1
|
Brilliant J, Yadav R, Akhtar T, Calkins H, Trayanova N, Spragg D. Clinical and Structural Factors Affecting Ablation Outcomes in Atrial Fibrillation Patients - A Review. Curr Cardiol Rev 2023; 19:83-96. [PMID: 36999694 PMCID: PMC10518883 DOI: 10.2174/1573403x19666230331103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 04/01/2023] Open
Abstract
Catheter ablation is an effective and durable treatment option for patients with atrial fibrillation (AF). Ablation outcomes vary widely, with optimal results in patients with paroxysmal AF and diminishing results in patients with persistent or long-standing persistent AF. A number of clinical factors including obesity, hypertension, diabetes, obstructive sleep apnea, and alcohol use contribute to AF recurrence following ablation, likely through modulation of the atrial electroanatomic substrate. In this article, we review the clinical risk factors and the electro-anatomic features that contribute to AF recurrence in patients undergoing ablation for AF.
Collapse
Affiliation(s)
- Justin Brilliant
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Ritu Yadav
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Tauseef Akhtar
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Natalia Trayanova
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - David Spragg
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| |
Collapse
|
2
|
Liu H, Wang G, Hao D, Wang C, Zhang M. Antimicrobial and Immunoregulatory Activities of TS40, a Derived Peptide of a TFPI-2 Homologue from Black Rockfish (Sebastes schlegelii). Mar Drugs 2022; 20:md20060353. [PMID: 35736157 PMCID: PMC9228364 DOI: 10.3390/md20060353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type serine protease inhibitor. Previous reports have shown that TFPI-2 plays an important role in innate immunity, and the C-terminal region of TFPI-2 proved to be active against a broad-spectrum of microorganisms. In this study, the TFPI-2 homologue (SsTFPI-2) of black rockfish (Sebastods schegelii) was analyzed and characterized, and the biological functions of its C-terminal derived peptide TS40 (FVSRQSCMDVCAKGAKQHTSRGNVRRARRNRKNRITYLQA, corresponding to the amino acid sequence of 187-226) was investigated. The qRT-PCR (quantitative real-time reverse transcription-PCR) analysis showed that the expression of SsTFPI-2 was higher in the spleen and liver. The expression of SsTFPI-2 increased significantly under the stimulation of Listonella anguillarum. TS40 had a strong bactericidal effect on L. anguillarum and Staphylococcus aureus. Further studies found that TS40 can destroy the cell structure and enter the cytoplasm to interact with nucleic acids to exert its antibacterial activity. The in vivo study showed that TS40 treatment could significantly reduce the transmission of L. anguillarum and the viral evasion in fish. Finally, TS40 enhanced the respiratory burst ability, reactive oxygen species production and the expression of immune-related genes in macrophages, as well as promoted the proliferation of peripheral blood leukocytes. These results provide new insights into the role of teleost TFPI-2.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
| | - Guanghua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
| | - Dongfang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
| | - Changbiao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266109, China
- Correspondence: ; Tel.: +86-532-8608-0762
| |
Collapse
|
3
|
Chen Y, Chang G, Chen X, Li Y, Li H, Cheng D, Tang Y, Sang H. IL-6-miR-210 Suppresses Regulatory T Cell Function and Promotes Atrial Fibrosis by Targeting Foxp3. Mol Cells 2020; 43:438-447. [PMID: 32345003 PMCID: PMC7264473 DOI: 10.14348/molcells.2019.2275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to explore the role of IL-6-miR-210 in the regulation of Tregs function and atrial fibrosis in atrial fibrillation (AF). The levels of interleukin (IL)-6 and IL-10 in AF patients were detected by using ELISA. Proportions of Treg cells were detected by fluorescence activated cell sorting analysis in AF patients. The expression of Foxp3, α-SMA, collagen I and collagen III were determined by western blot. The atrial mechanocytes were authenticated by vimentin immunostaining. The expression of miR-210 was performed by quantitative real-time polymerase chain reaction (qRT-PCR). TargetScan was used to predict potential targets of miR-210. The cardiomyocyte transverse sections in AF model group were observed by H&E staining. The myocardial filaments were observed by masson staining. The level of IL-6 was highly increased while the level of IL-10 (Tregs) was significantly decreased in AF patients as compared to normal control subjects, and IL-6 suppressed Tregs function and promoted the expression of α-SMA, collagen I and collagen III. Furthermore, miR-210 regulated Tregs function by targeting Foxp3, and IL-6 promoted expression of miR-210 via regulating hypoxia inducible factor-1α (HIF-1α). IL-6-miR-210 suppresses regulatory T cell function and promotes atrial fibrosis by targeting Foxp3.
