1
|
Kui P, Polyák A, Morvay N, Tiszlavicz L, Nagy N, Ördög B, Takács H, Leprán I, Farkas A, Papp JG, Jost N, Varró A, Baczkó I, Farkas AS. Long-Term Endurance Exercise Training Alters Repolarization in a New Rabbit Athlete’s Heart Model. Front Physiol 2022; 12:741317. [PMID: 35237176 PMCID: PMC8882986 DOI: 10.3389/fphys.2021.741317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
In the present study, the effect of long-term exercise training was investigated on myocardial morphological and functional remodeling and on proarrhythmic sensitivity in a rabbit athlete’s heart model. New-Zealand white rabbits were trained during a 12-week long treadmill running protocol and compared with their sedentary controls. At the end of the training protocol, echocardiography, in vivo and in vitro ECG recordings, proarrhythmic sensitivity with dofetilide (nM) were performed in isolated hearts, and action potential duration (APD) measurements at different potassium concentrations (4.5 and 2 mM) were made in the isolated papillary muscles. Expression levels of the slow component of delayed rectifier potassium current and fibrosis synthesis and degradation biomarkers were quantified. Echocardiography showed a significantly dilated left ventricle in the running rabbits. ECG PQ and RR intervals were significantly longer in the exercised group (79 ± 2 vs. 69 ± 2 ms and 325 ± 11 vs. 265 ± 6 ms, p < 0.05, respectively). The in vivo heart rate variability (HRV) (SD of root mean square: 5.2 ± 1.4 ms vs. 1.4 ± 0.2 ms, p < 0.05) and Tpeak-Tend variability were higher in the running rabbits. Bradycardia disappeared in the exercised group in vitro. Dofetilide tended to increase the QTc interval in a greater extent, and significantly increased the number of arrhythmic beats in the trained animals in vitro. APD was longer in the exercised group at a low potassium level. Real-time quantitative PCR (RT-qPCR) showed significantly greater messenger RNA expression of fibrotic biomarkers in the exercised group. Increased repolarization variability and higher arrhythmia incidences, lengthened APD at a low potassium level, increased fibrotic biomarker gene expressions may indicate higher sensitivity of the rabbit “athlete’s heart” to life-threatening arrhythmias.
Collapse
Affiliation(s)
- Péter Kui
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Alexandra Polyák
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- ELKH-SZTE Working Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Nikolett Morvay
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- ELKH-SZTE Working Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Hedvig Takács
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Leprán
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - András Farkas
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Julius Gy. Papp
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- ELKH-SZTE Working Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- ELKH-SZTE Working Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- ELKH-SZTE Working Group of Cardiovascular Pharmacology, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- *Correspondence: András Varró,
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Attila S. Farkas
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Baczkó I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic Rabbit Models in Proarrhythmia Research. Front Pharmacol 2020; 11:853. [PMID: 32581808 PMCID: PMC7291951 DOI: 10.3389/fphar.2020.00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-induced proarrhythmia constitutes a potentially lethal side effect of various drugs. Most often, this proarrhythmia is mechanistically linked to the drug's potential to interact with repolarizing cardiac ion channels causing a prolongation of the QT interval in the ECG. Despite sophisticated screening approaches during drug development, reliable prediction of proarrhythmia remains very challenging. Although drug-induced long-QT-related proarrhythmia is often favored by conditions or diseases that impair the individual's repolarization reserve, most cellular, tissue, and whole animal model systems used for drug safety screening are based on normal, healthy models. In recent years, several transgenic rabbit models for different types of long QT syndromes (LQTS) with differences in the extent of impairment in repolarization reserve have been generated. These might be useful for screening/prediction of a drug's potential for long-QT-related proarrhythmia, particularly as different repolarizing cardiac ion channels are impaired in the different models. In this review, we summarize the electrophysiological characteristics of the available transgenic LQTS rabbit models, and the pharmacological proof-of-principle studies that have been performed with these models—highlighting the advantages and disadvantages of LQTS models for proarrhythmia research. In the end, we give an outlook on potential future directions and novel models.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Kui P, Orosz S, Takács H, Sarusi A, Csík N, Rárosi F, Csekő C, Varró A, Papp JG, Forster T, Farkas AS, Farkas A. New in vitro model for proarrhythmia safety screening: IKs inhibition potentiates the QTc prolonging effect of IKr inhibitors in isolated guinea pig hearts. J Pharmacol Toxicol Methods 2016; 80:26-34. [DOI: 10.1016/j.vascn.2016.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/25/2023]
