1
|
van Kempen TS, Leijten EFA, Lindenbergh MFS, Nordkamp MO, Driessen C, Lebbink RJ, Baerlecken N, Witte T, Radstake TRDJ, Boes M. Impaired proteolysis by SPPL2a causes CD74 fragment accumulation that can be recognized by anti-CD74 autoantibodies in human ankylosing spondylitis. Eur J Immunol 2020; 50:1209-1219. [PMID: 32198923 PMCID: PMC7496470 DOI: 10.1002/eji.201948502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Ankylosing spondylitis (AS) is associated with autoantibody production to class II MHC‐associated invariant chain peptide, CD74/CLIP. In this study, we considered that anti‐CD74/CLIP autoantibodies present in sera from AS might recognize CD74 degradation products that accumulate upon deficiency of the enzyme signal peptide peptidase‐like 2A (SPPL2a). We analyzed monocytes from healthy controls (n = 42), psoriatic arthritis (n = 25), rheumatoid arthritis (n = 16), and AS patients (n = 15) for SPPL2a enzyme activity and complemented the experiments using SPPL2a‐sufficient and ‐deficient THP‐1 cells. We found defects in SPPL2a function and CD74 processing in a subset of AS patients, which culminated in CD74 and HLA class II display at the cell surface. These findings were verified in SPPL2a‐deficient THP‐1 cells, which showed expedited expression of MHC class II, total CD74 and CD74 N‐terminal degradation products at the plasma membrane upon receipt of an inflammatory trigger. Furthermore, we observed that IgG anti‐CD74/CLIP autoantibodies recognize CD74 N‐terminal degradation products that accumulate upon SPPL2a defect. In conclusion, reduced activity of SPPL2a protease in monocytes from AS predisposes to endosomal accumulation of CD74 and CD74 N‐terminal fragments, which, upon IFN‐γ‐exposure, is deposited at the plasma membrane and can be recognized by anti‐CD74/CLIP autoantibodies.
Collapse
Affiliation(s)
- Tessa S van Kempen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmerik F A Leijten
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marthe F S Lindenbergh
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Michel Olde Nordkamp
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Driessen
- Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Robert-Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niklas Baerlecken
- Department of Clinical Immunology and Rheumatology, Medical University Hannover, Hannover, Germany
| | - Torsten Witte
- Department of Clinical Immunology and Rheumatology, Medical University Hannover, Hannover, Germany
| | - Timothy R D J Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Niemeyer J, Mentrup T, Heidasch R, Müller SA, Biswas U, Meyer R, Papadopoulou AA, Dederer V, Haug-Kröper M, Adamski V, Lüllmann-Rauch R, Bergmann M, Mayerhofer A, Saftig P, Wennemuth G, Jessberger R, Fluhrer R, Lichtenthaler SF, Lemberg MK, Schröder B. The intramembrane protease SPPL2c promotes male germ cell development by cleaving phospholamban. EMBO Rep 2019; 20:e46449. [PMID: 30733280 PMCID: PMC6399600 DOI: 10.15252/embr.201846449] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022] Open
Abstract
Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we analyse the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We demonstrate proteolytic activity of SPPL2c towards selected tail-anchored proteins. Despite shared ER localisation, SPPL2c and SPP exhibit distinct, though partially overlapping substrate spectra and inhibitory profiles, and are organised in different high molecular weight complexes. Interestingly, SPPL2c is specifically expressed in murine and human testis where it is primarily localised in spermatids. In mice, SPPL2c deficiency leads to a partial loss of elongated spermatids and reduced motility of mature spermatozoa, but preserved fertility. However, matings of male and female SPPL2c-/- mice exhibit reduced litter sizes. Using proteomics we identify the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2)-regulating protein phospholamban (PLN) as a physiological SPPL2c substrate. Accumulation of PLN correlates with a decrease in intracellular Ca2+ levels in elongated spermatids that likely contribute to the compromised male germ cell differentiation and function of SPPL2c-/- mice.
