1
|
Harcha PA, Garcés P, Arredondo C, Fernández G, Sáez JC, van Zundert B. Mast Cell and Astrocyte Hemichannels and Their Role in Alzheimer's Disease, ALS, and Harmful Stress Conditions. Int J Mol Sci 2021; 22:ijms22041924. [PMID: 33672031 PMCID: PMC7919494 DOI: 10.3390/ijms22041924] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors—such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs—known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.
Collapse
Affiliation(s)
- Paloma A. Harcha
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Polett Garcés
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Germán Fernández
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Juan C. Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| |
Collapse
|
2
|
Forsythe P. Mast Cells in Neuroimmune Interactions. Trends Neurosci 2019; 42:43-55. [DOI: 10.1016/j.tins.2018.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 01/28/2023]
|
3
|
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79:119-133. [DOI: 10.1016/j.neubiorev.2017.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
|
4
|
Wu J, de Theije CGM, da Silva SL, Abbring S, van der Horst H, Broersen LM, Willemsen L, Kas M, Garssen J, Kraneveld AD. Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice. Brain Behav Immun 2017; 59:273-287. [PMID: 27640900 DOI: 10.1016/j.bbi.2016.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/27/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
Enhanced mammalian target of rapamycin (mTOR) signaling in the brain has been implicated in the pathogenesis of autism spectrum disorder (ASD). Inhibition of the mTOR pathway improves behavior and neuropathology in mouse models of ASD containing mTOR-associated single gene mutations. The current study demonstrated that the amino acids histidine, lysine, threonine inhibited mTOR signaling and IgE-mediated mast cell activation, while the amino acids leucine, isoleucine, valine had no effect on mTOR signaling in BMMCs. Based on these results, we designed an mTOR-targeting amino acid diet (Active 1 diet) and assessed the effects of dietary interventions with the amino acid diet or a multi-nutrient supplementation diet (Active 2 diet) on autistic-like behavior and mTOR signaling in food allergic mice and in inbred BTBR T+Itpr3tf/J mice. Cow's milk allergic (CMA) or BTBR male mice were fed a Control, Active 1, or Active 2 diet for 7 consecutive weeks. CMA mice showed reduced social interaction and increased self-grooming behavior. Both diets reversed behavioral impairments and inhibited the mTOR activity in the prefrontal cortex and amygdala of CMA mice. In BTBR mice, only Active 1 diet reduced repetitive self-grooming behavior and attenuated the mTOR activity in the prefrontal and somatosensory cortices. The current results suggest that activated mTOR signaling pathway in the brain may be a convergent pathway in the pathogenesis of ASD bridging genetic background and environmental triggers (food allergy) and that mTOR over-activation could serve as a potential therapeutic target for the treatment of ASD.
Collapse
Affiliation(s)
- Jiangbo Wu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Caroline G M de Theije
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sofia Lopes da Silva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Hilma van der Horst
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Linette Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martien Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
5
|
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014; 5:569. [PMID: 25452755 PMCID: PMC4231949 DOI: 10.3389/fimmu.2014.00569] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MC) are widely distributed throughout the body and are common at mucosal surfaces, a major host-environment interface. MC are functionally and phenotypically heterogeneous depending on the microenvironment in which they mature. Although MC have been classically viewed as effector cells of IgE-mediated allergic diseases, they are also recognized as important in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. MC activation can induce release of pre-formed mediators such as histamine from their granules, as well as release of de novo synthesized lipid mediators, cytokines, and chemokines that play diverse roles, not only in allergic reactions but also in numerous physiological and pathophysiological responses. Indeed, MC release their mediators in a discriminating and chronological manner, depending upon the stimuli involved and their signaling cascades (e.g., IgE-mediated or Toll-like receptor-mediated). However, the precise mechanisms underlying differential mediator release in response to these stimuli are poorly known. This review summarizes our knowledge of MC mediators and will focus on what is known about the discriminatory release of these mediators dependent upon diverse stimuli, MC phenotypes, and species of origin, as well as on the intracellular synthesis, storage, and secretory processes involved.