|
4
|
Champeroux P, Le Guennec JY, Jude S, Laigot C, Maurin A, Sola ML, Fowler JSL, Richard S, Thireau J. The high frequency relationship: implications for torsadogenic hERG blockers. Br J Pharmacol 2016; 173:601-12. [PMID: 26589499 DOI: 10.1111/bph.13391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ventricular arrhythmias induced by human ether-a-go-go related gene (hERG; Kv 11.1 channel) blockers are a consequence of alterations in ventricular repolarisation in association with high-frequency (HF) oscillations, which act as a primary trigger; the autonomic nervous system plays a modulatory role. In the present study, we investigated the role of β1 -adrenoceptors in the HF relationship between magnitude of heart rate and QT interval changes within discrete 10 s intervals (sorted into 5 bpm heart rate increments) and its implications for torsadogenic hERG blockers. EXPERIMENTAL APPROACH The HF relationship was studied under conditions of autonomic blockade with atenolol (β1 -adrenoceptor blocker) in the absence or presence of five hERG blockers in beagle dogs. In total, the effects of 14 hERG blockers on the HF relationship were investigated. KEY RESULTS All the torsadogenic hERG blockers tested caused a vertical shift in the HF relationship, while hERG blockers associated with a low risk of Torsades de Pointes did not cause any vertical shift. Atenolol completely prevented the effects four torsadogenic agents (quinidine, thioridazine, risperidone and terfenadine) on the HF relationship, but only partially reduced those of dofetilide, leading to the characterization of two types of torsadogenic agent. CONCLUSIONS AND IMPLICATIONS Analysis of the vertical shift in the HF relationship demonstrated that signs of transient sympathetic activation during HF oscillations in the presence of torsadogenic hERG blockers are mediated by β1 -adrenoceptors. We suggest the HF relationship as a new biomarker for assessing Torsades de pointes liability, with potential implications in both preclinical studies and the clinic.
Collapse
Affiliation(s)
- P Champeroux
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - J Y Le Guennec
- Laboratoire PHYMEDEXP, Physiologie et Médecine Expérimentale, Cœur et Muscles, INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve, 371 Avenue du doyen G. Giraud, 34295, Montpellier cedex 05, France
| | - S Jude
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - C Laigot
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - A Maurin
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - M L Sola
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - J S L Fowler
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - S Richard
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - J Thireau
- Laboratoire PHYMEDEXP, Physiologie et Médecine Expérimentale, Cœur et Muscles, INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve, 371 Avenue du doyen G. Giraud, 34295, Montpellier cedex 05, France
| |
Collapse
|
5
|
Takács H, Kui P, Farkas AS, Sarusi A, Forster T, Papp JG, Varró A, Curtis MJ, Shattock MJ, Farkas A. Ventricular cycle length irregularity affects the correlation between ventricular rate and coronary flow in isolated, Langendorff perfused guinea pig hearts. J Pharmacol Toxicol Methods 2015; 77:45-52. [PMID: 26455880 DOI: 10.1016/j.vascn.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Heart rate affects coronary flow, but the mechanism is complex. The relationship between rhythm and flow is unclear, especially in experimental settings used for determining drug actions. The present study examined whether ventricular irregularity influences coronary flow independently of heart rate. METHODS Guinea pig hearts were perfused (Langendorff mode) at constant pressure. Hypokalemic Krebs solution facilitated spontaneous development of arrhythmias. The ECG, left ventricular and perfusion pressures were recorded, and the coronary flow was measured. Beat-to-beat ventricular cycle length variability was quantified. Hearts were retrospectively allocated to arbitrary 'Low' or 'High' RR variability groups. RESULTS A positive linear correlation was found between mean ventricular rate and coronary flow. The slope of the regression line was significantly greater in the 'High' versus 'Low' RR variability group, with greater coronary flow values in the 'High' RR variability group in the physiological heart rate range. During regular rhythm, left ventricular pressure exceeded perfusion pressure and prevented coronary perfusion at peak systole. However, ventricular irregularity significantly increased the number of beats in which left ventricular pressure remained below perfusion pressure, facilitating coronary perfusion. DISCUSSION In isolated hearts, cycle length irregularity increases the slope of the positive linear correlation between mean ventricular rate and coronary flow via producing beats in which left ventricular pressure remains below perfusion pressure. This means that changes in rhythm have the capacity to influence coronary flow independently of heart rate in isolated hearts perfused at constant pressure, which should be noted in drug studies on arrhythmias performed in Langendorff hearts.
