1
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
2
|
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, Jouyban A. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review. Biomark Med 2023; 17:811-837. [PMID: 38179966 DOI: 10.2217/bmm-2023-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Ali Taghizadieh
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology & Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkiye
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138 Nicosia, North Cyprus, Mersin 10, Turkiye
| |
Collapse
|
3
|
Portacci A, Pierucci P, Quaranta VN, Quaranta S, Iorillo I, Locorotondo C, Buonamico E, Dragonieri S, Carpagnano GE. A glimpse in post-COVID pathophysiology: the role of exhaled breath condensate pH as an early marker of residual alveolar inflammation. Expert Rev Respir Med 2022; 16:1093-1099. [PMID: 36170967 DOI: 10.1080/17476348.2022.2130764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND . Residual alveolar inflammation seems to be paramount in post-COVID pathophysiology. Currently, we still lack a reliable marker to detect and track alveolar phlogosis in these patients. Exhaled Breath Condensate (EBC) pH has robust evidences highlighting its correlation with lung phlogosis in various diseases. We aim to define the reliability of alveolar and bronchial EBC pH in the assessment and in the follow up of post-COVID related inflammation. RESEARCH DESIGN AND METHODS We enrolled 10 patients previously hospitalized due to COVID-19 pneumonia. We performed a complete follow-up after 3 months and 6 months from discharge. Each visit included routine blood tests, arterial blood gas analysis, 6-minute walking test, spirometry, diffusing capacity and body plethysmography. Finally, bronchial and alveolar EBC were collected at the end of each visit. RESULTS Alveolar EBC pH was significantly lower than bronchial EBC pH at T1. Moreover, alveolar EBC pH tended to be more acid after 3 months from hospital discharge compared to the same sample 6 months later. Serum inflammatory biomarkers showed no significant differences from T1 to T2. However, alveolar EBC pH was positively correlated with neutrophil-lymphocyte ratio. CONCLUSIONS Collecting EBC pH could help to understand pathophysiologic mechanism as well as monitoring alveolar inflammation in the post-COVID syndrome.
Collapse
Affiliation(s)
- Andrea Portacci
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Paola Pierucci
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | | | - Sara Quaranta
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Ilaria Iorillo
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Cristian Locorotondo
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Enrico Buonamico
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Silvano Dragonieri
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| | - Giovanna Elisiana Carpagnano
- Institute of Respiratory Disease, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Medicine "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Ghelli F, Panizzolo M, Garzaro G, Squillacioti G, Bellisario V, Colombi N, Bergamaschi E, Guseva Canu I, Bono R. Inflammatory Biomarkers in Exhaled Breath Condensate: A Systematic Review. Int J Mol Sci 2022; 23:ijms23179820. [PMID: 36077213 PMCID: PMC9456215 DOI: 10.3390/ijms23179820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023] Open
Abstract
Inflammation is a comprehensive set of physiological processes that an organism undertakes in response to a wide variety of foreign stimuli, such as viruses, bacteria, and inorganic particles. A key role is played by cytokines, protein-based chemical mediators produced by a broad range of cells, including the immune cells recruited in the inflammation site. The aim of this systematic review is to compare baseline values of pro/anti-inflammatory biomarkers measured in Exhaled Breath Condensate (EBC) in healthy, non-smoking adults to provide a summary of the concentrations reported in the literature. We focused on: interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10, tumour necrosis factor-alpha (TNF-α), and C reactive protein (CRP). Eligible articles were identified in PubMed, Embase, and Cochrane CENTRAL. Due to the wide differences in methodologies employed in the included articles concerning EBC sampling, storage, and analyses, research protocols were assessed specifically to test their adherence to the ATS/ERS Task Force guidelines on EBC. The development of reference intervals for these biomarkers can result in their introduction and use in both research and clinical settings, not only for monitoring purposes but also, in the perspective of future longitudinal studies, as predictive parameters for the onset and development of chronic diseases with inflammatory aetiology.