Collapse
Affiliation(s)
- Johannes Niemeyer
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Torben Mentrup
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Ronny Heidasch
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Stephan A Müller
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Uddipta Biswas
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Rieke Meyer
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alkmini A Papadopoulou
- Institute for Metabolic Biochemistry, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Verena Dederer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Martina Haug-Kröper
- Institute for Metabolic Biochemistry, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Vivian Adamski
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Martin Bergmann
- Institute of Veterinary Anatomy, Justus Liebig University of Gießen, Gießen, Germany
| | - Artur Mayerhofer
- Cell Biology, Anatomy III, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gunther Wennemuth
- Institute of Anatomy, University Hospital, Duisburg-Essen University, Essen, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Regina Fluhrer
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Institute for Metabolic Biochemistry, Biomedical Center (BMC) München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar and Institute for Advanced Study, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Bernd Schröder
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Avci D, Malchus NS, Heidasch R, Lorenz H, Richter K, Neßling M, Lemberg MK. The intramembrane protease SPP impacts morphology of the endoplasmic reticulum by triggering degradation of morphogenic proteins. J Biol Chem 2018; 294:2786-2800. [PMID: 30578301 DOI: 10.1074/jbc.ra118.005642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER), as a multifunctional organelle, plays crucial roles in lipid biosynthesis and calcium homeostasis as well as the synthesis and folding of secretory and membrane proteins. Therefore, it is of high importance to maintain ER homeostasis and to adapt ER function and morphology to cellular needs. Here, we show that signal peptide peptidase (SPP) modulates the ER shape through degradation of morphogenic proteins. Elevating SPP activity induces rapid rearrangement of the ER and formation of dynamic ER clusters. Inhibition of SPP activity rescues the phenotype without the need for new protein synthesis, and this rescue depends on a pre-existing pool of proteins in the Golgi. With the help of organelle proteomics, we identified certain membrane proteins to be diminished upon SPP expression and further show that the observed morphology changes depend on SPP-mediated cleavage of ER morphogenic proteins, including the SNARE protein syntaxin-18. Thus, we suggest that SPP-mediated protein abundance control by a regulatory branch of ER-associated degradation (ERAD-R) has a role in shaping the early secretory pathway.
Collapse
Affiliation(s)
- Dönem Avci
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Nicole S Malchus
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Ronny Heidasch
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Holger Lorenz
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Karsten Richter
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Michelle Neßling
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| |
Collapse
|
4
|
Moriishi K. The potential of signal peptide peptidase as a therapeutic target for hepatitis C. Expert Opin Ther Targets 2017; 21:827-836. [DOI: 10.1080/14728222.2017.1369959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kohji Moriishi
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
5
|
Mentrup T, Fluhrer R, Schröder B. Latest emerging functions of SPP/SPPL intramembrane proteases. Eur J Cell Biol 2017; 96:372-382. [DOI: 10.1016/j.ejcb.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022] Open
|
6
|
Otoguro T, Tanaka T, Kasai H, Yamashita A, Moriishi K. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity. Microbiol Immunol 2017; 60:740-753. [PMID: 27797115 DOI: 10.1111/1348-0421.12448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.
Collapse
Affiliation(s)
- Teruhime Otoguro
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Hirotake Kasai
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Atsuya Yamashita
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Kohji Moriishi
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| |
Collapse
|
7
|
Naing SH, Vukoti KM, Drury JE, Johnson JL, Kalyoncu S, Hill SE, Torres MP, Lieberman RL. Catalytic Properties of Intramembrane Aspartyl Protease Substrate Hydrolysis Evaluated Using a FRET Peptide Cleavage Assay. ACS Chem Biol 2015; 10:2166-74. [PMID: 26118406 DOI: 10.1021/acschembio.5b00305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical details of intramembrane proteolysis remain elusive despite its prevalence throughout biology. We developed a FRET peptide assay for the intramembrane aspartyl protease (IAP) from Methanoculleus marisnigri JR1 in combination with quantitative mass spectrometry cleavage site analysis. IAP can hydrolyze the angiotensinogen sequence, a substrate for the soluble aspartyl protease renin, at a predominant cut site, His-Thr. Turnover is slow (min(-1) × 10(-3)), affinity and Michaelis constant (Km) values are in the low micromolar range, and both catalytic rates and cleavage sites are the same in detergent as reconstituted into bicelles. Three well-established, IAP-directed inhibitors were directly confirmed as competitive, albeit with modest inhibitor constant (Ki) values. Partial deletion of the first transmembrane helix results in a biophysically similar but less active enzyme than full-length IAP, indicating a catalytic role. Our study demonstrates previously unappreciated similarities with soluble aspartyl proteases, provides new biochemical features of IAP and inhibitors, and offers tools to study other intramembrane protease family members in molecular detail.
