the dopaminergic system of the nucleus accumbens of rats have extensively been reported. These individual differences have frequently been used to explain individual differences in response to environmental and pharmacological challenges. Remarkably, only little attention is paid to the factors that underlie these individual differences. This review gives an overview of the studies that have been performed in our institute during the last 20 years to investigate individual differences in accumbal dopamine release. Data are summarised demonstrating that individual differences in accumbal dopamine release are due to individual differences in: the functional reactivity of the noradrenergic system, the accumbal concentration of vesicular monoamine transporters and tyrosine hydroxylase as well as in the quantal size of the presynaptic pools of dopamine. Our data are embedded in the available literature to create a model that illustrates the putative hardware giving rise to the individual-specific release of accumbal dopamine. An important role is contributed to individual differences in the reactivity of the: hypothalamic-pituitary-adrenal axes, the reactivity of second messenger systems as well in the aminergic reactivity of the accumbens shell and core. The consequences of the individual-specific make-up and reactivity of the nucleus accumbens on the regulation of behaviour and the response to drugs of abuse will also be discussed. Apart from agents that interact with dopaminergic receptors, re-uptake or breakdown, noradrenergic agents as well as agents that interact with vesicular monoamine transporters or tyrosine hydroxylase are suggested to have therapeutic effects in subjects that are suffering from diseases in which the dopaminergic system is disturbed.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University Nijmegen Medical Centre, 6525 EZ, Nijmegen, The Netherlands.
| | | |
Collapse
|
7
|
Verheij MMM, Cools AR. Differential contribution of storage pools to the extracellular amount of accumbal dopamine in high and low responders to novelty: effects of reserpine. J Neurochem 2007; 100:810-21. [PMID: 17144901 DOI: 10.1111/j.1471-4159.2006.04259.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study examined the effects of reserpine on the extracellular concentration of accumbal dopamine in high responders (HR) and low responders (LR) to novelty rats. Reserpine reduced the baseline concentration of extracellular accumbal dopamine more in HR than in LR, indicating that the dopamine release is more dependent on reserpine-sensitive storage vesicles in non-challenged HR than in non-challenged LR. In addition, reserpine reduced the novelty-induced increase of the extracellular concentration of accumbal dopamine in LR, but not in HR, indicating that the dopamine release in response to novelty depends on reserpine-sensitive storage vesicles only in LR, not in HR. Our data clearly demonstrate that HR and LR differ in the characteristics of those monoaminergic storage vesicles that mediate accumbal dopamine release.
Collapse
Affiliation(s)
- M M M Verheij
- Department of Psychoneuropharmacology, Nijmegen Institute for Neurosciences, Faculty of Medicine, Radboud University of Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
8
|
Mathews TA, John CE, Lapa GB, Budygin EA, Jones SR. No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics. Synapse 2006; 60:288-94. [PMID: 16786536 DOI: 10.1002/syn.20301] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The acute effects of ethanol on dopamine (DA) release and clearance in the caudate-putamen were evaluated in wild-type and dopamine transporter (DAT) knockout (DAT-KO) mice, using microdialysis and voltammetry. Dialysate DA levels were elevated, approximately 80% above baseline levels, after administration of 2 g/kg ethanol in both wild-type and DAT-KO mice. In brain slices containing the caudate-putamen, a low (20 mM) concentration of ethanol produced no change in electrically stimulated DA release in either wild-type or DAT-KO mice. A high concentration (200 mM) of ethanol caused a similar decrease in DA release in slices from both types of mice. DA clearance was unaltered across the genotypes at low and high concentrations of ethanol. The fact that ethanol had similar effects in wild-type and DAT-KO mice, measured by in vivo microdialysis or brain slice voltammetry, supports the idea that acute ethanol does not interact with the DAT to produce its effects on the DA system.