Collapse
Affiliation(s)
- Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Nicoletta Colombi
- Federated Library of Medicine “F. Rossi”, University of Turin, 10126 Turin, Italy
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
- Correspondence:
| | - Irina Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Lausanne, Switzerland
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
5
|
Duman B, Borekci S, Akdeniz N, Gazioglu SB, Deniz G, Gemicioglu B. Inhaled corticosteroids' effects on biomarkers in exhaled breath condensate and blood in patients newly diagnosed with asthma who smoke. J Asthma 2021; 59:1613-1620. [PMID: 34376110 DOI: 10.1080/02770903.2021.1962341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Exposure to cigarette smoke complicates the treatment and management of asthma through a variety of inflammatory effects. This study aimed to investigate the differences between newly diagnosed cases of asthma in smokers and nonsmokers in terms of localized and systemic biomarkers following treatment with inhaled corticosteroids (ICS) or ICS in combination with a long-acting β2 agonist (LABA). METHODS Specimens of exhaled breath condensate (EBC) from newly diagnosed patients with asthma were used to quantify inflammation in the airways, while blood samples were used to assess systemic inflammation. In both samples, the levels of IL-6, LTB4, LTD4, and 8-isoprostane were measured and these were repeated after 3 months of treatment with ICS or ICS + LABA. RESULTS Of the 20 patients, 10 (50%) were nonsmokers with asthma (NSA) and 10 (50%) smokers with asthma (SA). There was no statistically significant difference in the blood or EBC levels of IL-6, LTB4, LTD4, or 8-isoprostane between the groups prior to treatment. Only the decrease in 8-isoprostane level in the EBC samples was found to be significantly greater in the NSA group after treatment (for smokers, the change was 2.91 ± 23.22, while for nonsmokers it was -22.72 ± 33.12, p = 0.022). Post-treatment asthma control was significantly better in the NSA group (p = 0.033). CONCLUSION Monitoring the alterations in 8-isoprostane levels in EBC in patients with asthma who smoke may be helpful in deciding on therapeutic management and switching treatments. Asthma control was better in nonsmokers than in smokers.
Collapse
Affiliation(s)
- Berna Duman
- Bezmiâlem Vakıf University School of Medicine, Istanbul, Turkey
| | - Sermin Borekci
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sema Bilgic Gazioglu
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Bilun Gemicioglu
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
6
|
Khindri S, Cahn A, Begg M, Montembault M, Leemereise C, Cui Y, Hogg A, Wajdner H, Yang S, Robertson J, Hamblin JN, Ludwig-Sengpiel A, Kornmann O, Hessel EM. A Multicentre, Randomized, Double-Blind, Placebo-Controlled, Crossover Study To Investigate the Efficacy, Safety, Tolerability, and Pharmacokinetics of Repeat Doses of Inhaled Nemiralisib in Adults with Persistent, Uncontrolled Asthma. J Pharmacol Exp Ther 2018; 367:405-413. [PMID: 30217958 DOI: 10.1124/jpet.118.249516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositide 3-kinase δ (PI3Kδ) is a lipid kinase involved in leukocyte recruitment and activation. Activation of PI3Kδ has been linked to airway inflammation and asthma pathogenesis. This randomized, double-blind, placebo-controlled, crossover study investigated the efficacy, safety, tolerability, and pharmacokinetics of a PI3Kδ inhibitor, nemiralisib (GSK2269557), in patients with persistent, uncontrolled asthma. Patients (n = 50) received once-daily inhaled nemiralisib (1000 µg) or placebo for 28 days, with a crossover to the alternative treatment following a 4-week washout period. Spirometry demonstrated no discernible difference in trough forced expiratory volume in 1 second (FEV1) from baseline (adjusted posterior median 7 ml; 95% credible interval -83, 102 ml) between nemiralisib and placebo treatment at day 28 (primary endpoint). These results were supported by most secondary endpoints, including weighted mean FEV1 (0-4 hours) and change in trough forced vital capacity at day 28. Nemiralisib was generally well-tolerated, with few side effects except for post-inhalation cough (nemiralisib: 35%; placebo: 9%). At day 14, sputum interleukin (IL)-5, IL-13, IL-6, and IL-8 levels were reduced by a median of 17%, 7%, 15%, and 8%, respectively, when comparing nemiralisib with placebo [n = 15 (IL-5, IL-8) or 16 (IL-6, IL-13); posterior probability of a true ratio >0%: 78%, 64%, 76%, and 63%, respectively]. These results suggest that nemiralisib inhibited PI3Kδ locally; however, this did not translate into meaningful clinical improvement. Further studies will investigate the potential efficacy of nemiralisib in patients with asthma with other specific more severe phenotypes, including those who are colonized with bacteria and frequently exacerbate.