Collapse
Affiliation(s)
- Swe-Htet Naing
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic
Drive Northwest, Atlanta, Georgia 30332-0400, United States
| | - Krishna M. Vukoti
- School
of Biology, Georgia Institute of Technology, 310 Ferst Drive Northwest, Atlanta, Georgia 30332-0230, United States
| | - Jason E. Drury
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic
Drive Northwest, Atlanta, Georgia 30332-0400, United States
| | - Jennifer L. Johnson
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic
Drive Northwest, Atlanta, Georgia 30332-0400, United States
| | - Sibel Kalyoncu
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic
Drive Northwest, Atlanta, Georgia 30332-0400, United States
| | - Shannon E. Hill
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic
Drive Northwest, Atlanta, Georgia 30332-0400, United States
| | - Matthew P. Torres
- School
of Biology, Georgia Institute of Technology, 310 Ferst Drive Northwest, Atlanta, Georgia 30332-0230, United States
| | - Raquel L. Lieberman
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic
Drive Northwest, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
8
|
Ran Y, Ladd GZ, Ceballos-Diaz C, Jung JI, Greenbaum D, Felsenstein KM, Golde TE. Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors. PLoS One 2015; 10:e0128619. [PMID: 26046535 PMCID: PMC4457840 DOI: 10.1371/journal.pone.0128619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
The signal peptide peptidases (SPPs) are biomedically important proteases implicated as therapeutic targets for hepatitis C (human SPP, (hSPP)), plasmodium (Plasmodium SPP (pSPP)), and B-cell immunomodulation and neoplasia (signal peptide peptidase like 2a, (SPPL2a)). To date, no drug-like, selective inhibitors have been reported. We use a recombinant substrate based on the amino-terminus of BRI2 fused to amyloid β 1-25 (Aβ1-25) (FBA) to develop facile, cost-effective SPP/SPPL protease assays. Co-transfection of expression plasmids expressing the FBA substrate with SPP/SPPLs were conducted to evaluate cleavage, which was monitored by ELISA, Western Blot and immunoprecipitation/MALDI-TOF Mass spectrometry (IP/MS). No cleavage is detected in the absence of SPP/SPPL overexpression. Multiple γ-secretase inhibitors (GSIs) and (Z-LL)2 ketone differentially inhibited SPP/SPPL activity; for example, IC50 of LY-411,575 varied from 51±79 nM (on SPPL2a) to 5499±122 nM (on SPPL2b), while Compound E showed inhibition only on hSPP with IC50 of 1465±93 nM. Data generated were predictive of effects observed for endogenous SPPL2a cleavage of CD74 in a murine B-Cell line. Thus, it is possible to differentially inhibit SPP family members. These SPP/SPPL cleavage assays will expedite the search for selective inhibitors. The data also reinforce similarities between SPP family member cleavage and cleavage catalyzed by γ-secretase.