Collapse
Affiliation(s)
- YingWei Chen
- Department of Cardiology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450052, China
| | - GuoDong Chang
- Department of Cardiology, The First People’s Hospital of Shangqiu, Shangqiu 476100, China
| | - XiaoJie Chen
- Department of Cardiology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450052, China
| | - YunPeng Li
- Department of Cardiology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450052, China
| | - HaiYu Li
- Department of Cardiology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450052, China
| | - Dong Cheng
- Department of Cardiology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450052, China
| | - Yi Tang
- Department of Cardiology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450052, China
| | - HaiQiang Sang
- Department of Cardiology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Packer M. Do amiodarone and dronedarone prevent thrombo-embolic stroke by treating the atrial myopathy of patients with atrial fibrillation? A provocative hypothesis. Europace 2020; 22:681-683. [DOI: 10.1093/europace/euz347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA
- Imperial College, London, UK
| |
Collapse
|
5
|
Garcia JR, Campbell PF, Kumar G, Langberg JJ, Cesar L, Deppen JN, Shin EY, Bhatia NK, Wang L, Xu K, Schneider F, Robinson B, García AJ, Levit RD. Minimally Invasive Delivery of Hydrogel-Encapsulated Amiodarone to the Epicardium Reduces Atrial Fibrillation. Circ Arrhythm Electrophysiol 2019; 11:e006408. [PMID: 29748197 DOI: 10.1161/circep.118.006408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common cardiac arrhythmia. Although treatment options for AF exist, many patients cannot be maintained in normal sinus rhythm. Amiodarone is an effective medication for AF but has limited clinical utility because of off-target tissue toxicity. METHODS Here, we use a pig model of AF to test the efficacy of an amiodarone-containing polyethylene glycol-based hydrogel. The gel is placed directly on the atrial epicardium through the pericardial space in a minimally invasive procedure using a specially designed catheter. RESULTS Implantation of amiodarone-containing gel significantly reduced the duration of sustained AF at 21 and 28 days; inducibility of AF was reduced 14 and 21 days post-delivery. Off-target organ drug levels in the liver, lungs, thyroid, and fat were significantly reduced in animals treated with epicardial amiodarone gel compared with systemic controls in small-animal distribution studies. CONCLUSIONS The pericardium is an underutilized therapeutic site and may be a new treatment strategy for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Jose R Garcia
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience (J.R.G., A.J.G.)
| | - Peter F Campbell
- Georgia Institute of Technology, Atlanta. InnovatiëLifeSciences, Santa Clara, CA (P.F.C.)
| | - Gautam Kumar
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.).,Emory University School of Medicine, Atlanta, GA. Division of Cardiology, Atlanta VA Medical Center, Decatur, GA (G.K.)
| | - Jonathan J Langberg
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Liliana Cesar
- South Atlanta Veterinary Emergency Specialists, Fayetteville, GA (L.C.)
| | - Juline N Deppen
- and Walter H. Coulter Department of Biomedical Engineering (J.N.D.).,Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Eric Y Shin
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Neal K Bhatia
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Kai Xu
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| | - Frank Schneider
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.).,and Department of Pathology and Laboratory Medicine (F.S., B.R.)
| | - Brian Robinson
- and Department of Pathology and Laboratory Medicine (F.S., B.R.)
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience (J.R.G., A.J.G.)
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine (G.K., J.J.L., J.N.D., E.Y.S., N.K.B., L.W., K.X., R.D.L.)
| |
Collapse
|
6
|
Selecting persistent atrial fibrillation patients for pulmonary vein isolation based on the response to amiodarone: efficacy of the “one step back” strategy. J Interv Card Electrophysiol 2019; 56:291-297. [DOI: 10.1007/s10840-019-00524-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 01/28/2019] [Indexed: 11/26/2022]
|
7
|
Acute ivabradine treatment reduces heart rate without increasing atrial fibrillation inducibility irrespective of underlying vagal activity in dogs. Heart Vessels 2016; 32:484-494. [PMID: 27844147 DOI: 10.1007/s00380-016-0922-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/11/2016] [Indexed: 01/11/2023]
Abstract
Ivabradine, a bradycardic agent, has been shown to stably reduce patient's heart rate (HR) in the setting of acute cardiac care. However, an association between atrial fibrillation (AF) risk and acute ivabradine treatment remains a controversial clinical issue, and has not been thoroughly investigated. Bradycardia and abnormal atrial refractoriness induced by ivabradine treatment may enhance vulnerability to AF induction, especially when vagal nerve is concurrently activated. We aimed to experimentally investigate the effects of acute ivabradine treatment with/without concurrent vagal activation on AF inducibility. In 16 anesthetized dogs, cervical vagal nerves were prepared for electrical stimulation (VS). AF induction rate (AFIR) was determined by atrial burst pacing. HR, atrial action potential duration (APD), atrial effective refractory period (ERP), and AFIR were obtained consecutively at baseline, during delivery of VS (VS alone), after intravenous injection of ivabradine 0.5 mg/kg (n = 8, ivabradine group) or saline (n = 8, saline group), and again during VS delivery (drug+VS). In the ivabradine group, ivabradine alone significantly lowered HR compared to baseline, while ivabradine+VS significantly lowered HR compared to VS alone. Contrary to expectations, there were no significant differences in trends of APD, temporal dispersion of APD, ERP, and AFIR between ivabradine and saline groups. Irrespective of whether ivabradine or saline was injected, VS significantly shortened APD and ERP, and increased AFIR. Interestingly, although bradycardia in response to ivabradine injection was more intense than that to VS alone, AFIR was significantly lower after ivabradine injection than during VS alone. We conclude that, despite its intense bradycardic effect, acute ivabradine treatment does not increase AF inducibility irrespective of underlying vagal activity. This study may constitute support for the safety of using ivabradine in the setting of acute cardiac care.