Collapse
Affiliation(s)
- Sanjeev Khindri
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Anthony Cahn
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Malcolm Begg
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Mickael Montembault
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Claudia Leemereise
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Yi Cui
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Annabel Hogg
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Hannah Wajdner
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Shuying Yang
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Jon Robertson
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - J Nicole Hamblin
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Andrea Ludwig-Sengpiel
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Oliver Kornmann
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| | - Edith M Hessel
- Respiratory Therapy Area Unit (S.K.), Clinical Pharmacology Science and Study Operations (M.M.), Global Clinical Safety and Pharmacovigilance (Y.C.), and Clinical Pharmacology Modelling and Simulation, Quantitative Sciences, RD Projects Clinical Platforms and Sciences (S.Y.), GSK, Stockley Park, Uxbridge, Middlesex, United Kingdom; Discovery Medicine (A.C.), Refractory Respiratory Inflammation Discovery Performance Unit (M.B., H.W., J.N.H., E.M.H.), Clinical Pharmacology Science and Study Operations (A.H.), and Clinical Statistics (J.R.), GSK, Stevenage, Hertfordshire, United Kingdom; Clinical Operations Department, GSK, Zeist, The Netherlands (C.L.); KLB Gesundheitsforschung Lübeck, Lübeck, Germany (A.L.-S.); and IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany (O.K.)
| |
Collapse
|
7
|
Giddings O, Esther CR. Mapping targetable inflammation and outcomes with cystic fibrosis biomarkers. Pediatr Pulmonol 2017; 52:S21-S28. [PMID: 28714611 PMCID: PMC5664212 DOI: 10.1002/ppul.23768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 01/01/2023]
Abstract
Cystic fibrosis is characterized by an overly exuberant neutrophilic inflammatory response to pathogens and other stimuli that starts very early in disease. The overwhelming nature of this response is a primary cause of remodeling and destruction of the airways, suggesting that anti-inflammatory therapies could be beneficial in CF. However, finding therapies that can effectively reduce the inflammatory response without compromising host defenses remains elusive. New approaches towards mapping inflammatory targets promise to aid in developing novel therapeutic strategies and improve outcomes in individuals with CF.
Collapse
Affiliation(s)
- Olivia Giddings
- Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Chi CH, Liao JP, Zhao YN, Li XY, Wang GF. Effect of Inhaled Budesonide on Interleukin-4 and Interleukin-6 in Exhaled Breath Condensate of Asthmatic Patients. Chin Med J (Engl) 2017; 129:819-23. [PMID: 26996478 PMCID: PMC4819303 DOI: 10.4103/0366-6999.178962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Studies of interleukin (IL)-4 and IL-6 in the exhaled breath condensate (EBC) of asthmatic patients are limited. This study was to determine the effect of inhaled corticosteroid (ICS) treatment on IL-4 and IL-6 in the EBC of asthmatic patients. Methods: In a prospective, open-label study, budesonide 200 μg twice daily by dry powder inhaler was administered to 23 adult patients with uncontrolled asthma (mean age 42.7 years) for 12 weeks. Changes in asthma scores, lung function parameters (forced expiratory volume in 1 s [FEV1], peak expiratory flow [PEF], forced expiratory flow at 50% of forced vital capacity [FEF50], forced expiratory flow at 75% of forced vital capacity, maximum mid-expiratory flow rate) and the concentrations of IL-4 and IL-6 in EBC were measured. Results: Both asthma scores and lung function parameters were significantly improved by ICS treatment. The mean IL-4 concentration in the EBC was decreased gradually, from 1.92 ± 0.56 pmol/L before treatment to 1.60 ± 0.36 pmol/L after 8 weeks of treatment (P < 0.05) and 1.54 ± 0.81 pmol/L after 12 weeks of treatment (P < 0.01). However, the IL-6 concentration was not significantly decreased. The change in the IL-4 concentration was correlated with improvements in mean FEV1, PEF and FEF50 values (correlation coefficients −0.468, −0.478, and −0.426, respectively). Conclusions: The concentration of IL-4 in the EBC of asthmatic patients decreased gradually with ICS treatment. Measurement of IL-4 in EBC could be useful to monitor airway inflammation in asthmatics.
