1
|
Prajapati AK, Shah G. Exploring in vivo and in vitro models for heart failure with biomarker insights: a review. Egypt Heart J 2024; 76:141. [PMID: 39432214 PMCID: PMC11493927 DOI: 10.1186/s43044-024-00568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a condition characterized by the heart's inability to meet the body's demands, resulting in various complications. Two primary types of HF exist, namely HF with preserved left ventricular ejection fraction (LVEF) and HF reduced with LVEF. The progression of HF involves compensatory mechanisms such as cardiac hypertrophy, fibrosis, and alterations in gene expression. Pressure overload and volume overload are common etiologies of HF, with pressure overload often stemming from conditions like hypertension, leading to left ventricular hypertrophy and fibrosis. In contrast, volume overload can arise from chronic valvular regurgitant disease, also inducing left ventricular hypertrophy. MAIN BODY In vitro cell culture techniques serve as vital tools in studying HF pathophysiology, allowing researchers to investigate cellular responses and potential therapeutic targets. Additionally, biomarkers, measurable biological characteristics, play a crucial role in diagnosing and predicting HF. Some notable biomarkers include adrenomedullin, B-type natriuretic peptide, copeptin, galectin-3, interleukin-6, matrix metalloproteinases (MMPs), midregional pro-atrial natriuretic peptide, myostatin, procollagen type I C-terminal propeptide, procollagen type III N-terminal propeptide and tissue inhibitors of metalloproteinases (TIMPs). These biomarkers aid in HF diagnosis, assessing its severity, and monitoring treatment response, contributing to a deeper understanding of the disease and potentially leading to improved management strategies and outcomes. CONCLUSIONS This review provides comprehensive insights into various in vivo models of HF, commonly utilized cell lines in HF research, and pivotal biomarkers with diagnostic relevance for HF. By synthesizing this information, researchers gain valuable resources to further explore HF pathogenesis, identify novel therapeutic targets, and enhance diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Anil Kumar Prajapati
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
- Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, 382424, India
| | - Gaurang Shah
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
2
|
Li S, Xin Q, Yan Y, Wang X, Ai H, Que B, Gong W, Nie S. Pde5 Inhibition Reduced Blood Pressure and Alleviated Target Organ Damage in Chronic Intermittent Hypoxia. J Cardiovasc Pharmacol 2024; 84:81-91. [PMID: 38030140 PMCID: PMC11230658 DOI: 10.1097/fjc.0000000000001519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
ABSTRACT The role of phosphodiesterase 5 (Pde5) in obstructive sleep apnea-induced damage remains unclear. Our study aimed to investigate the role of Pde5 in the chronic intermittent hypoxia (CIH) model. C57BL/6J wild-type (WT) mice (n = 48) and Pde5 knockout (Pde5 -/- ) mice (n = 24) were randomly assigned to CIH group and room air group. After 6 weeks, some WT mice (n = 24) in CIH group were given sildenafil or saline gavage for another 4 weeks. Blood pressure was regularly measured during the experiment. Echocardiography was used to estimate cardiac function. We collected organs from each group of mice and measured their physical indicators. Histochemical staining was used to explore the size of cardiomyocyte and fibrosis area of various organs. Cyclic guanosine monophosphate and malondialdehyde concentrations in serum were measured by ELISA assay. Compared with the RA-treated group, the 6-week CIH resulted in a significant increase in blood pressure, altered heart structure, and reduced serum cyclic guanosine monophosphate in WT mice. Pde5 -/- mice and sildenafil intragastric administration significantly reduced systolic blood pressure in CIH condition and attenuated the damage of target organs. In CIH model, we found that the cardiomyocyte size and fibrosis area of heart and kidney significantly reduced in Pde5 -/- groups. Besides, endogenous and exogenous inhibition of Pde5 reduced malondialdehyde level and inflammatory and oxidative stress markers expression in CIH condition. In this study, we found that Pde5 inhibition could reduce blood pressure and alleviate target organ damage in the CIH model, which may be mediated through the oxidative stress pathway.
Collapse
Affiliation(s)
- Siyi Li
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Qingjie Xin
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yan Yan
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Xiao Wang
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Hui Ai
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Bin Que
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Wei Gong
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Shaoping Nie
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; and
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
3
|
Scagliola R, Brunelli C, Balbi M. Pulmonary Arterial Hypertension in the Elderly: Peculiar Features and Challenges for a Proper Phenotyping Approach. J Cardiovasc Dev Dis 2023; 10:401. [PMID: 37754830 PMCID: PMC10531962 DOI: 10.3390/jcdd10090401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
(1) Introduction. Although pulmonary arterial hypertension (PAH) usually affects young people with a low cardiovascular risk profile, progressive epidemiologic changes have been providing a codified phenotype of elderly subjects with PAH and increased risk predictors for left heart disease. We therefore conducted a systematic review to describe the current knowledge and characteristics of elderly individuals with PAH and further insights concerning their prognostic outcomes and therapeutic response. (2) Methods. A search was conducted in PubMed, Embase, and Cochrane Library for publications evaluating the epidemiology, diagnostic work-up, and treatment of PAH in elderly subjects. (3) Among the 74 publications initially retrieved, 16 full-text articles were selected for the present systematic review. Compared to their younger counterparts, elderly individuals with PAH showed greater clinical deterioration, reduced exercise capacity, and worse prognostic outcomes, as well as less response to PAH-targeted therapy and higher rates of PAH drug discontinuation. (4) Conclusions. Demographic changes over time contributed to define a peculiar PAH phenotype in elderly patients, with an increased burden of cardiovascular comorbidities and distinctive features compared to young patients. Further investigations are needed in order to better clarify the nosologic criteria, and management in this subset population.