Collapse
Affiliation(s)
- Yong Ran
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
- * E-mail: (YR); (TG)
| | - Gabriela Z. Ladd
- College of Pharmacy, University of Florida, Gainesville, Florida, United States of America
| | - Carolina Ceballos-Diaz
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Joo In Jung
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Doron Greenbaum
- Pennsylvania Drug Discovery Institute, Philadelphia, Pennsylvania, United States of America
| | - Kevin M. Felsenstein
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Todd E. Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
- * E-mail: (YR); (TG)
| |
Collapse
|
9
|
Mentrup T, Häsler R, Fluhrer R, Saftig P, Schröder B. A Cell-Based Assay Reveals Nuclear Translocation of Intracellular Domains Released by SPPL Proteases. Traffic 2015; 16:871-92. [DOI: 10.1111/tra.12287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Torben Mentrup
- Biochemical Institute; Christian Albrechts University of Kiel; Otto-Hahn-Platz 9 D-24118 Kiel Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology; Christian Albrechts University of Kiel; Schittenhelmstr. 12 D-24105 Kiel Germany
| | - Regina Fluhrer
- Biomedizinisches Centrum (BMC); Ludwig Maximilians University of Munich; Feodor-Lynen-Strasse 17 D-81377 Munich Germany
- DZNE - German Center for Neurodegenerative Diseases; Feodor-Lynen-Strasse 17 D-81377 Munich Germany
| | - Paul Saftig
- Biochemical Institute; Christian Albrechts University of Kiel; Otto-Hahn-Platz 9 D-24118 Kiel Germany
| | - Bernd Schröder
- Biochemical Institute; Christian Albrechts University of Kiel; Otto-Hahn-Platz 9 D-24118 Kiel Germany
| |
Collapse
|
10
|
Chen CY, Malchus NS, Hehn B, Stelzer W, Avci D, Langosch D, Lemberg MK. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u. EMBO J 2014; 33:2492-506. [PMID: 25239945 DOI: 10.15252/embj.201488208] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Signal peptide peptidase (SPP) catalyzes intramembrane proteolysis of signal peptides at the endoplasmic reticulum (ER), but has also been suggested to play a role in ER-associated degradation (ERAD). Here, we show that SPP forms a complex with the ERAD factor Derlin1 and the E3 ubiquitin ligase TRC8 to cleave the unfolded protein response (UPR) regulator XBP1u. Cleavage occurs within a so far unrecognized type II transmembrane domain, which renders XBP1u as an SPP substrate through specific sequence features. Additionally, Derlin1 acts in the complex as a substrate receptor by recognizing the luminal tail of XBP1u. Remarkably, this interaction of Derlin1 with XBP1u obviates the need for ectodomain shedding prior to SPP cleavage, commonly required for intramembrane cuts. Furthermore, we show that XBP1u inhibits the UPR transcription factor XBP1s by targeting it toward proteasomal degradation. Thus, we identify an ERAD complex that controls the abundance of XBP1u and thereby tunes signaling through the UPR.
Collapse
Affiliation(s)
- Chia-yi Chen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Nicole S Malchus
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Beate Hehn
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Walter Stelzer
- Lehrstuhl für Chemie der Biopolymere, Department für Biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany
| | - Dönem Avci
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Department für Biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
11
|
Allen SJ, Mott KR, Ghiasi H. Inhibitors of signal peptide peptidase (SPP) affect HSV-1 infectivity in vitro and in vivo. Exp Eye Res 2014; 123:8-15. [PMID: 24768597 DOI: 10.1016/j.exer.2014.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/25/2014] [Accepted: 04/03/2014] [Indexed: 01/06/2023]
Abstract
Recently we have shown that the highly conserved herpes simplex virus glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. In this study we have demonstrated for the first time that inhibitors of SPP, such as L685,458, (Z-LL)2 ketone, aspirin, ibuprofen and DAPT, significantly reduced HSV-1 replication in tissue culture. Inhibition of SPP activity via (Z-LL)2 ketone significantly reduced viral transcripts in the nucleus of infected cells. Finally, when administered during primary infection, (Z-LL)2 ketone inhibitor reduced HSV-1 replication in the eyes of ocularly infected mice. Thus, blocking SPP activity may represent a clinically effective and expedient approach to the reduction of viral replication and the resulting pathology.
Collapse
Affiliation(s)
- Sariah J Allen
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Los Angeles, CA
| | - Kevin R Mott
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Los Angeles, CA
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Los Angeles, CA.