Collapse
Affiliation(s)
- Hedvig Takács
- Second Department of Medicine and Cardiology Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Kui
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila S Farkas
- Second Department of Medicine and Cardiology Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Annamária Sarusi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Forster
- Second Department of Medicine and Cardiology Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Julius Gy Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | - András Farkas
- Second Department of Medicine and Cardiology Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
6
|
Frommeyer G, Eckardt L. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat Rev Cardiol 2015; 13:36-47. [PMID: 26194552 DOI: 10.1038/nrcardio.2015.110] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug-induced ventricular tachyarrhythmias can be caused by cardiovascular drugs, noncardiovascular drugs, and even nonprescription agents. They can result in arrhythmic emergencies and sudden cardiac death. If a new arrhythmia or aggravation of an existing arrhythmia develops during therapy with a drug at a concentration usually considered not to be toxic, the situation can be defined as proarrhythmia. Various cardiovascular and noncardiovascular drugs can increase the occurrence of polymorphic ventricular tachycardia of the 'torsade de pointes' type. Antiarrhythmic drugs, antimicrobial agents, and antipsychotic and antidepressant drugs are the most important groups. Age, female sex, and structural heart disease are important risk factors for the occurrence of torsade de pointes. Genetic predisposition and individual pharmacodynamic and pharmacokinetic sensitivity also have important roles in the generation of arrhythmias. An increase in spatial or temporal dispersion of repolarization and a triangular action-potential configuration have been identified as crucial predictors of proarrhythmia in experimental models. These studies emphasized that sole consideration of the QT interval is not sufficient to assess the proarrhythmic risk. In this Review, we focus on important triggers of proarrhythmia and the underlying electrophysiological mechanisms that can enhance or prevent the development of torsade de pointes.
Collapse
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Strasse 33, D-48149 Münster, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Strasse 33, D-48149 Münster, Germany
| |
Collapse
|
7
|
Assessment of efficacy of proarrhythmia biomarkers in isolated rabbit hearts with attenuated repolarization reserve. J Cardiovasc Pharmacol 2015; 64:266-76. [PMID: 24887684 DOI: 10.1097/fjc.0000000000000116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Isolated hearts with reduced repolarization reserve would be suitable for assessing the proarrhythmic liability of drugs. However, it is not known which proarrhythmia biomarkers indicate the increased susceptibility to torsades de pointes arrhythmia (TdP) in such experimental setting. Thus, we estimated the efficacy of proarrhythmia biomarkers in isolated hearts with attenuated repolarization reserve. Langendorff-perfused rabbit hearts were used. Repolarization reserve was reduced by concomitant inhibition of the rapid (IKr) and slow (IKs) delayed rectifier potassium currents by dofetilide and HMR-1556, respectively. Rate corrected QT (QTc) interval and beat-to-beat variability of the QT interval measured in sinus rhythm or irrespective of rhythm even during arrhythmias (sinus and absolute QT variability, respectively) were tested. QTc failed to predict increased proarrhythmic risk. Sinus QT variability indicated proarrhythmic liability when low concentration of dofetilide was used. However, when arrhythmias compromised sinus variability measurement during coperfusion of catecholamines and elevated concentration of dofetilide, only absolute QT variability indicated increased proarrhythmic risk. Absolute QT variability parameters seem to be the most practical and sensitive biomarkers of proarrhythmic liability in rabbit hearts with reduced repolarization reserve. Absolute QT variability parameters could serve as surrogates for torsades de pointes in drug-safety investigations in isolated rabbit hearts with attenuated repolarization reserve.