Collapse
|
8
|
Wang X, Li G. Angiotensin-(1-7) prevent atrial tachycardia induced sodium channel remodeling. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2014; 37:1349-56. [PMID: 24861429 DOI: 10.1111/pace.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Activation of the renin-angiotensin system plays an important role in atrial electrical remodeling; angiotensin-(1-7) (Ang-(1-7)) counterbalances the actions of angiotensin II. The aim of this study was to determine the effects of Ang-(1-7) on cardiac sodium current (INa ) in a canine model of atrial tachycardia. METHODS Eighteen dogs were randomly assigned to sham, pacing, or pacing + Ang-(1-7) groups (n = 6 in each group). Rapid atrial pacing (500 beats/min) was maintained for 2 weeks, while the dogs in the sham group were not paced. Ang-(1-7) (6 μg/kg/h) was administered intravenously during pacing. Whole-cell patch clamp techniques were utilized to record INa from canine atrial myocytes. Reverse transcription-polymerase chain reaction was used to assess possible underlying changes in cardiac Na(+) channels (Nav1.5). RESULTS Our results showed that INa density and expression of the Nav1.5 mRNA significantly decreased following pacing (P < 0.05 vs sham); however, the half-activation voltage (V1/2act ) and half-inactivation voltage (V1/2inact ) of INa were not significantly altered (P > 0.05 vs sham). Ang-(1-7) treatment significantly increased INa densities and hyperpolarized V1/2act without concomitant changes in V1/2inact but have no effect on the expression of the Nav1.5 gene. CONCLUSIONS Ang-(1-7) significantly increased INa densities, which contributed to improving intraatrial conduction and decreasing the likelihood of atrial fibrillation maintenance.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | | |
Collapse
|
9
|
Pathak R, Lau DH, Mahajan R, Sanders P. Structural and Functional Remodeling of the Left Atrium: Clinical and Therapeutic Implications for Atrial Fibrillation. J Atr Fibrillation 2013; 6:986. [PMID: 28496919 DOI: 10.4022/jafib.986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
Atrial fibrillation (AF) is the most commonly encountered arrhythmia in clinical practice. Despite advances in our understanding of the pathophysiology of this complex arrhythmia, current therapeutic options remain suboptimal. This review aimed to delineate the atrial structural and functional remodeling leading to the perpetuation of AF. We explored the complex changes seen in the atria in various substrates for AF and the therapeutic options available to prevent these changes or for reverse remodeling. Here we also highlighted the emerging role of aggressive risk factor management aimed at the arrhythmogenic atrial substrate to prevent or retard AF progression.
Collapse
Affiliation(s)
- Rajeev Pathak
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Rajiv Mahajan
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
10
|
Jennings MM, Donahue JK. Connexin Remodeling Contributes to Atrial Fibrillation. J Atr Fibrillation 2013; 6:839. [PMID: 28496873 DOI: 10.4022/jafib.839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022]
Abstract
Atrial fibrillation significantly contributes to mortality and morbidity through increased risk of stroke, heart failure and myocardial infarction. Investigations of mechanisms responsible for the development and maintenance of atrial fibrillation have highlighted the importance of gap junctional remodeling. Connexins 40 and 43, the major atrial gap junctional proteins, undergo considerable alterations in expression and localization in atrial fibrillation, creating an environment conducive to sustained reentry. Atrial fibrillation is initiated and/or maintained in this reentrant substrate. This review will focus on connexin remodeling in the context of underlying mechanism and possible therapeutic target for atrial fibrillation.
Collapse
Affiliation(s)
| | - J Kevin Donahue
- Case Western Reserve University School of Medicine, MetroHealth Campus
| |
Collapse
|
11
|
Wang X, Li Y, Liu L, Hu SS, Song YH, Wang W. The role of matrix metalloproteinase-2 in the treatment of atrial fibrillation recurrence after a radiofrequency modified maze procedure. Cardiology 2013; 126:62-8. [PMID: 23867576 DOI: 10.1159/000351980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Our study aimed to elucidate the potential clinical and molecular issues in recurrent atrial fibrillation (AF) following a radiofrequency modified maze procedure in patients with rheumatic valvular disease and persistent AF. METHODS AND RESULTS Eighty patients with rheumatic valvular disease and persistent AF (lasting more than 6 months) who had undergone a radiofrequency modified maze procedure and mitral valve replacement were enrolled into this single-center pilot study and were followed up for another 6 months. Their clinical characteristics were analyzed and the expression of matrix metalloproteinase (MMP)-2 including its specific inhibitor and collagen volume fraction (CVF) was also assessed. During the 6-month follow-up, 24 subjects had recurrent AF. Among them, the left atrial diameter was larger compared to that achieved in sinus rhythm (SR). The mRNA and protein expression of MMP-2 was significantly increased in recurrent AF patients, while its specific inhibitor did not show a significant difference (p > 0.05). The CVF of type I collagen increased significantly in the recurrent AF patients compared to SR patients (18.16 ± 3.22 vs. 11.66 ± 3.38, p < 0.001), whereas the CVF of type III collagen showed no significant difference (8.33 ± 3.44 vs. 9.55 ± 3.67, p > 0.05). CONCLUSION This study suggests that the overexpression of MMP-2 is associated with CVF-I in the left atrial appendage which potentially leads to the recurrence of AF following a radiofrequency modified maze procedure in patients with rheumatic valve disease.