| |
Collapse
|
12
|
Analysis of proteolytic processes and enzymatic activities in the generation of huntingtin n-terminal fragments in an HEK293 cell model. PLoS One 2012; 7:e50750. [PMID: 23236391 PMCID: PMC3517621 DOI: 10.1371/journal.pone.0050750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/24/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND N-terminal fragments of mutant huntingtin (htt) that terminate between residues 90-115, termed cleavage product A or 1 (cp-A/1), form intracellular and intranuclear inclusion bodies in the brains of patients with Huntington's disease (HD). These fragments appear to be proteolytic products of the full-length protein. Here, we use an HEK293 cell culture model to investigate huntingtin proteolytic processing; previous studies of these cells have demonstrated cleavage of htt to cp-A/1 like htt fragments. RESULTS Recombinant N-terminal htt fragments, terminating at residue 171 (also referred to as cp-B/2 like), were efficiently cleaved to produce cp-A/1 whereas fragments representing endogenous caspase, calpain, and metalloproteinase cleavage products, terminating between residues 400-600, were inefficiently cleaved. Using cysteine-labeling techniques and antibody binding mapping, we localized the C-terminus of the cp-A/1 fragments produced by HEK293 cells to sequences minimally limited by cysteine 105 and an antibody epitope composed of residues 115-124. A combination of genetic and pharmacologic approaches to inhibit potential proteases, including γ-secretase and calpain, proved ineffective in preventing production of cp-A/1. CONCLUSIONS Our findings indicate that HEK293 cells express a protease that is capable of efficiently cleaving cp-B/2 like fragments of htt with normal or expanded glutamine repeats. For reasons that remain unclear, this protease cleaves longer htt fragments, with normal or expanded glutamine expansions, much less efficiently. The protease in HEK293 cells that is capable of generating a cp-A/1 like htt fragment may be a novel protease with a high preference for a cp-B/2-like htt fragment as substrate.
Collapse
|
13
|
Identification and characterization of five intramembrane metalloproteases in Anabaena variabilis. J Bacteriol 2012; 194:6105-15. [PMID: 22961855 DOI: 10.1128/jb.01366-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) involves cleavage of a transmembrane segment of a protein, releasing the active form of a membrane-anchored transcription factor (MTF) or a membrane-tethered signaling protein in response to an extracellular or intracellular signal. RIP is conserved from bacteria to humans and governs many important signaling pathways in both prokaryotes and eukaryotes. Proteases that carry out these cleavages are named intramembrane cleaving proteases (I-CLips). To date, little is known about I-CLips in cyanobacteria. In this study, five putative site-2 type I-Clips (Ava_1070, Ava_1730, Ava_1797, Ava_3438, and Ava_4785) were identified through a genome-wide survey in Anabaena variabilis. Biochemical analysis demonstrated that these five putative A. variabilis site-2 proteases (S2Ps(Av)) have authentic protease activities toward an artificial substrate pro-σ(K), a Bacillus subtilis MTF, in our reconstituted Escherichia coli system. The enzymatic activities of processing pro-σ(K) differ among these five S2Ps(Av). Substitution of glutamic acid (E) by glutamine (Q) in the conserved HEXXH zinc-coordinated motif caused the loss of protease activities in these five S2Ps(Av), suggesting that they belonged to the metalloprotease family. Further mapping of the cleaved peptides of pro-σ(K) by Ava_4785 and Ava_1797 revealed that Ava_4785 and Ava_1797 recognized the same cleavage site in pro-σ(K) as SpoIVFB, a cognate S2P of pro-σ(K) from B. subtilis. Taking these results together, we report here for the first time the identification of five metallo-intramembrane cleaving proteases in Anabaena variabilis. The experimental system described herein should be applicable to studies of other RIP events and amenable to developing in vitro assays for I-CLips.
Collapse
|
14
|
Wichroski MJ, Fang J, Eggers BJ, Rose RE, Mazzucco CE, Pokornowski KA, Baldick CJ, Anthony MN, Dowling CJ, Barber LE, Leet JE, Beno BR, Gerritz SW, Agler ML, Cockett MI, Tenney DJ. High-throughput screening and rapid inhibitor triage using an infectious chimeric Hepatitis C virus. PLoS One 2012; 7:e42609. [PMID: 22880053 PMCID: PMC3412796 DOI: 10.1371/journal.pone.0042609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022] Open
Abstract
The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.
Collapse
Affiliation(s)
- Michael J. Wichroski
- Bristol-Myers Squibb Research and Development, Wallingford, Connecticut, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes. Biochem J 2010; 427:523-34. [PMID: 20196774 PMCID: PMC2860808 DOI: 10.1042/bj20091005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SPP (signal peptide peptidase) is an aspartyl intramembrane cleaving protease, which processes a subset of signal peptides, and is linked to the quality control of ER (endoplasmic reticulum) membrane proteins. We analysed SPP interactions with signal peptides and other membrane proteins by co-immunoprecipitation assays. We found that SPP interacts specifically and tightly with a large range of newly synthesized membrane proteins, including signal peptides, preproteins and misfolded membrane proteins, but not with all co-expressed type II membrane proteins. Signal peptides are trapped by the catalytically inactive SPP mutant SPPD/A. Preproteins and misfolded membrane proteins interact with both SPP and the SPPD/A mutant, and are not substrates for SPP-mediated intramembrane proteolysis. Proteins interacting with SPP are found in distinct complexes of different sizes. A signal peptide is mainly trapped in a 200 kDa SPP complex, whereas a preprotein is predominantly found in a 600 kDa SPP complex. A misfolded membrane protein is detected in 200, 400 and 600 kDa SPP complexes. We conclude that SPP not only processes signal peptides, but also collects preproteins and misfolded membrane proteins that are destined for disposal.