Collapse
|
8
|
Assessment of anti-arrhythmic activity of antipsychotic drugs in an animal model: Influence of non-cardiac α1-adrenergic receptors. Eur J Pharmacol 2015; 748:10-7. [DOI: 10.1016/j.ejphar.2014.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 01/09/2023]
|
9
|
Khobragade SB, Gupta P, Gurav P, Chaudhari G, Gatne MM, Shingatgeri VM. Assessment of proarrhythmic activity of chloroquine in in vivo and ex vivo rabbit models. J Pharmacol Pharmacother 2013; 4:116-24. [PMID: 23759957 PMCID: PMC3669570 DOI: 10.4103/0976-500x.110892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To evaluate the prolongation of ventricular repolarization and proarrhythmic activity of antimalarial drug chloroquine in two rabbit proarrhythmia models viz., in vivo α1 adrenoceptor-stimulated anesthetized rabbit and ex vivo isolated Langendorff rabbit heart using clofilium as standard proarrhythmic agent. MATERIALS AND METHODS In the in vivo model, three groups of rabbits, anesthetized by pentobarbitone sodium and α-chloralose, sensitized with α1 agonist methoxamine followed by either continuous infusion of saline (control) or clofilium (3 mg/kg) or chloroquine (21 mg/kg) for 30 min. In ex vivo model, rabbit hearts were perfused with clofilium (10 μM) or chloroquine (300 μM) continuously after priming along with methoxamine, acetylcholine chloride and propranolol hydrochloride. RESULTS In these models, prolongation of repolarization during α1-adrenoceptor stimulation produced early after depolarization (EAD) and Torsade de pointes (TdP). Saline infusion did not induce any abnormality in the animals. Clofilium caused expected changes in the electrocardiogram in both the models including TdP (50.0% in in vivo and 66.67% in ex vivo). Chloroquine caused decrease in heart rate and increase in the corrected QT (QTc) interval in both the models. Further, apart from different stages of arrhythmia, TdP was evident in 33.33% in ex vivo model, whereas no TdP was observed in in vivo model. CONCLUSIONS The results indicated that proarrhythmic potential of chloroquine and clofilium was well evaluated in both the models; moreover, both the models can be used to assess the proarrhythmic potential of the new drug candidates.
Collapse
Affiliation(s)
- Shailaja B. Khobragade
- Department of Drug Safety Evaluation, Ranbaxy Research Laboratories, Gurgaon, Haryana, India
| | - Pankaj Gupta
- Department of Pharmacology, Central Research Institute for Homoeopathy, Noida, India
| | - Prashant Gurav
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Girish Chaudhari
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Madhumanjiri M. Gatne
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Vyas M. Shingatgeri
- Department of Drug Safety Evaluation, Ranbaxy Research Laboratories, Gurgaon, Haryana, India
| |
Collapse
|
10
|
Abstract
One of the main reasons for drug failures in clinical development, or postmarket launch, is lacking or compromised safety margins at therapeutic doses. Organ toxicity with poorly defined mechanisms and adverse drug reactions associated with on- and off-target effects are the major contributors to safety-related shortfalls of many clinical drug candidates. Therefore, to avoid high attrition rates in clinical trials, it is imperative to test compounds for potential adverse reactions during early drug discovery. Beyond a small number of targets associated with clinically acknowledged adverse drug reactions, there is little consensus on other targets that are important to consider at an early stage for in vitro safety pharmacology assessment. We consider here a limited number of safety-related targets, from different target families, which were selected as part of in vitro safety pharmacology profiling panels integrated in the drug-development process at Novartis. The best way to assess these targets, using a biochemical or a functional readout, is discussed. In particular, the importance of using cell-based profiling assays for the characterization of an agonist action at some GPCRs is highlighted. A careful design of in vitro safety pharmacology profiling panels allows better prediction of potential adverse effects of new chemical entities early in the drug-discovery process. This contributes to the selection of the best candidate for clinical development and, ultimately, should contribute to a decreased attrition rate.