Collapse
Affiliation(s)
- Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada
| |
Collapse
|
6
|
Schäfer D, Dreßen P, Brettner S, Rath NF, Molderings GJ, Jensen K, Ziemann C. Prostaglandin D2-supplemented "functional eicosanoid testing and typing" assay with peripheral blood leukocytes as a new tool in the diagnosis of systemic mast cell activation disease: an explorative diagnostic study. J Transl Med 2014; 12:213. [PMID: 25113638 PMCID: PMC4283146 DOI: 10.1186/s12967-014-0213-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Systemic mast cell activation disease (MCAD) is characterized by an enhanced release of mast cell-derived mediators, including eicosanoids, which induce a broad spectrum of clinical symptoms. Accordingly, the diagnostic algorithm of MCAD presupposes the proof of increased mast cell mediator release, but only a few mediators are currently established as routine laboratory parameters. We thus initiated an explorative study to evaluate in vitro typing of individual eicosanoid pattern of peripheral blood leukocytes (PBLs) as a new diagnostic tool in MCAD. METHODS Using the "functional eicosanoid testing and typing" (FET) assay, we investigated the balance (i.e. the complex pattern of formation, release and mutual interaction) of prostaglandin E2 (PGE2) and peptido-leukotrienes (pLT) release from PBLs of 22 MCAD patients and 20 healthy individuals. FET algorithms thereby consider both basal and arachidonic acid (AA)-, acetylsalicylic acid (ASA)-, and substance P (SP)-triggered release of PGE2 and pLT. The FET assay was further supplemented by analyzing prostaglandin D2 (PGD2), as mast cell-specific eicosanoid. RESULTS We observed marked PGE2-pLT imbalances for PBLs of MCAD patients, as indicated by a markedly enhanced mean FET value of 1.75 ± 0.356 (range: 1.14-2.36), compared to 0.53 ± 0.119 (range: 0.36-0.75) for healthy individuals. In addition, mean PGD2 release from PBLs of MCAD patients was significantly, 6.6-fold higher than from PBLs of healthy individuals (946 ± 302.2 pg/ml versus 142 ± 47.8 pg/ml; P < 0.001). In contrast to healthy individuals, PGD2 release from PBLs of MCAD patients was markedly triggered by SP (mean: 1896 ± 389.7 pg/ml; P < 0.001), whereas AA and ASA caused individually varying effects on both PGD2 and pLT release. CONCLUSIONS The new in-vitro FET assay, supplemented with analysis of PGD2, demonstrated that the individual patterns of eicosanoid release from PBLs can unambiguously distinguish MCAD patients from healthy individuals. Notably, in our analyses, the FET value and both basal and triggered PGD2 levels were not significantly affected by MCAD-specific medication. Thus, this approach may serve as an in-vitro diagnostic tool to estimate mast cell activity and to support individualized therapeutic decision processes for patients suffering from MCAD.