Collapse
|
16
|
Pène V, Hernandez C, Vauloup-Fellous C, Garaud-Aunis J, Rosenberg AR. Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment. J Viral Hepat 2009; 16:705-15. [PMID: 19281487 DOI: 10.1111/j.1365-2893.2009.01118.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) core protein is believed to play critical roles in the virus morphogenesis and pathogenesis. In HCV polyprotein, core protein terminates with a signal peptide followed by E1 envelope protein. It has remained unclear whether cleavage by host cell signal peptidase (SP) at the core-E1 junction to generate the complete form of core protein, which is anchored in the endoplasmic reticulum membrane, is absolutely required for cleavage within the signal peptide by host cell signal peptide peptidase (SPP) to liberate the mature form of core protein, which is then free for trafficking to lipid droplets. In this study, the possible sources of disagreement in published reports have been examined, and we conclude that a product generated upon inhibition of SP-catalysed cleavage at the core-E1 junction in heterologous expression systems was incorrectly identified as mature core protein. Moreover, inhibition of this cleavage in the most relevant model of human hepatoma cells replicating a full-length HCV genome was shown to abolish interaction of core protein with lipid droplets and production of infectious progeny virus. These results firmly establish that SPP-catalysed liberation of mature core protein is absolutely dependent on prior cleavage by SP at the correct core-E1 site to generate the complete form of core protein, consistent with this obligatory order of processing playing a role in HCV infectious cycle.
Collapse
Affiliation(s)
- V Pène
- INSERM, Equipe Avenir Virologie de l'hépatite C, Institut Cochin, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Golde TE, Wolfe MS, Greenbaum DC. Signal peptide peptidases: a family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Semin Cell Dev Biol 2009; 20:225-30. [PMID: 19429495 DOI: 10.1016/j.semcdb.2009.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 01/09/2023]
Abstract
Five genes encode the five human signal peptide peptidases (SPPs), which are intramembrane-cleaving aspartyl proteases (aspartyl I-CLiPs). SPPs have been conserved through evolution with family members found in higher eukaryotes, fungi, protozoa, arachea, and plants. SPPs are related to the presenilin family of aspartyl I-CLiPs but differ in several key aspects. Presenilins (PSENs) and SPPs both cleave the transmembrane region of membrane proteins; however, PSENs cleave type 1 membrane proteins whereas SPPs cleave type 2 membrane proteins. Though the overall homology between SPPs and PSENs is minimal, they are multipass membrane proteins that contain two conserved active site motifs YD and GxGD in adjacent membrane-spanning domains and a conserved PAL motif of unknown function near their COOH-termini. They differ in that the active site YD and GxGD containing transmembrane domains of SPPs are inverted relative to PSENs, thus, orienting the active site in a consistent topology relative to the substrate. At least two of the human SPPs (SPP and SPPL3) appear to function without additional cofactors, but PSENs function as a protease, called gamma-secretase, only when complexed with Nicastrin, APH-1 and Pen-2. The biological roles of SPP are largely unknown, and only a few endogenous substrates for SPPs have been identified. Nevertheless there is emerging evidence that SPP family members are highly druggable and may regulate both essential physiologic and pathophysiologic processes. Further study of the SPP family is needed in order to understand their biological roles and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Todd E Golde
- Department of Neuroscience, Mayo Clinic, College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, United States.