Collapse
|
11
|
Farkas AS, Rudas L, Makra P, Csík N, Leprán I, Forster T, Csanády M, Papp JG, Varró A, Farkas A. Biomarkers and endogenous determinants of dofetilide-induced torsades de pointes in α(1) -adrenoceptor-stimulated, anaesthetized rabbits. Br J Pharmacol 2010; 161:1477-95. [PMID: 20659107 PMCID: PMC3010562 DOI: 10.1111/j.1476-5381.2010.00965.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 05/31/2010] [Accepted: 06/27/2010] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Torsades de pointes (TdP) liability is a stochastic event, which indicates that unidentified factors have an important role in facilitating the initiation of TdP by increasing the probability of TdP occurrence. We sought to identify factors that facilitate drug-induced TdP. EXPERIMENTAL APPROACH We studied dofetilide-induced TdP in pentobarbital-anaesthetized, phenylephrine-sensitized rabbits, seeking biomarkers that discriminated between the animals that experienced TdP ('TdP+' animals) and those that did not ('TdP-' animals). As novel variables, the beat-to-beat variability and instability of ECG intervals were measured at preset times, irrespective of whether or not hearts were in stable sinus rhythm ('absolute' variability and instability). Autonomic activity was also determined. KEY RESULTS Dofetilide delayed repolarization and induced arrhythmias prior to TdP. The variability of the coupling interval and shape of arrhythmic beats before TdP were significantly greater in the 'TdP+' group than in the 'TdP-' group. Accordingly, the 'absolute' variability and instability of the ECG intervals were significantly elevated in the 'TdP+' group. Phenylephrine increased significantly the up-baroreflex sensitivity in the 'TdP+' group before dofetilide administration. CONCLUSIONS AND IMPLICATIONS 'Preceding' arrhythmias have characteristics that permit prediction of TdP occurrence: the more chaotic the ventricular rhythm, the greater the probability of TdP initiation. This suggests that complexity of the arrhythmic beats may play an important mechanistic role in TdP genesis. The electrical instability quantified by the novel 'absolute' variability and instability parameters correlates with the probability of TdP occurrence. Baroreflex may contribute to TdP genesis in vivo.
Collapse
Affiliation(s)
- Attila S Farkas
- 2nd Department of Internal Medicine and Cardiology Centre, University of SzegedSzeged, Hungary
| | - László Rudas
- 2nd Department of Internal Medicine and Cardiology Centre, University of SzegedSzeged, Hungary
| | - Péter Makra
- Department of Experimental Physics, University of SzegedSzeged, Hungary
| | - Norbert Csík
- Department of Electrical Engineering and Cybernetics, Faculty of Mechanical Engineering and Automation, Kecskemét CollegeKecskemét, Hungary
| | - István Leprán
- Division of Cardiovascular Pharmacology, Hungarian Academy of SciencesSzeged, Hungary
| | - Tamás Forster
- 2nd Department of Internal Medicine and Cardiology Centre, University of SzegedSzeged, Hungary
| | - Miklós Csanády
- 2nd Department of Internal Medicine and Cardiology Centre, University of SzegedSzeged, Hungary
| | - Julius Gy Papp
- Division of Cardiovascular Pharmacology, Hungarian Academy of SciencesSzeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzeged, Hungary
| | - András Varró
- Division of Cardiovascular Pharmacology, Hungarian Academy of SciencesSzeged, Hungary
- Department of Pharmacology and Pharmacotherapy, University of SzegedSzeged, Hungary
| | - András Farkas
- 2nd Department of Internal Medicine and Cardiology Centre, University of SzegedSzeged, Hungary
| |
Collapse
|
12
|
Farkas AS, Nattel S. Minimizing Repolarization-Related Proarrhythmic Risk in Drug Development and Clinical Practice. Drugs 2010; 70:573-603. [DOI: 10.2165/11535230-000000000-00000] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Bassiakou E, Xanthos T, Papadimitriou L. The potential beneficial effects of beta adrenergic blockade in the treatment of ventricular fibrillation. Eur J Pharmacol 2009; 616:1-6. [PMID: 19555681 DOI: 10.1016/j.ejphar.2009.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/28/2009] [Accepted: 06/09/2009] [Indexed: 01/30/2023]
Abstract
Cardiac arrest remains a major medical emergency in Western societies, with ventricular fibrillation being the initial rhythm in a significant proportion of cases. Adrenaline is generally accepted to improve the resuscitation outcome, since it improves coronary and cerebral blood flow during cardiopulmonary resuscitation, but several detrimental effects have been associated with its use, most of which are thought to be mediated by its beta adrenergic properties. Several animal studies suggest that beta adrenergic blockade during resuscitation, is associated with increased rates of resuscitation and improved post-resuscitation myocardial function. This article reviews the presence and function of beta-adrenoceptor subtypes in the intact and diseased human myocardium, as well as the differences observed in beta(1)- and beta(2) adrenoceptor subtypes in different species.