Collapse
Affiliation(s)
| | | | | | | | - Guang-Fa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
9
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
10
|
Exhaled Breath Condensate: Technical and Diagnostic Aspects. ScientificWorldJournal 2015; 2015:435160. [PMID: 26106641 PMCID: PMC4461795 DOI: 10.1155/2015/435160] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023] Open
Abstract
Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC), biomarkers, pH, asthma, gastroesophageal reflux (GERD), smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA), and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.
Collapse
|
11
|
Kubáň P, Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal Chim Acta 2013; 805:1-18. [DOI: 10.1016/j.aca.2013.07.049] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/31/2022]
|
12
|
Chen S, Wang Y, Choi S. Applications and Technology of Electronic Nose for Clinical Diagnosis. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojab.2013.22005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Symptoms, but not a biomarker response to inhaled corticosteroids, predict asthma in preschool children with recurrent wheeze. Mediators Inflamm 2012; 2012:162571. [PMID: 23304059 PMCID: PMC3523165 DOI: 10.1155/2012/162571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
Background. A reliable asthma diagnosis is challenging in preschool wheezing children. As inhaled corticosteroids (ICS) are more effective in asthmatics than in children with transient wheeze, an ICS response might be helpful in early asthma diagnosis. Methods. 175 children (aged two–four years) with recurrent wheeze received 200 μg Beclomethasone extra-fine daily for eight weeks. Changes in Exhaled Breath Condensate (EBC) biomarkers (pH, interleukin (IL)-1α, IL-2, IL-4, IL-5, IL-10, IFN-γ, sICAM, and CCL-11), Fractional exhaled Nitric Oxide (FeNO), airway resistance, and symptoms were assessed. At six years of age a child was diagnosed as transient wheezer or asthmatic. Adjusted logistic regression analysis was performed with multiple testing correction. Results. 106 transient wheezers and 64 asthmatics were analysed at six years of age. Neither changes in EBC biomarkers, nor FeNO, airway resistance, or symptoms during ICS trial at preschool age were related to asthma diagnosis at six years of age. However, asthmatics had more airway symptoms before the start of the ICS trial than transient wheezers (P < 0.01). Discussion. Although symptom score in preschool wheezing children at baseline was associated with asthma at six years of age, EBC biomarkers, airway resistance, or symptom response to ICS at preschool age could not predict asthma diagnosis at six years of age.
Collapse
|
14
|
|
15
|
Firinci F, Karaman M, Baran Y, Bagriyanik A, Ayyildiz ZA, Kiray M, Kozanoglu I, Yilmaz O, Uzuner N, Karaman O. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma. Int Immunopharmacol 2011; 11:1120-6. [PMID: 21439399 DOI: 10.1016/j.intimp.2011.03.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/04/2011] [Accepted: 03/07/2011] [Indexed: 01/10/2023]
Abstract
Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n=6), Group 2 (ovalbumin induced asthma only, n=10), Group 3 (ovalbumin induced asthma + MSCs, n=10), and Group 4 (MSCs only, n=10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma.
Collapse
Affiliation(s)
- Fatih Firinci
- Pediatric Allergy and Immunology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. SENSORS (BASEL, SWITZERLAND) 2011; 11:1105-76. [PMID: 22346620 PMCID: PMC3274093 DOI: 10.3390/s110101105] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/20/2022]
Abstract
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.
Collapse
Affiliation(s)
- Alphus D. Wilson
- Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA
| | - Manuela Baietto
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; E-Mail:
| |
Collapse
|
17
|
Kazani S, Israel E. Exhaled breath condensates in asthma: diagnostic and therapeutic implications. J Breath Res 2010; 4:047001. [PMID: 21383487 DOI: 10.1088/1752-7155/4/4/047001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exhaled breath condensate (EBC) collection and analysis offers a unique non-invasive method to sample the airway lining fluid. It enables classification and quantification of airway inflammation associated with various pulmonary diseases such as asthma. Over the last decade, innumerable efforts have been made to identify biomarkers in EBC for diagnosis and management of asthma. The aim of this review is to consolidate information available to date, summarize findings from studies and identify potential biomarkers which need further refinement through translational research prior to application in clinical practice.