Collapse
Affiliation(s)
- Xin Wang
- Department of Cardiovascular Surgery, Cardiovascular Institute and Fuwai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
12
|
Heijman J, Dobrev D. Pleiotropic actions of amiodarone: still puzzling after half a century. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:571-4. [DOI: 10.1007/s00210-013-0865-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/31/2013] [Indexed: 12/20/2022]
|
13
|
Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, Feng S, Xie L, Lu C, Yuan Y, Zhang Y, Wang Y, Lu Y, Yang B. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation 2012; 126:840-50. [PMID: 22811578 DOI: 10.1161/circulationaha.112.094524] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cardiac interstitial fibrosis is a major cause of the deteriorated performance of the heart in patients with chronic myocardial infarction. MicroRNAs (miRs) have recently been proven to be a novel class of regulators of cardiovascular diseases, including those associated with cardiac fibrosis. This study aimed to explore the role of miR-101 in cardiac fibrosis and the underlying mechanisms. METHODS AND RESULTS Four weeks after coronary artery ligation of rats, the expression of miR-101a and miR-101b (miR-101a/b) in the peri-infarct area was decreased. Treatment of cultured rat neonatal cardiac fibroblasts with angiotensin II also suppressed the expression of miR-101a/b. Forced expression of miR-101a/b suppressed the proliferation and collagen production in rat neonatal cardiac fibroblasts, as revealed by cell counting, MTT assay, and quantitative reverse transcription-polymerase chain reaction. The effect was abrogated by cotransfection with AMO-101a/b, the antisense inhibitors of miR-101a/b. c-Fos was found to be a target of miR-101a because overexpression of miR-101a decreased the protein and mRNA levels of c-Fos and its downstream protein transforming growth factor-β1. Silencing c-Fos by siRNA mimicked the antifibrotic action of miR-101a, whereas forced expression of c-Fos protein canceled the effect of miR-101a in cultured cardiac fibroblasts. Strikingly, echocardiography and hemodynamic measurements indicated remarkable improvement of the cardiac performance 4 weeks after adenovirus-mediated overexpression of miR-101a in rats with chronic myocardial infarction. Furthermore, the interstitial fibrosis was alleviated and the expression of c-Fos and transforming growth factor-β1 was inhibited. CONCLUSION Overexpression of miR-101a can mitigate interstitial fibrosis and the deterioration of cardiac performance in postinfarct rats, indicating the therapeutic potential of miR-101a for cardiac disease associated with fibrosis.
Collapse
Affiliation(s)
- Zhenwei Pan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Burashnikov A, Antzelevitch C. Novel pharmacological targets for the rhythm control management of atrial fibrillation. Pharmacol Ther 2011; 132:300-13. [PMID: 21867730 PMCID: PMC3205214 DOI: 10.1016/j.pharmthera.2011.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is a growing clinical problem associated with increased morbidity and mortality. Development of safe and effective pharmacological treatments for AF is one of the greatest unmet medical needs facing our society. In spite of significant progress in non-pharmacological AF treatments (largely due to the use of catheter ablation techniques), anti-arrhythmic agents (AADs) remain first line therapy for rhythm control management of AF for most AF patients. When considering efficacy, safety and tolerability, currently available AADs for rhythm control of AF are less than optimal. Ion channel inhibition remains the principal strategy for termination of AF and prevention of its recurrence. Practical clinical experience indicates that multi-ion channel blockers are generally more optimal for rhythm control of AF compared to ion channel-selective blockers. Recent studies suggest that atrial-selective sodium channel block can lead to safe and effective suppression of AF and that concurrent inhibition of potassium ion channels may potentiate this effect. An important limitation of the ion channel block approach for AF treatment is that non-electrical factors (largely structural remodeling) may importantly determine the generation of AF, so that "upstream therapy", aimed at preventing or reversing structural remodeling, may be required for effective rhythm control management. This review focuses on novel pharmacological targets for the rhythm control management of AF.