Collapse
Affiliation(s)
- Eleni Bassiakou
- Department of Experimental Surgery and Surgical Research N. S. Christeas, Athens School of Medicine, Athens, Greece
| | | | | |
Collapse
|
14
|
Model systems for the discovery and development of antiarrhythmic drugs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:328-39. [PMID: 19038282 DOI: 10.1016/j.pbiomolbio.2008.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide and about 25% of cardiovascular deaths are due to disturbances in cardiac rhythm or "arrhythmias". Arrhythmias were traditionally treated with antiarrhythmic drugs, but increasing awareness of the risks of presently available antiarrhythmic agents has greatly limited their usefulness. Most common treatment algorithms still involve small molecule drugs, and antiarrhythmic agents with improved efficacy and safety are sorely needed. This paper reviews the model systems that are available for discovery and development of new antiarrhythmic drugs. We begin with a presentation of screening methods used to identify specific channel-interacting agents, with a particular emphasis on high-throughput screens. Traditional manual electrophysiological methods, automated electrophysiology, fluorescent dye methods, flux assays and radioligand binding assays are reviewed. We then discuss a variety of relevant arrhythmia models. Two models are widely used in testing for arrhythmogenic actions related to excess action potential prolongation, an important potential adverse effect of chemical entities affecting cardiac rhythm: the methoxamine-sensitized rabbit and the dog with chronic atrioventricular block. We then go on to review models used to assess potential antiarrhythmic actions. For ventricular arrhythmias, chemical induction methods, cardiac or neural electrical stimulation, ischaemic heart models and models of cardiac channelopathies can be used to identify effective antiarrhythmic agents. For atrial arrhythmias, potentially useful models include vagally-maintained atrial fibrillation, acute asphyxia with atrial burst-pacing, sterile pericarditis, Y-shaped atria surgical incisions, chronic atrial dilation models, atrial electrical remodelling due to sustained atrial tachycardia, heart failure-related atrial remodelling, and acute atrial ischaemia. It is hoped that the new technologies now available and the recently-developed models for arrhythmia-response assessment will permit the introduction of newer and more effective antiarrhythmic therapies in the near future.
Collapse
|
15
|
Carlsson L. The anaesthetised methoxamine-sensitised rabbit model of torsades de pointes. Pharmacol Ther 2008; 119:160-7. [PMID: 18558435 DOI: 10.1016/j.pharmthera.2008.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 04/28/2008] [Indexed: 01/31/2023]
Abstract
Current guidelines describe strategies on how the potential of non-antiarrhythmic drugs to delay ventricular repolarisation should be assessed. However, the non-clinical guidelines recommend repolarisation assays only and do not advocate experimental models that express the proarrhythmia of concern, torsades de pointes (TdP). Although the repolarisation assays may predict QT interval prolongation in man they cannot alone sufficiently predict proarrhythmia risk. Furthermore, there is also a need for more robust surrogate markers of drug-induced proarrhythmia and such validated markers are on the horizon as a result of the availability of sensitive animal models of TdP. This review will describe the methoxamine-sensitised rabbit model of TdP, one of the most frequently used proarrhythmia models, and present some of it characteristics, its pros and cons and how it historically has been used for assessing proarrhythmia liability of drugs.