Collapse
Affiliation(s)
- Shamsah Kazani
- Pulmonary and Critical Care Division, PBB Clinics 3, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
18
|
Foschino Barbaro MP, Costa VR, Resta O, Prato R, Spanevello A, Palladino GP, Martinelli D, Carpagnano GE. Menopausal asthma: a new biological phenotype? Allergy 2010; 65:1306-12. [PMID: 20557302 DOI: 10.1111/j.1398-9995.2009.02314.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Female hormones play an important role in women's lung health, especially in asthma pathophysiology. Although a growing interest has recently been aroused in asthma related to short-term reproductive states, menopausal asthma has been little studied in the past. The aim of the present study was to explore airway inflammation in menopausal asthmatic women in a noninvasive manner. METHODS Forty consecutive women with menopausal asthma, 35 consecutive women with premenopausal asthma and 30 age-matched healthy controls were enrolled in the study. Urinary LTE-4, induced sputum inflammatory cells, and exhaled LTE-4, IL-6, pH, and NO levels were measured in all the subjects enrolled. RESULTS Women with menopausal asthma showed decreased estradiol concentrations, high sputum neutrophils, and exhaled IL-6. Women with premenopausal asthma presented instead an essentially eosinophilic inflammatory pattern. Higher urine and breath condensate LTE-4 concentrations were found in premenopausal and menopausal asthma compared to controls. CONCLUSION Our results substantiate the existence of a new biological phenotype of menopausal asthma that is mainly characterized by neutrophilic airways inflammation and shares several characteristics of the severe asthma phenotype.
Collapse
Affiliation(s)
- M P Foschino Barbaro
- Institute of Respiratory Disease, Department of Medical and Occupational Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cardarelli WJ. Asthma: are we monitoring the correct measures? Popul Health Manag 2010; 12:87-94. [PMID: 19320609 DOI: 10.1089/pop.2008.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The prevalence of asthma, a common chronic inflammatory disease of the airways, has risen sharply over the past 25-30 years, with the biggest increase found in children. Currently, more than 22 million Americans have asthma. Asthma also is associated with significant morbidity and mortality worldwide. Each year, asthma is responsible for $16 billion in direct and indirect costs due to health care utilization and loss of productivity, with over 14 million missed workdays. Asthma also accounts for almost 1.8 million emergency room visits and almost 500,000 hospitalizations annually. Therefore, assessment and monitoring of disease activity is critical to improve clinical and economic outcomes for patients with asthma. To help in this endeavor, practitioners and payers rely on evidence-based guidelines to classify disease severity, to guide treatment decisions, and to assess the degree of asthma control. In August 2007, the National Asthma Education and Prevention Program (NAEPP) updated its guidelines based on greater knowledge of disease pathophysiology and the development of newer therapeutic agents. This includes an increased emphasis on the need to establish disease severity, including the components of impairment and risk, as well as on the level of asthma control. Despite the availability of the NAEPP and other guidelines, asthma control often remains suboptimal. While numerous clinical and patient-reported measures are available, it is clear that the optimal monitoring schema for patients with asthma remains undefined. To clearly establish whether asthma control is attained, multiple measures are required and should include clinical and patient-reported assessments.
Collapse
Affiliation(s)
- William J Cardarelli
- Atrius Health/Harvard Vanguard Medical Associates, Watertown, Massachusetts 02472, USA.