| | | | | |
Collapse
|
18
|
Alternative processing of sterol regulatory element binding protein during larval development in Drosophila melanogaster. Genetics 2008; 181:119-28. [PMID: 19015545 DOI: 10.1534/genetics.108.093450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sterol regulatory element binding protein (SREBP) is a major transcriptional regulator of lipid metabolism. Nuclear Drosophila SREBP (dSREBP) is essential for larval development in Drosophila melanogaster but dispensable in adults. dSREBP(-) larvae die at second instar owing to loss of dSREBP-mediated transcription but survive to adulthood when fed fatty acids. Activation of SREBP requires two separate cleavages. Site-1 protease (S1P) cleaves in the luminal loop of the membrane-bound SREBP precursor, cutting it in two. The NH(2)- and COOH-terminal domains remain membrane bound owing to their single membrane-spanning helices. The NH(2)-terminal cleavage product is the substrate for site-2 protease (S2P), which cleaves within its membrane-spanning helix to release the transcription factor. In mice, loss of S1P is lethal but the consequences of loss of S2P in animals remain undefined. All known functions of SREBP require its cleavage by S2P. We isolated Drosophila mutants that eliminate all dS2P function (dS2P(-)). Unexpectedly, larvae lacking dS2P are viable. They are deficient in transcription of some dSREBP target genes but less so than larvae lacking dSREBP. Despite loss of dS2P, dSREBP is processed in mutant larvae. Therefore, larvae have an alternative cleavage mechanism for producing transcriptionally active dSREBP, and this permits survival of dS2P mutants.
Collapse
|
19
|
Abstract
Rhomboid intramembrane proteases occur throughout the kingdoms of life. In this issue of Genes & Development, Baxt and colleagues (pp. 1636-1646) report that the single proteolytic rhomboid (EhROM1) from Entamoeba histolytica cleaves cell surface galactose-binding or N-acetylgalactosamine-binding (Gal/Gal-NAc) lectins. EhROM1 and lectins colocalize during phagocytosis and receptor capping. EhROM1 is found at the base of the cap rather than in the cap proper, suggesting a role in receptor shedding and implying that EhROM1 is crucial for amoebal infection.
Collapse
Affiliation(s)
- Robert B Rawson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
21
|
Tamura T, Asakura T, Uemura T, Ueda T, Terauchi K, Misaka T, Abe K. Signal peptide peptidase and its homologs in Arabidopsis thaliana- plant tissue-specific expression and distinct subcellular localization. FEBS J 2007; 275:34-43. [DOI: 10.1111/j.1742-4658.2007.06170.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Fluhrer R, Haass C. Signal Peptide Peptidases and Gamma-Secretase: Cousins of the Same Protease Family? NEURODEGENER DIS 2007; 4:112-6. [PMID: 17596705 DOI: 10.1159/000101835] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Signal peptide peptidase (SPP) is an unusual aspartyl protease, which mediates clearance of signal peptides by proteolysis within the endoplasmic reticulum (ER). Like presenilins, which provide the proteolytically active subunit of the gamma-secretase complex, SPP contains a conserved GxGD motif in its C-terminal domain which is critical for its activity. While SPP is known to be an aspartyl protease of the GxGD type, several presenilin homologues/SPP-like proteins (PSHs/SPPL) of unknown function have been identified by database searches. In contrast to SPP and SPPL3, which are both restricted to the endoplasmic reticulum, SPPL2b is targeted through the secretory pathway to endosomes/lysosomes. As suggested by the differential subcellular localization of SPPL2b and SPPL3 distinct phenotypes were found upon antisense gripNA-mediated knockdown in zebrafish. spp and sppl3 knockdowns in zebrafish result in cell death within the central nervous system, whereas reduction of sppl2b expression causes erythrocyte accumulation in an enlarged caudal vein. Moreover, expression of D/A mutants of the putative C-terminal active sites of spp, sppl2,and sppl3 produced phenocopies of the respective knockdown phenotypes. These data suggest that all investigated PSHs/SPPLs are members of the novel family of GxGD aspartyl proteases. More recently, it was shown that SPPL2b utilizes multiple intramembrane cleavages to liberate the TNFalpha intracellular domain into the cytosol and to release the C-terminal counterpart into the lumen. These findings suggest common principles of intramembrane proteolysis by GxGD type aspartyl proteases. In this article, we will review the similarities of SPPs and gamma-secretase based on recent findings by us and others.