Collapse
Affiliation(s)
- Leif Carlsson
- AstraZeneca R&D Mölndal, Bioscience, S-431 83 Mölndal, Sweden.
| |
Collapse
|
16
|
Farkas A, Dempster J, Coker SJ. Importance of vagally mediated bradycardia for the induction of torsade de pointes in an in vivo model. Br J Pharmacol 2008; 154:958-70. [PMID: 18587444 DOI: 10.1038/bjp.2008.154] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Bradycardia is a risk factor for the development of torsade de pointes (TdP). The aim of this work was to compare the importance of changes in heart rate and arterial blood pressure in the development of drug-induced TdP and to investigate the role of vagal influences. EXPERIMENTAL APPROACH Experiments were performed in open-chest, pentobarbital-anaesthetized, male rabbits which were given clofilium (20, 60 and 200 nmol kg(-1) min(-1)) with rising doses of either phenylephrine (75, 150, 225 and 300 nmol kg(-1) min(-1)), angiotensin II (0.25, 0.5, 0.75 and 1 nmol kg(-1) min(-1)) or saline. A fourth group received phenylephrine and cloflium after bilateral vagotomy. ECGs, haemodynamics and epicardial monophasic action potentials were recorded. KEY RESULTS TdP occurred in 57% of rabbits given phenylephrine and clofilium. Replacement of phenylephrine with saline or angiotensin II reduced the incidence of TdP to 0 and 17%, respectively. Vagotomy prevented TdP in rabbits given phenylephrine and clofilium. Increases in blood pressure induced by phenylephrine and angiotensin II were similar. Bradycardia only occurred with phenylephrine and was reduced but not abolished by vagotomy. Neither short-term variability of repolarization nor action potential triangulation could predict TdP. CONCLUSIONS AND IMPLICATIONS These results indicate that reflex activation of vagal nerve activity is essential for the induction of drug-induced TdP in alpha1-adrenoceptor-stimulated anaesthetized rabbits. This implies that alterations in vagal activity may also precipitate episodes of drug-induced TdP in man and that this should be considered in selecting models used in drug development.
Collapse
Affiliation(s)
- A Farkas
- Department of Pharmacology and Therapeutics, The University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
17
|
Vincze D, Farkas AS, Rudas L, Makra P, Csík N, Leprán I, Forster T, Csanády M, Papp JG, Varró A, Farkas A. Relevance of anaesthesia for dofetilide-induced torsades de pointes in alpha1-adrenoceptor-stimulated rabbits. Br J Pharmacol 2007; 153:75-89. [PMID: 17965737 DOI: 10.1038/sj.bjp.0707536] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE No information is available concerning the effects of anaesthetics in the most frequently used in vivo pro-arrhythmia model. Accordingly, in this study we examined the effect of pentobarbital, propofol or alpha-chloralose anaesthesia on the pro-arrhythmic activity of the class III anti-arrhythmic dofetilide in alpha(1)-adrenoceptor-stimulated rabbits. EXPERIMENTAL APPROACH Rabbits anaesthetized intravenously with pentobarbital, propofol or alpha-chloralose were infused simultaneously with the alpha(1)-adrenoceptor agonist phenylephrine (15 microg kg(-1) min(-1), i.v.) and dofetilide (0.04 mg kg(-1) min(-1), i.v.). The electrocardiographic QT interval, the T (peak)-T (end) interval and certain QT variability parameters were measured. The heart rate variability and the baroreflex sensitivity were utilized to assess the vagal nerve activity. The spectral power of the systolic arterial pressure was calculated in the frequency range 0.15-0.5 Hz to assess the sympathetic activity. KEY RESULTS Pentobarbital considerably reduced, whereas propofol did not significantly affect the incidence of dofetilide-induced torsades de pointes (TdP) as compared with the results with alpha-chloralose (40% (P=0.011) and 70% (P=0.211) vs 100%, respectively). In additional experiments, neither doubling of the rate of the dofetilide infusion nor tripling of the rate of phenylephrine infusion elevated the incidence of TdP to the level seen with alpha-chloralose. None of the repolarization-related parameters predicted TdP. The indices of the parasympathetic and sympathetic activity were significantly depressed in the alpha-chloralose and propofol anaesthesia groups. CONCLUSIONS AND IMPLICATIONS In rabbits, anaesthetics may affect drug-induced TdP genesis differently, which must be considered when results of different studies are compared.
Collapse
Affiliation(s)
- D Vincze
- Department of Anaesthesiology and Intensive Care, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|