Collapse
|
15
|
Burashnikov A, Antzelevitch C. Ranolazine versus amiodarone for prevention of postoperative atrial fibrillation. Future Cardiol 2011; 7:733-7. [PMID: 22050058 PMCID: PMC4737707 DOI: 10.2217/fca.11.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Postoperative atrial fibrillation (AF) is a major complication of cardiothoracic surgery, leading to significant consequences, including a higher rate of stroke, longer hospital stays and increased costs. Amiodarone is among the most widely used agents for prevention of postoperative AF. Ranolazine, a US FDA-approved antianginal agent, has been shown to effectively, safely prevent and terminate nonpostoperative AF in both experimental and clinical studies. In a recent publication, Miles and colleagues directly compared the efficacy and safety of amiodarone and ranolazine for prevention of postoperative AF in 393 patients. The patients were pretreated with amiodarone and ranolaizne for >1 week and 1 day, respectively, and the treatment continued for 10-14 days after surgery. Following coronary artery bypass grafting (CABG), AF occurred in 26.5% of patients taking amiodarone and in 17.5% of patients taking ranolazine (34% reduction; p < 0.035). No differences in adverse events between the two groups of patients were recorded. The results of this retrospective nonrandomized single-center study indicate that ranolazine may be used to effectively and safely prevent postoperative AF. These results need to be confirmed in a larger randomized study. If confirmed, ranolazine may be a good choice for preventing AF in patients undergoing CABG.
Collapse
Affiliation(s)
- Alexander Burashnikov
- Gordon K Moe Scholar, Masonic Medical Research Laboratory, 2150 Bleecker St, Utica, NY 13501, USA
| | - Charles Antzelevitch
- Gordon K Moe Scholar, Masonic Medical Research Laboratory, 2150 Bleecker St, Utica, NY 13501, USA
| |
Collapse
|
16
|
Workman AJ, Smith GL, Rankin AC. Mechanisms of termination and prevention of atrial fibrillation by drug therapy. Pharmacol Ther 2011; 131:221-41. [PMID: 21334377 DOI: 10.1016/j.pharmthera.2011.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/13/2023]
Abstract
Atrial fibrillation (AF) is a disorder of the rhythm of electrical activation of the cardiac atria. It is the most common cardiac arrhythmia, has multiple aetiologies, and increases the risk of death from stroke. Pharmacological therapy is the mainstay of treatment for AF, but currently available anti-arrhythmic drugs have limited efficacy and safety. An improved understanding of how anti-arrhythmic drugs affect the electrophysiological mechanisms of AF initiation and maintenance, in the setting of the different cardiac diseases that predispose to AF, is therefore required. A variety of animal models of AF has been developed, to represent and control the pathophysiological causes and risk factors of AF, and to permit the measurement of detailed and invasive parameters relating to the associated electrophysiological mechanisms of AF. The purpose of this review is to examine, consolidate and compare available relevant data on in-vivo electrophysiological mechanisms of AF suppression by currently approved and investigational anti-arrhythmic drugs in such models. These include the Vaughan Williams class I-IV drugs, namely Na(+) channel blockers, β-adrenoceptor antagonists, action potential prolonging drugs, and Ca(2+) channel blockers; the "upstream therapies", e.g., angiotensin converting enzyme inhibitors, statins and fish oils; and a variety of investigational drugs such as "atrial-selective" multiple ion channel blockers, gap junction-enhancers, and intracellular Ca(2+)-handling modulators. It is hoped that this will help to clarify the main electrophysiological mechanisms of action of different and related drug types in different disease settings, and the likely clinical significance and potential future exploitation of such mechanisms.
Collapse
Affiliation(s)
- A J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom.
| | | | | |
Collapse
|
17
|
Combined effects of up- and downstream therapies on atrial fibrillation in a canine rapid stimulation model. Int J Cardiol 2010; 157:197-206. [PMID: 21193236 DOI: 10.1016/j.ijcard.2010.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 08/07/2010] [Accepted: 12/04/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Recent reports suggest angiotensin receptor blockers (ARBs) and some antiarrhythmic agents affect atrial remodeling in atrial fibrillation (AF). We evaluated the effect of combination therapy with olmesartan (Olm) and bepridil (Bep) in a canine model of AF. METHODS AND RESULTS An atrial stimulation device was implanted in 10 dogs undergoing 6-week pacing at 400 bpm. They were divided into Olm (2 mg/kg/day) (n=5) and Olm+Bep (Olm, 2 mg/kg/day; Bep, 10 mg/kg/day) groups (n=5). Atrial effective refractory period (AERP), conduction velocity (CV), and AF inducibility were evaluated weekly, and hemodynamics, atrial histology, and mRNA expression and protein expression of ion-channel and gap junction-related molecules at 6 weeks. Data were compared between groups and with non-pacing control and pacing-control groups from our previous report. The pacing-control group exhibited shortened AERP, decreased CV, increased AF inducibility and tissue fibrosis, and down-regulated L-type Ca(2+) channel (LCC), SCN5A, Kv4.3 and connexin43 (Cx43). By comparison, the Olm group exhibited suppression of the decrease in CV and of the increase in AF inducibility, but no change in AERP shortening. The Olm+Bep group exhibited suppression of AERP shortening as well as the greatest decrease in AF inducibility. Histologically, tissue fibrosis was suppressed in Olm and Olm+Bep groups. Down-regulation of Cx43 was partly suppressed in the Olm group while that of LCC, SCN5A, and Cx43 was suppressed in the Olm+Bep group. CONCLUSION Olm and Bep in combination suppressed AF inducibility more strongly than Olm alone, and may be more useful in the suppression of AF.