Collapse
Affiliation(s)
- Dirk Schäfer
- />Medical Clinic III, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter Dreßen
- />Department of Internal Medicine, St. Franziskus Hospital, Eitorf, Germany
| | - Stefan Brettner
- />Department of Oncology, Haematology and Palliative Care, District Hospital of Waldbröl, Waldbröl, Germany
| | - Norbert-Folke Rath
- />Oststadt-Heidehaus Hospital Laboratory, Klinikum Region Hannover (clinical centre of the Hannover region), Hannover, Germany
| | | | - Katrin Jensen
- />Institute of Medical Biometry and Informatics, University Heidelberg, Heidelberg, Germany
| | - Christina Ziemann
- />Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| |
Collapse
|
7
|
Meyer AF, Thompson JW, Wang Y, Koseoglu S, Dalluge JJ, Haynes CL. Isotope-dilution UPLC-MS/MS determination of cell-secreted bioactive lipids. Analyst 2014; 138:5697-705. [PMID: 23923125 DOI: 10.1039/c3an00875d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secreted bioactive lipids play critical roles in cell-to-cell communication and have been implicated in inflammatory immune responses such as anaphylaxis, vasodilation, and bronchoconstriction. Analysis of secreted bioactive lipids can be challenging due to their relatively short lifetimes and structural diversity. Herein, a method has been developed using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to quantify five cell-secreted, structurally and functionally diverse bioactive lipids (PGD2, LTC4, LTD4, LTE4, PAF) that play roles in inflammation. Sample analysis time is 5 min, and isotopically labeled internal standards are used for quantification. This method was applied to an immortal secretory cell line (RBL-2H3), a heterogeneous primary cell culture containing peritoneal mast cells, and murine platelets. In RBL cell supernatant samples, intrasample precisions ranged from 7.32-21.6%, averaging 17.0%, and spike recoveries in cell supernatant matrices ranged from 88.0-107%, averaging 97.0%. Calibration curves were linear from 10 ng mL(-1) to 250 ng mL(-1), and limits of detection ranged from 0.0348 ng mL(-1) to 0.803 ng mL(-1). This method was applied to the determination of lipid secretion from mast cells and platelets, demonstrating broad applicability for lipid measurement in primary culture biological systems.
Collapse
Affiliation(s)
- Audrey F Meyer
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
8
|
IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci U S A 2010; 107:4448-53. [PMID: 20160089 DOI: 10.1073/pnas.1000803107] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The peptide substance P (SP) has been implicated in inflammatory conditions, such as psoriasis, where mast cells and VEGF are increased. A relationship between SP and VEGF has not been well studied, nor has any interaction with the proinflammatory cytokines, especially IL-33. Here we report that SP (0.1-10 microM) induces gene expression and secretion of VEGF from human LAD2 mast cells and human umbilical core blood-derived cultured mast cells (hCBMCs). This effect is significantly increased by coadministration of IL-33 (5-100 ng/mL) in both cell types. The effect of SP on VEGF release is inhibited by treatment with the NK-1 receptor antagonist 733,060. SP rapidly increases cytosolic calcium, and so does IL-33 to a smaller extent; the addition of IL-33 augments the calcium increase. SP-induced VEGF production involves calcium-dependent PKC isoforms, as well as the ERK and JNK MAPKs. Gene expression of IL-33 and histidine decarboxylase (HDC), an indicator of mast cell presence/activation, is significantly increased in affected and unaffected (at least 15 cm away from the lesion) psoriatic skin, as compared with normal control skin. Immunohistochemistry indicates that IL-33 is associated with endothelial cells in both the unaffected and affected sites, but is stronger and also associated with immune cells in the affected site. These results imply that functional interactions among SP, IL-33, and mast cells leading to VEGF release contribute to inflammatory conditions, such as the psoriasis, a nonallergic hyperproliferative skin inflammatory disorder with a neurogenic component.
Collapse
|
9
|
Sun J, Ramnath RD, Tamizhselvi R, Bhatia M. Role of protein kinase C and phosphoinositide 3-kinase-Akt in substance P-induced proinflammatory pathways in mouse macrophages. FASEB J 2009; 23:997-1010. [PMID: 19029199 DOI: 10.1096/fj.08-121756] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Neuropeptide modulation of immune cell function is an important mechanism of neuro-immune intersystem crosstalk. Substance P (SP) is one such key neuropeptide involved. In this study, we investigated the yet unexplored cellular mechanisms of SP-mediated inflammatory responses in macrophages using a mouse macrophage-like cell line RAW 264.7 and isolated peritoneal macrophages. We found that the conventional PKCalpha and novel PKCdelta and epsilon were selectively activated by SP via its primary neurokinin-1 receptor (NK-1R) on the cells. Activation of these PKC isoforms mediated the activation of downstream extracellular signal-regulated kinase-1/2 (ERK1/2) and the transcription factor NF-kappaB, which drove the transcription of inducible chemokines in macrophages. Additionally, phosphoinositide 3-kinase (PI3K)-Akt was also activated by SP/NK-1R in macrophages. Inhibition of PI3K-Akt pathway attenuated ERK1/2 and NF-kappaB activation, suggesting it also played a part in SP-induced cellular inflammatory response. Kinetic analysis indicated that PKC isoforms induced early ERK1/2 activation, while PI3K-Akt contributed to the pathway at later time points. It was further demonstrated that PKC and PI3K-Akt were activated independent of each other. Collectively, our results suggest that SP/NK-1R activates two convergent proinflammatory signaling pathways, PKCs and PI3K-Akt, resulting in ERK1/2 and NF-kappaB activation and chemokine production in mouse macrophages.