| |
Collapse
|
20
|
Robroeks CMHHT, Rijkers GT, Jöbsis Q, Hendriks HJE, Damoiseaux JGMC, Zimmermann LJI, van Schayck OP, Dompeling E. Increased cytokines, chemokines and soluble adhesion molecules in exhaled breath condensate of asthmatic children. Clin Exp Allergy 2010; 40:77-84. [PMID: 20205697 DOI: 10.1111/j.1365-2222.2009.03397.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Airway inflammation in asthma is characterized by the production of cytokines, chemokines and soluble adhesion molecules. The assessment of these inflammatory biomarkers in exhaled breath condensate (EBC) is hampered by low detection rates. However, the use of a glass condenser system combined with a sensitive analytical technique may increase the possibility to assess these biomarkers in EBC in a reliable way. OBJECTIVE (1) To assess the detection rates of cytokines (IL-1alpha, -1beta, -2, -4, -5, -6, -10, -12p70, -13, -18, IFN-gamma, TNF-alpha), chemokines [MIP1alpha (CCL3), MIF, eotaxin (CCL11), RANTES (CCL5), IP10 (CXCL10), IL8 (CXCL8), MCP1] and soluble adhesion molecules [soluble intercellular adhesion molecule (sICAM), soluble vascular adhesion molecule (sVCAM)] in EBC of children with asthma and healthy control children; (2) To study the differences in the biomarker concentration between children with asthma and controls. METHODS Sixty children were included: 31 asthmatics (71% atopic) and 29 controls. Exhaled breath condensate was collected using a glass condenser system. The inflammatory markers (IM) were analysed using multiplex immunoassay technology. RESULTS Detection percentages of cytokines, chemokines and adhesion molecules ranged from 94% to 100%, except for eotaxin (CCL11) and RANTES (CCL5) (detection rates of 10% and 45% in healthy controls, respectively). The intra-subject variability of biomarkers in EBC in the group as a whole ranged from 5.2% to 35.0%. In asthmatics, the levels of cytokines (IL-2, -4, -5, -6, -13, IFN-gamma), chemokines (MIP1alpha [CCL3], MIF, RANTES [CCL5], IP10 [CXCL10], IL8 [CXCL8], MCP1) and adhesion molecules (sICAM, sVCAM) were significantly increased in comparison with controls (P<0.05). CONCLUSION If collected with a glass condenser and analysed by multiplex immunoassay technology, cytokines, chemokines and soluble adhesion molecules can be reliably demonstrated in EBC of children. Most of these IM were elevated in EBC of asthmatics compared with controls.
Collapse
Affiliation(s)
- C M H H T Robroeks
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chu BH, Kang BS, Hung SC, Chen KH, Ren F, Sciullo A, Gila BP, Pearton SJ. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate. J Diabetes Sci Technol 2010; 4:171-9. [PMID: 20167182 PMCID: PMC2825639 DOI: 10.1177/193229681000400122] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. METHODS HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. RESULTS The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. CONCLUSION There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the glucose concentration for diabetic applications.
Collapse
Affiliation(s)
- Byung Hwan Chu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Byoung Sam Kang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Sheng Chun Hung
- Department of Physics, National Central University, Jhong-Li 320, Taiwan
| | - Ke Hung Chen
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Andrew Sciullo
- Department of Material Science and Engineering, University of Florida, Gainesville, Florida
| | - Brent P. Gila
- Department of Material Science and Engineering, University of Florida, Gainesville, Florida
| | - Stephen J. Pearton
- Department of Material Science and Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Velthove KJ, Leufkens HGM, Souverein PC, Schweizer RC, Bracke M, van Solinge WW. Effects of glucocorticoids on the neutrophil count: a cohort study among hospitalized patients. Pulm Pharmacol Ther 2009; 23:129-34. [PMID: 19879372 DOI: 10.1016/j.pupt.2009.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 09/30/2009] [Accepted: 10/08/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND Systemic glucocorticoids are often used in clinical practice for a large variety of indications. Clinical observations have shown that patients using glucocorticoids often have higher neutrophil counts. Debate remains whether this observed neutrophilia is associated with glucocorticoid use or that other factors, like disease and severity of disease, should be considered. The objective of this study was to investigate the effect of systemic glucocorticoids on the absolute neutrophil count in hospitalized patients. METHODS A cohort study was conducted using data from the Utrecht Patient Oriented Database which comprises clinical data of patients of the University Medical Center Utrecht. We identified all adult patients, hospitalized in 2005 with at least two blood samples for hematological testing during admission and compared in-hospital glucocorticoid use with non-use. RESULTS A total of 809 glucocorticoid users and 2658 non-users were included in the study with comparable neutrophil counts at admission (8.2.10(9)/l for glucocorticoid users and 8.0.10(9)/l for non-users). Overall analysis showed a slight association between glucocorticoid use and an increase in neutrophil count (RR 1.3; 95% CI 1.1-1.5). However, within diagnostic subgroups there was no increase in neutrophil count in glucocorticoid users. Furthermore, among all no dose response relationship, no effect of time between the two samples, and no effect of anti-inflammatory/sodium retaining potency was found. CONCLUSION Observed neutrophilia in users of systemic glucocorticoids is probably associated with underlying disease, rather than glucocorticoid use itself.