Collapse
|
18
|
Taylor CJ, Hodgkinson J, Hobbs FDR. Rhythm control agents and adverse events in patients with atrial fibrillation. Int J Clin Pract 2010; 64:1069-75. [PMID: 20487051 DOI: 10.1111/j.1742-1241.2010.02426.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the commonest rhythm disorder and has major impact on patients. Controversy remains about the best treatment strategy between rate and rhythm control (in addition to adequate thromboprophylaxis). Rhythm control agents are associated with clinically important adverse events. AIM The aim of this study was to assess the risk of adverse events in patients with AF receiving rhythm control agents. DESIGN OF STUDY This is a retrospective case control note review and outcome linkage analysis. SETTING Setting of this study included patients with a diagnosis of AF receiving amiodarone, flecainide or sotalol in practices registered with the General Practice Research Database (GPRD) in the UK. METHOD This is a retrospective case control note review and outcome linkage analysis on the GPRD routine clinical dataset to evaluate the adverse events and predictors of treatment discontinuation in patients using licenced rhythm modifying medication. RESULTS Adverse events are more common in patients currently or previously taking amiodarone, flecainide or sotalol than age- and gender-matched controls. All three antiarrhythmics were associated with increased all-cause mortality. Congestive heart failure was more common in all amiodarone and sotalol users as well as past users of flecainide. Thyroid disease was more common in patients treated with amiodarone and sotalol but only amiodarone had an increased risk of pulmonary toxicity. The number of patients with liver failure was too small in all cases for statistical analysis. CONCLUSION The rhythm control agents amiodarone, flecainide and sotalol have significant adverse effects which can lead to discontinuation of their use. This should be considered when deciding the most appropriate treatment option for patients with AF.
Collapse
Affiliation(s)
- C J Taylor
- Primary Care Clinical Sciences, School of Health and Population Sciences, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
19
|
Kang L, Zheng MQ, Morishima M, Wang Y, Kaku T, Ono K. Bepridil up-regulates cardiac Na+ channels as a long-term effect by blunting proteasome signals through inhibition of calmodulin activity. Br J Pharmacol 2009; 157:404-14. [PMID: 19371335 DOI: 10.1111/j.1476-5381.2009.00174.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Bepridil is an anti-arrhythmic agent with anti-electrical remodelling effects that target many cardiac ion channels, including the voltage-gated Na+ channel. However, long-term effects of bepridil on the Na+ channel remain unclear. We explored the long-term effect of bepridil on the Na+ channel in isolated neonatal rat cardiomyocytes and in a heterologous expression system of human Na(v)1.5 channel. EXPERIMENTAL APPROACH Na+ currents were recorded by whole-cell voltage-clamp technique. Na+ channel message and protein were evaluated by real-time RT-PCR and Western blot analysis. KEY RESULTS Treatment of cardiomyocytes with 10 micromol.L(-1) bepridil for 24 h augmented Na+ channel current (I(Na)) in a dose- and time-dependent manner. This long-term effect of bepridil was mimicked or masked by application of W-7, a calmodulin inhibitor, but not KN93 [2-[N-(2-hydroxyethyl)-N-(4-methoxy benzenesulphonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine], a Ca2+/calmodulin-dependent kinase inhibitor. During inhibition of protein synthesis by cycloheximide, the I(Na) increase due to bepridil was larger than the increase without cycloheximide. Bepridil and W-7 significantly slowed the time course of Na(v)1.5 protein degradation in neonatal cardiomyocytes, although the mRNA levels of Na(v)1.5 were not modified. Bepridil and W-7 did not increase I(Na) any further in the presence of the proteasome inhibitor MG132 [N-[(phenylmethoxy)carbonyl]-L-leucyl-N-[(1S)-1-formyl-3-methylbutyl]-L-leucinamide]. Bepridil, W-7 and MG132 but not KN93 significantly decreased 20S proteasome activity in a concentration-dependent manner. CONCLUSIONS AND IMPLICATIONS We conclude that long-term exposure of cardiomyocytes to bepridil at therapeutic concentrations inhibits calmodulin action, which decreased degradation of the Na(v)1.5 alpha-subunit, which in turn increased Na+ current.