Collapse
Affiliation(s)
- Jia Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW In this review we will focus on recent advances in the role of mast cells in the pathophysiology of insect allergy and the possible mechanisms of mast cell activation in anaphylaxis. RECENT FINDINGS Anaphylactic reactions in the mouse can be induced by several independent pathways involving immunoglobulin E, immunoglobulin free light chains, or immunoglobulin G. There is considerable evidence that mast cells play a central role in anaphylactic reactions to insect stings. Mast cells can be directly activated by components of insect venom or after allergic sensitization. Of interest is the observation that mast cells are not only effector cells in insect allergy, but may also play a protective role in preventing the development of severe anaphylactic responses or by controlling inflammatory reactions by modulation of antigen-specific T-cell responses. SUMMARY The contribution of mast cells in anaphylactic responses to insect venom may be heterogeneous. On the one hand, activation of mast cells contributes to the pathology by the release of bioactive and tissue-damaging mediators. However, mast cell activation may neutralize constituents in insect venom and defend against the adverse effects of these toxins or they may modulate inflammation through downregulation of antigen-specific immune responses.
Collapse
Affiliation(s)
- Alma Nauta
- Numico Research, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
11
|
Baroni E, Biffi M, Benigni F, Monno A, Carlucci D, Carmeliet G, Bouillon R, D'Ambrosio D. VDR-dependent regulation of mast cell maturation mediated by 1,25-dihydroxyvitamin D3. J Leukoc Biol 2006; 81:250-62. [PMID: 17035339 DOI: 10.1189/jlb.0506322] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] is a secosteroid hormone that regulates bone metabolism, controls calcium homeostasis, and possesses immunomodulatory properties. We show here that 1,25(OH)2D3 contributes to the regulation of development and function of mast cells, which play a critical role in several inflammatory disorders. 1,25(OH)2D3 promotes apoptosis and inhibits maturation of mouse bone marrow-derived mast cell precursors. Dose-dependent inhibition of mast cell differentiation by 1,25(OH)2D3 is observed at discrete, intermediate stages of mast cell development, identified by expression of c-kit, FcepsilonRI, and IL-3 receptor-alpha chain, and depends on the expression of the vitamin D receptor (VDR). It is important that mast cell progenitors obtained from VDR-ablated mice undergo an accelerated maturation in vitro and give rise to more responsive mast cells than wild-type. Furthermore, histological analysis of mast cell density in peripheral tissues reveals a moderate increase in the number of mast cells in the skin of VDR-deficient mice compared with wild-type animals. These data support the hypothesis of a physiological role of 1,25(OH)2D3 in mast cell development and suggest novel, therapeutic uses of 1,25(OH)2D3 analogs.