Collapse
Affiliation(s)
- Tiffany A Mathews
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
9
|
Gonzales RA, Job MO, Doyon WM. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 2005; 103:121-46. [PMID: 15369680 DOI: 10.1016/j.pharmthera.2004.06.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurobiological processes by which ethanol seeking and consumption are established and maintained are thought to involve areas of the brain that mediate motivated behavior, such as the mesolimbic dopamine system. The mesolimbic dopamine system is comprised of cells that originate in the ventral tegmental area (VTA) and project to several forebrain regions, including a prominent terminal area, the nucleus accumbens (NAcc). The NAcc has been subdivided into core and shell subregions. Both areas receive converging excitatory input from the cortex and amygdala and dopamine input from the VTA, with the accumbal medium spiny neuron situated to integrate the signals. Although forced ethanol administration enhances dopamine activity in the NAcc, conclusions regarding the role of mesolimbic dopamine in ethanol reinforcement cannot be made from these experiments. Behavioral experiments consistently show that pharmacological manipulations of the dopamine transmission in the NAcc alter responding for ethanol, although ethanol reinforcement is maintained after lesions of the accumbal dopamine system. Additionally, extracellular dopamine increases in the NAcc during operant self-administration of ethanol, which is consistent with a role of dopamine in ethanol reinforcement. Behavioral studies that distinguish appetitive responding from ethanol consumption show that dopamine is important in ethanol-seeking behavior, whereas neurochemical studies suggest that accumbal dopamine is also important during ethanol consumption before pharmacological effects occur. Cellular studies suggest that ethanol alters synaptic plasticity in the mesolimbic system, possibly through dopaminergic mechanisms, and this may underlie the development of ethanol reinforcement. Thus, anatomical, pharmacological, neurochemical, cellular, and behavioral studies are more clearly defining the role of mesolimbic dopamine in ethanol reinforcement.
Collapse
Affiliation(s)
- Rueben A Gonzales
- Department of Pharmacology, College of Pharmacy, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712-0125, USA.
| | | | | |
Collapse
|
10
|
Yan QS, Zheng SZ, Yan SE. Involvement of 5-HT1B receptors within the ventral tegmental area in regulation of mesolimbic dopaminergic neuronal activity via GABA mechanisms: a study with dual-probe microdialysis. Brain Res 2004; 1021:82-91. [PMID: 15328035 DOI: 10.1016/j.brainres.2004.06.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2004] [Indexed: 11/21/2022]
Abstract
This study was designed to assess the involvement of 5-HT1B receptors within the ventral tegmental area (VTA) in the regulation of mesolimbic dopaminergic transmission. Dual-probe microdialysis was performed in freely moving adult Sprague-Dawley rats with one probe within the VTA and the other within the ipsilateral nucleus accumbens (NACC). Drugs were administered into the VTA via retrograde dialysis. Dialysates from both the VTA and the NAC were collected for determination of dopamine (DA) and gamma-aminobutyric acid (GABA) by high-performance liquid chromatography with electrochemical detection. Intra-tegmental infusion of CP 93129 (20, 40, and 80 microM), a 5-HT1B receptor agonist, increased extracellular DA concentrations in a concentration-dependent manner not only in the NACC but also in the VTA, indicating increased mesolimbic DA neuron activity. Administration of CP 93129 at 80 microM into the VTA also significantly decreased extracellular GABA concentrations in this region. Co-infusion of the 5-HT1B receptor antagonist SB 216641 (10 microM), but not the 5-HT1A receptor antagonist WAY 100635 (10 microM) or the 5-HT1D/1A receptor antagonist BRL 15572 (10 microM), antagonized not only the effects of intra-tegmental CP 93129 (80 microM) on VTA DA and NAC DA but also on VTA GABA. The results suggest that activation of VTA 5-HT1B receptors increases mesolimbic DA neuron activities. The increased DA neuron activity may be associated, at least in part, with the 5-HT1B receptor-mediated inhibition of VTA GABA release.
Collapse
Affiliation(s)
- Qing-Shan Yan
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA.
| | | | | |
Collapse
|