Collapse
Affiliation(s)
- L Kang
- Department of Pathophysiology, Oita University School of Medicine, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Inhibitory effects of tetrandrine on the Na(+) channel of human atrial fibrillation myocardium. Acta Pharmacol Sin 2009; 30:166-74. [PMID: 19151745 DOI: 10.1038/aps.2008.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM Tetrandrine (Tet) is a Ca(2+) channel blocker and has antiarrhythmic effects. Less information exists with regard to the mechanisms underlying its antiarrhythmic action other than blocking Ca(2+) channels. In this study, the effects of Tet on the Na(+) current (I(Na)) in the atrial myocardium of patients in atrial fibrillation (AF) and sinus rhythm (SR) were investigated, and the characteristics of the Na(+) current were synchronously compared between the AF and SR patients. METHODS Na(+) currents were recorded using the whole-cell patch clamp technique in single atrial myocyte of the AF and the normal SR groups. The effects of Tet (40-120 micromol/L) on the Na(+) current in the two groups were then observed. RESULTS Tet (60-120 micromol/L) decreased I(Na) density in a concentration-dependent manner and made the voltage-dependent activation curve shift to more positive voltages in the SR and AF groups. After exposure to Tet, the voltage-dependent inactivation curve of I(Na) was shifted to more negative voltages in the two groups. Tet delayed the time-dependent recovery of I(Na) in a concentration dependent manner in both AF and SR cells; however, there were no differences in the effects of Tet on I(Na) density and properties in the two groups. The I(Na) density of AF patients did not differ from that of the SR patients. CONCLUSION Tet can block sodium channels with slow recovery kinetics, which may explain the mechanisms underlying the antiarrhythmic action of Tet. The decreased conduction velocity (CV) in AF patients is not caused by the Na(+) current.
Collapse
|
21
|
Does the postrepolarization refractoriness play a role in amiodarone's antiarrhythmic efficacy? Heart Rhythm 2008; 5:1743-4. [PMID: 19084814 DOI: 10.1016/j.hrthm.2008.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Indexed: 11/20/2022]
|
22
|
Burashnikov A, Di Diego JM, Sicouri S, Ferreiro M, Carlsson L, Antzelevitch C. Atrial-selective effects of chronic amiodarone in the management of atrial fibrillation. Heart Rhythm 2008; 5:1735-42. [PMID: 19084813 DOI: 10.1016/j.hrthm.2008.09.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/13/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although amiodarone is one of the most effective pharmacologic agents used in clinical management of atrial fibrillation (AF), little is known about its differential effects in atrial and ventricular myocardium. OBJECTIVES This study sought to compare the electrophysiological effects of chronic amiodarone in atria and ventricles. METHODS We compared the electrophysiological characteristics of coronary-perfused atrial and ventricular wedge preparations isolated from untreated and chronic amiodarone-treated dogs (amiodarone, 40 mg/kg/day for 6 weeks, n = 12). RESULTS Chronic amiodarone prolonged action potential duration (APD(90)) predominantly in atria compared to ventricles and prolonged the effective refractory period (ERP) more than APD(90) in both ventricular and atrial preparations (particularly in the latter) due to the development of postrepolarization refractoriness. Amiodarone reduced dispersion of APD(90) in both atria and ventricles. Although the maximum rate of increase of the action potential upstroke (V(max)) was significantly lower in both atria and ventricles of amiodarone-treated hearts versus untreated controls, the reduction of V(max) was much more pronounced in atria. Amiodarone prolonged P-wave duration more significantly than QRS duration, reflecting greater slowing of conduction in atria versus ventricles. These atrioventricular distinctions were significantly accentuated at faster activation rates. Persistent acetylcholine-mediated AF could be induced in only 1 of 6 atria from amiodarone-treated versus 10 of 10 untreated dogs. CONCLUSION Our results indicate that under the conditions studied, chronic amiodarone has potent atrial-predominant effects to depress sodium channel-mediated parameters and that this action of the drug is greatly potentiated by its ability to prolong APD predominantly in the atria, thus contributing to its effectiveness to suppress AF.
Collapse
|
23
|
Fukaya H, Niwano S, Satoh D, Masaki Y, Niwano H, Kojima J, Moriguchi M, Izumi T. Inhomogenic effect of bepridil on atrial electrical remodeling in a canine rapid atrial stimulation model. Circ J 2008; 72:318-26. [PMID: 18219173 DOI: 10.1253/circj.72.318] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The antiarrhythmic or reverse remodeling effects of bepridil, a multi-ion channel blocker, have been recently reported, but inhomogeneity of the electrical remodeling and effects of bepridil have been observed in previous reports. In this study, the effect of long-term administration of bepridil on atrial electrical remodeling was evaluated in a comparison of the right and left atrium (RA and LA) in a canine rapid atrial stimulation model. METHODS AND RESULTS In 10 beagle dogs, rapid atrial pacing (400 beats/min) was delivered for 6 weeks and the atrial effective refractory period (AERP), conduction velocity (CV) and inducibility of atrial fibrillation (AF) were evaluated every week. In 5 of the pacing dogs, bepridil (10 mg . kg(-1) . day(-1)) was administered orally, starting 2 weeks after the initiation of the rapid pacing. At the end of the protocol, the hemodynamic parameters and extent of tissue fibrosis were evaluated and the mRNA of SCN5A, Kv4.3, the L-type Ca2+ channel (LCC) and connexin (Cx) 40, 43, and 45 in both atria were examined by quantitative real-time reverse transcriptase-polymerase chain reaction. In the pacing control group, AERP shortening, decreased CV, increased AF inducibility and downregulation of the expression of SCN5A and LCC were observed. In the bepridil group, the AERP exhibited a relatively quick recovery after bepridil was started in the first week and continued to recover gradually until the end of the protocol, but that recovery was smaller in the LA than in the RA. The CV was not affected by bepridil administration. AF inducibility was well suppressed in the RA in the bepridil group, but the induction of short-duration AF could not be suppressed in the LA. The mRNA downregulation of the LCC and SCN5A was negated by bepridil administration in the RA; but not in the LA; however, the data showed similar tendencies. There were no significant differences in the hemodynamic parameters or tissue fibrosis and the mRNA expression of Kv4.3, Cx40, 43, and 45 between the pacing control and bepridil groups. CONCLUSION Bepridil exhibited an anti-electrical remodeling effect in this study as previously reported, but the effect was inhomogeneous between the RA and LA, with the LA appearing to be more resistant to the effect of bepridil.