Collapse
Affiliation(s)
- Enrico Baroni
- Bioxell SpA, Via Olgettina, 58, 20132 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Liao BC, Hou RCW, Wang JS, Jeng KCG. Enhancement of the release of inflammatory mediators by substance P in rat basophilic leukemia RBL-2H3 cells. J Biomed Sci 2006; 13:613-9. [PMID: 16847722 DOI: 10.1007/s11373-006-9099-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 06/13/2006] [Indexed: 12/28/2022] Open
Abstract
Substance P (SP), a neurotransmitter, may play an important role in neurogenic inflammation. Ginseng has been used extensively in traditional medicine; however, few studies were focused on their anti-allergic effect. Therefore, the effect and mechanism of ginsenoside Rb1 on the SP enhancement of allergic mediators were explored. In this study, SP and dinitrophenyl-bovine serum albumin (DNP-BSA) were used to activate rat basophilic leukemia (RBL)-2H3 cells. The cultured supernatants were assayed for histamine, leukotriene C(4)(LTC(4)) and interleulin-4 (IL-4) production. The mitogen-activated protein kinases (MAPKs) signaling pathway was determined by Western blotting analysis. We found that IgE/DNP-BSA, SP, ginsenoside Rb1, or MAPK specific inhibitors had no effect on cell viability and cytotoxicity. SP (30 microM) alone, did not induce histamine and LTC(4) release, but it enhanced allergen-induced histamine and LTC(4) release. In addition, SP significantly induced and enhanced allergen-activated IL-4. Ginsenoside Rb1 dose-dependently inhibited these effects. SP enhanced the allergen-activated ERK pathway in RBL-2H3 cells, and Rb1 effectively inhibited the ERK pathway activation. Although MAPK specific inhibitors suppressed LTC(4) and IL-4, only U0126 inhibited the SP enhanced histamine release. These results demonstrate that Rb1 dose-dependently inhibited SP enhanced allergen-induced mediator release and its mechanism was through the inhibition of the ERK pathway.
Collapse
Affiliation(s)
- Ben-Ching Liao
- Institute of Biomedical Science, National Chung Hsing University, Taichung, ROC
| | | | | | | |
Collapse
|
13
|
Nassenstein C, Schulte-Herbrüggen O, Renz H, Braun A. Nerve growth factor: the central hub in the development of allergic asthma? Eur J Pharmacol 2006; 533:195-206. [PMID: 16458292 DOI: 10.1016/j.ejphar.2005.12.061] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 01/19/2023]
Abstract
Neurotrophins like nerve growth factor (NGF), originally described as nerve growth factors in neuronal development, have been implicated in many physiological processes in the last years. They are now regarded as important factors involved in the resolution of pathological conditions. NGF has profound effects on inflammation, repair and remodeling of tissues. However, in the lung these beneficial effects can transact into disease promoting actions, e.g., in allergic inflammation or respiratory syncytial virus (RSV) infection. Overproduction of NGF then enhances inflammation, and promotes (neuronal) airway hyperreactivity and neurogenic inflammation. We hypothesize that NGF overexpression in certain vulnerable time windows during infancy could be a major risk factor for the development of asthma symptoms.
Collapse
Affiliation(s)
- Christina Nassenstein
- Fraunhofer Institute of Toxicology and Experimental Medicine, 30625 Hannover, and Department of Clinical Chemistry and Molecular Diagnostics, Hospital of the Philipps University, Marburg, Germany
| | | | | | | |
Collapse
|
14
|
Nassenstein C, Braun A, Nockher WA, Renz H. Neurotrophin effects on eosinophils in allergic inflammation. Curr Allergy Asthma Rep 2005; 5:204-11. [PMID: 15842958 DOI: 10.1007/s11882-005-0039-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elevated neurotrophin concentrations have been shown in nasal and bronchoalveolar lavage fluids as well as in the sera of patients with allergic rhinitis and asthma. Concentration of nerve growth factor correlated with disease severity, bronchial hyperreactivity, and levels of mediators released from eosinophils. Due to the release of cationic proteins, oxygen species, and cytokines after degranulation, eosinophils contribute to tissue damage and can influence airway hyperresponsiveness in asthma. It has been hypothesized that neurotrophins may be involved in the development of eosinophilia and in activation of these cells. The aim of this review is to elucidate the direct and indirect mechanisms of neurotrophins contributing to eosinophilia in allergic diseases.
Collapse
Affiliation(s)
- Christina Nassenstein
- Department of Clinical Chemistry and Molecular Diagnostics, Hospital of the Philipps University, Baldingerstrasse, 35043 Marburg, Germany
| | | | | | | |
Collapse
|