Collapse
Affiliation(s)
- Karin J Velthove
- Faculty of Science, Division of Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Owens RL, Stigler WS, Hess DR. Do newer monitors of exhaled gases, mechanics, and esophageal pressure add value? Clin Chest Med 2008; 29:297-312, vi-vii. [PMID: 18440438 DOI: 10.1016/j.ccm.2008.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The current understanding of lung mechanics and ventilator-induced lung injury suggests that patients who have acute respiratory distress syndrome should be ventilated in such a way as to minimize alveolar over-distension and repeated alveolar collapse. Clinical trials have used such lung protective strategies and shown a reduction in mortality; however, there is data that these "one-size fits all" strategies do not work equally well in all patients. This article reviews other methods that may prove useful in monitoring for potential lung injury: exhaled breath condensate, pressure-volume curves, and esophageal manometry. The authors explore the concepts, benefits, difficulties, and relevant clinical trials of each.
Collapse
Affiliation(s)
- Robert L Owens
- Department of Medicine, Pulmonary and Critical Care Unit, Cox 2, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
24
|
Ferdinands JM, Crawford CAG, Greenwald R, Van Sickle D, Hunter E, Teague WG. Breath acidification in adolescent runners exposed to atmospheric pollution: a prospective, repeated measures observational study. Environ Health 2008; 7:10. [PMID: 18328105 PMCID: PMC2292713 DOI: 10.1186/1476-069x-7-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 03/07/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. METHODS We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. RESULTS We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male). Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86) and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. CONCLUSION Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification.
Collapse
Affiliation(s)
- Jill M Ferdinands
- Air Pollution and Respiratory Health Branch, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-32, Atlanta GA 30333, USA
| | - Carol A Gotway Crawford
- Office of Career and Workforce Development, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS E-94, Atlanta GA 30333, USA
| | - Roby Greenwald
- Emory Pediatrics Asthma Research Center, Department of Pediatrics, Emory University, 2015 Uppergate Drive, Atlanta GA 30322, USA
| | - David Van Sickle
- Air Pollution and Respiratory Health Branch, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-32, Atlanta GA 30333, USA
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut St, 707 WARF, Madison, WI 53726, USA
| | - Eric Hunter
- Emory Pediatrics Asthma Research Center, Department of Pediatrics, Emory University, 2015 Uppergate Drive, Atlanta GA 30322, USA
| | - W Gerald Teague
- Emory Pediatrics Asthma Research Center, Department of Pediatrics, Emory University, 2015 Uppergate Drive, Atlanta GA 30322, USA
| |
Collapse
|
25
|
Conrad DH, Goyette J, Thomas PS. Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Intern Med 2008; 23 Suppl 1:78-84. [PMID: 18095050 PMCID: PMC2150625 DOI: 10.1007/s11606-007-0411-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of expressed proteins in neoplasia is undergoing a revolution with the advent of proteomic analysis. Unlike genomic studies where individual changes may have no functional significance, protein expression is closely aligned with cellular activity. This perspective will review proteomics as a method of detecting markers of neoplasia with a particular emphasis on lung cancer and the potential to sample the lung by exhaled breath condensate (EBC). EBC collection is a simple, new, and noninvasive technique, which allows sampling of lower respiratory tract fluid. EBC enables the study of a wide variety of biological markers from low molecular weight mediators to macromolecules, such as proteins, in a range of pulmonary diseases. EBC may be applied to the detection of lung cancer where it could be a tool in early diagnosis. This perspective will explore the potential of applying proteomics to the EBC from lung cancer patients as an example of detecting potential biomarkers of disease and progression.