Collapse
Affiliation(s)
- Hidehira Fukaya
- Department of Cardio-Angiology, Kitasato University School of Medicine, 1-15-1 Kitasato,Sagamihara 228-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Okumura K. Extracellular Matrix Remodeling as a Cause of Persistent Atrial Fibrillation: Another Therapeutic Target. J Cardiovasc Electrophysiol 2007; 18:1083-5. [PMID: 17666056 DOI: 10.1111/j.1540-8167.2007.00918.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Nishida K, Fujiki A, Sakamoto T, Iwamoto J, Mizumaki K, Hashimoto N, Inoue H. Bepridil Reverses Atrial Electrical Remodeling and L-Type Calcium Channel Downregulation in a Canine Model of Persistent Atrial Tachycardia. J Cardiovasc Electrophysiol 2007; 18:765-72. [PMID: 17472715 DOI: 10.1111/j.1540-8167.2007.00833.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION This study tested whether bepridil, a multichannel blocker, would reverse electrical remodeling induced by persistent atrial tachycardia. METHODS AND RESULTS Fourteen dogs were subjected to rapid atrial pacing at 400 bpm for 6 weeks after atrioventricular block was created to control the ventricular rate. During the study period, seven dogs were given placebo for 6 weeks (Control group), and seven were given placebo for 3 weeks, followed by 3 weeks of bepridil (10 mg/kg/day, Bepridil group). The atrial effective refractory period (ERP) and the inducibility and duration of atrial fibrillation (AF) were determined on a weekly basis. After 6 weeks, expression of L-type calcium channel alpha1C messenger ribonucleic acid (mRNA) was quantified by real-time reverse transcription-polymerase chain reaction. In the Control group, ERP was shortened and the inducibility and duration of AF increased through the 6-week period. In the Bepridil group, the same changes occurred during the first 3 weeks, but were gradually reversed with bepridil. After 6 weeks, ERP was longer, AF inducibility was lower, and AF duration was shorter in Bepridil group than in the Control group. Expression of alpha1C mRNA was decreased by 64% in the Control group (P < 0.05 vs sham), but in the Bepridil group, it was not different compared with the sham dogs. As a whole group of dogs, ERP was positively correlated with alpha1C mRNA expression. CONCLUSION Bepridil reverses the electrophysiological consequences of atrial remodeling to some extent and L-type calcium channel downregulation in a canine model of atrial tachycardia.
Collapse
Affiliation(s)
- Kunihiro Nishida
- Second Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang K, Takahara A, Nakamura Y, Aonuma K, Matsumoto M, Sugiyama A. In Vivo Electropharmacological Effects of Amiodarone and Candesartan on Atria of Chronic Atrioventricular Block Dogs. J Pharmacol Sci 2007; 103:207-13. [PMID: 17299243 DOI: 10.1254/jphs.fp0060945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Electropharmacological effects of chronically administered amiodarone and candesartan on atria that had been remodeled against congestive heart failure were assessed using dogs (about 10 kg in weight) with chronic atrioventricular block. Amiodarone was administered orally in a dose of 200 mg/body per day for the initial 7 days followed by 100 mg for the following 21 days (n = 7). Candesartan was administered in a dose of 12 mg/body per day for 28 days (n = 7). All animals survived the 4-week experimental period, indicating the lack of risks for inducing cardiohemodynamic collapse or torsade de pointes by these drugs. The plasma amiodarone concentration was 353 ng/ml at 4 weeks of treatment. Before candesartan treatment (control), intravenous administration of 30 ng/kg of angiotensin II increased the mean blood pressure by 18 mmHg, which was significantly decreased to 1 mmHg by 4 weeks of treatment. Amiodarone prolonged the atrial effective refractory period without affecting inter-atrial conduction time and decreased the duration of the burst pacing-induced atrial fibrillation, whereas candesartan hardly affected these variables. These results indicate that amiodarone should become a pragmatic pharmacological strategy against atrial fibrillation in patients with chronically compensated heart failure and suggest that a much higher dose of candesartan may be needed to exert its efficacy in this model.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | |
Collapse
|