Collapse
Affiliation(s)
- Regina Fluhrer
- Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians University, Munich, Germany
| | | |
Collapse
|
23
|
Fuwa H, Takahashi Y, Konno Y, Watanabe N, Miyashita H, Sasaki M, Natsugari H, Kan T, Fukuyama T, Tomita T, Iwatsubo T. Divergent synthesis of multifunctional molecular probes to elucidate the enzyme specificity of dipeptidic gamma-secretase inhibitors. ACS Chem Biol 2007; 2:408-18. [PMID: 17530731 DOI: 10.1021/cb700073y] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divergent synthesis of multifunctional molecular probes based on caprolactam-derived dipeptidic gamma-secretase inhibitors (GSIs), Compound E (CE) and LY411575 analogue (DBZ), was efficiently accomplished by means of Cu(I)-catalyzed azide/alkyne fusion reaction. Photoaffinity labeling experiments using these derivatives coupled to photoactivatable and biotin moieties provided direct evidence that the molecular targets of CE and DBZ are the N-terminal fragment of presenilin 1 within the gamma-secretase complex. Moreover, these photoprobes directly targeted signal peptide peptidase. These data suggest that the divergent synthesis of molecular probes has been successfully applied to characterize the interaction of GSIs with their molecular targets and define the structural requirements for inhibitor binding to intramembrane-cleaving proteases.
Collapse
Affiliation(s)
- Haruhiko Fuwa
- Laboratory of Biostructural Chemistry, Graduate School of Life Sciences, Tohoku University, Tsutsumidori-Amamiya, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nyborg AC, Herl L, Berezovska O, Thomas AV, Ladd TB, Jansen K, Hyman BT, Golde TE. Signal peptide peptidase (SPP) dimer formation as assessed by fluorescence lifetime imaging microscopy (FLIM) in intact cells. Mol Neurodegener 2006; 1:16. [PMID: 17105660 PMCID: PMC1654158 DOI: 10.1186/1750-1326-1-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/14/2006] [Indexed: 11/13/2022] Open
Abstract
Background Signal peptide peptidase (SPP) is an intramembrane cleaving protease identified by its cleavage of several type II membrane signal peptides. Conservation of intramembrane active site residues demonstrates that SPP, SPP family members, and presenilins (PSs) make up a family of intramembrane cleaving proteases. Because SPP appears to function without additional protein cofactors, the study of SPP may provide structural insights into the mechanism of intramembrane proteolysis by this biomedically important family of proteins. Previous studies have shown that SPP isolated from cells appears to be a homodimer, but some evidence exists that in vitro SPP may be active as a monomer. We have conducted additional experiments to determine if SPP exists as a monomer or dimer in vivo. Results Fluorescence lifetime imaging microscopy (FLIM) can be is used to determine intra- or intermolecular interactions by fluorescently labeling epitopes on one or two different molecules. If the donor and acceptor fluorophores are less than 10 nm apart, the donor fluorophore lifetime shortens proportionally to the distance between the fluorophores. In this study, we used two types of fluorescence energy transfer (FRET) pairs; cyan fluorescent protein (CFP) with yellow fluorescent protein (YFP) or Alexa 488 with Cy3 to differentially label the NH2- or COOH-termini of SPP molecules. A cell based SPP activity assay was used to show that all tagged SPP proteins are proteolytically active. Using FLIM we were able to show that the donor fluorophore lifetime of the CFP tagged SPP construct in living cells significantly decreases when either a NH2- or COOH-terminally YFP tagged SPP construct is co-transfected, indicating close proximity between two different SPP molecules. These data were then confirmed in cell lines stably co-expressing V5- and FLAG-tagged SPP constructs. Conclusion Our FLIM data strongly suggest dimer formation between two separate SPP proteins. Although the tagged SPP constructs are expressed throughout the cell, SPP dimer detection by FLIM is seen predominantly at or near the plasma membrane.
Collapse
Affiliation(s)
- Andrew C Nyborg
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, USA
| | - Lauren Herl
- Alzheimer's Disease Research Unit, Massachusetts Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Oksana Berezovska
- Alzheimer's Disease Research Unit, Massachusetts Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Anne V Thomas
- Alzheimer's Disease Research Unit, Massachusetts Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Thomas B Ladd
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, USA
| | - Karen Jansen
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, USA
| | - Bradley T Hyman
- Alzheimer's Disease Research Unit, Massachusetts Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Todd E Golde
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, USA
| |
Collapse
|