Collapse
Affiliation(s)
- Dean H Conrad
- Inflammatory Diseases Research Unit, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
26
|
Exhaled-Breath Detection Using AlGaN∕GaN High Electron Mobility Transistors Integrated with a Peltier Element. ACTA ACUST UNITED AC 2008. [DOI: 10.1149/1.2824500] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Robroeks CMHHT, van de Kant KDG, Jöbsis Q, Hendriks HJE, van Gent R, Wouters EFM, Damoiseaux JGMC, Bast A, Wodzig WKWH, Dompeling E. Exhaled nitric oxide and biomarkers in exhaled breath condensate indicate the presence, severity and control of childhood asthma. Clin Exp Allergy 2007; 37:1303-11. [PMID: 17845410 DOI: 10.1111/j.1365-2222.2007.02788.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Exhaled nitric oxide and inflammatory biomarkers in exhaled breath condensate may be useful to diagnose and monitor childhood asthma. Their ability to indicate an asthma diagnosis, and to assess asthma severity and control, is largely unknown. OBJECTIVE To study (1) the ability of exhaled nitric oxide and inflammatory markers in exhaled breath condensate (nitrite, nitrate, hydrogen peroxide, 8-isoprostane, IFN-gamma, TNF-alpha, IL-2, -4, -5, -10 and acidity) to discriminate between childhood asthma and controls. (2) The ability of these biomarkers to indicate asthma severity and control. METHODS One-hundred and fourteen children were included: 64 asthmatics (10.7+/-3.0 years, 67.2% atopic) and 50 controls (10.0+/-0.4 years). Condensate was collected using a glass condenser. RESULTS Exhaled nitric oxide, IFN-gamma and IL-4 in exhaled breath condensate differed significantly between asthma and controls. Multivariate backward logistic regression models demonstrated that IL-4 (odds ratio 7.9, 95% confidence interval 1.2-51.0) was the only significant indicator of an asthma diagnosis. Asthma control was best assessed by exhaled nitric oxide, 8-isoprostane, IFN-gamma and IL-4 (sensitivity 82%, specificity 80%, P<0.05), whereas exhaled nitric oxide, 8-isoprostane, nitrate and nitrite in condensate were the best indicators of asthma severity (sensitivity 89%, specificity 72%, P<0.05). CONCLUSION Different markers in condensate are of an additional value to exhaled nitric oxide, and are needed in non-invasive inflammometry. They could be useful to diagnose asthma and to indicate asthma control and severity in childhood.
Collapse
Affiliation(s)
- C M H H T Robroeks
- Department of Paediatric Pulmonology, University Hospital Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nicolaou NC, Lowe LA, Murray CS, Woodcock A, Simpson A, Custovic A. Exhaled breath condensate pH and childhood asthma: unselected birth cohort study. Am J Respir Crit Care Med 2006; 174:254-9. [PMID: 16675782 DOI: 10.1164/rccm.200601-140oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exhaled breath condensate pH (EBC-pH) may be useful noninvasive marker for evaluation of patients with asthma. OBJECTIVES To investigate the relationship between EBC-pH and symptoms suggestive of childhood asthma in an epidemiologic setting and examine its relation to lung function, airway hyperresponsiveness (AHR), and airway inflammation. METHODS Within the context of a prospective population-based birth cohort, EBC was collected from 630 children at age 8 yr using the RTube (pH measured after deaeration with argon). Lung function was measured by spirometry (FEV1; n = 521) and plethysmography (sRaw; n = 567), and AHR by methacholine challenge (n = 498). Airway inflammation was assessed using exhaled nitric oxide (eNO; n = 305). RESULTS EBC-pH values ranged widely (4.40-8.29), and did not differ between 54 children with parentally reported asthma and 562 nonasthmatic subjects (median [interquartile range]: 7.75 [7.45-7.85] vs. 7.77 [7.59-7.87]; p = 0.35). There was a trend for lower EBC-pH among current wheezers (n = 98; 7.72 [7.50-7.83]) compared with nonwheezers (n = 532; 7.77 [7.60-7.87]; p = 0.07). Wheeze frequency, severity, and use of antiasthma medication were not associated with EBC-pH. There was no consistent association between EBC-pH and lung function, airway reactivity, and airway inflammation (FEV1, sRaw, PD20 methacholine, or eNO). There was no significant difference in EBC-pH between current wheezers receiving asthma medication who had positive methacholine challenge compared with children without any of these features. CONCLUSIONS In the epidemiologic setting, EBC-pH does not differ between children with and without parentally reported symptoms suggestive of asthma. We found no consistent association between EBC-pH and lung function, AHR, and airway inflammation in this sample from the general population.
Collapse
Affiliation(s)
- Nicolaos C Nicolaou
- University of Manchester; and North West Lung Centre, Wythenshawe Hospital, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|