Collapse
Affiliation(s)
- Riccardo Scagliola
- Cardiology Division, Department of Emergency, Cardinal G. Massaia Hospital, 14100 Asti, Italy
- Pulmonary Hypertension Outpatient Clinic, Cardiovascular Disease Unit, San Martino Hospital, 16132 Genoa, Italy
| | - Claudio Brunelli
- Pulmonary Hypertension Outpatient Clinic, Cardiovascular Disease Unit, San Martino Hospital, 16132 Genoa, Italy
| | - Manrico Balbi
- Pulmonary Hypertension Outpatient Clinic, Cardiovascular Disease Unit, San Martino Hospital, 16132 Genoa, Italy
| |
Collapse
|
4
|
Hamrangsekachaee M, Wen K, Bencherif SA, Ebong EE. Atherosclerosis and endothelial mechanotransduction: current knowledge and models for future research. Am J Physiol Cell Physiol 2023; 324:C488-C504. [PMID: 36440856 PMCID: PMC10069965 DOI: 10.1152/ajpcell.00449.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Laboratoire de BioMécanique et BioIngénierie, UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne, Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eno E Ebong
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Neuroscience Department, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
5
|
Banjac N, Vasović V, Stilinović N, Tomas A, Vasović L, Martić N, Prodanović D, Jakovljević V. The Effects of Different Doses of Sildenafil on Coronary Blood Flow and Oxidative Stress in Isolated Rat Hearts. Pharmaceuticals (Basel) 2023; 16:118. [PMID: 36678615 PMCID: PMC9864553 DOI: 10.3390/ph16010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
The dose-response relationship of sildenafil effects on cardiac function is not completely elucidated. The aim of this study was to assess the effects of different doses of sildenafil on coronary flow and oxidative stress in isolated rat hearts. Coronary flow and markers of oxidative stress, including nitrite outflow, and superoxide anion production in coronary effluent, were determined for isolated rat hearts. The experiments were performed during control conditions and in the presence of sildenafil (10, 20, 50, 200 nM) alone or with Nω-nitro-L-arginine monomethyl ester (L-NAME) (30 μM). Sildenafil was shown to result in a significant increase in coronary flow at lower coronary perfusion pressure (CPP) values at all administered doses, whereas, with an increase in CPP, a reduction in coronary flow was observed. An increase in nitric oxide (NO) was most pronounced in the group treated with the lowest dose of sildenafil at the highest CPP value. After the inhibition of the NO-cyclic guanosine monophosphate (cGMP) signaling (NOS) system by L-NAME, only a dose of 200 nM sildenafil was high enough to overcome the inhibition and to boost release of O2-. That effect was CPP-dependent, with statistical significance reached at 80, 100 and 120 mmHg. Our findings indicate that sildenafil causes changes in heart vasculature in a dose-dependent manner, with a shift from a vasodilatation effect to vasoconstriction with a pressure increase. The highest dose administered is capable of producing superoxide anion radicals in terms of NOS system inhibition.
Collapse
Affiliation(s)
- Nada Banjac
- Medical Faculty, University of Banja Luka, 78000 Republika Srpska, Bosnia and Herzegovina;
| | - Velibor Vasović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Ana Tomas
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Lucija Vasović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nikola Martić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Dušan Prodanović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
6
|
Nelissen E, Possemis N, Van Goethem NP, Schepers M, Mulder-Jongen DAJ, Dietz L, Janssen W, Gerisch M, Hüser J, Sandner P, Vanmierlo T, Prickaerts J. The sGC stimulator BAY-747 and activator runcaciguat can enhance memory in vivo via differential hippocampal plasticity mechanisms. Sci Rep 2022; 12:3589. [PMID: 35246566 PMCID: PMC8897390 DOI: 10.1038/s41598-022-07391-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) requires a heme-group bound in order to produce cGMP, a second messenger involved in memory formation, while heme-free sGC is inactive. Two compound classes can increase sGC activity: sGC stimulators acting on heme-bound sGC, and sGC activators acting on heme-free sGC. In this rodent study, we investigated the potential of the novel brain-penetrant sGC stimulator BAY-747 and sGC activator runcaciguat to enhance long-term memory and attenuate short-term memory deficits induced by the NOS-inhibitor L-NAME. Furthermore, hippocampal plasticity mechanisms were investigated. In vivo, oral administration of BAY-747 and runcaciguat to male Wistar rats enhanced memory acquisition in the object location task (OLT), while only BAY-747 reversed L-NAME induced memory impairments in the OLT. Ex vivo, both BAY-747 and runcaciguat enhanced hippocampal GluA1-containing AMPA receptor (AMPAR) trafficking in a chemical LTP model for memory acquisition using acute mouse hippocampal slices. In vivo only runcaciguat acted on the glutamatergic AMPAR system in hippocampal memory acquisition processes, while for BAY-747 the effects on the neurotrophic system were more pronounced as measured in male mice using western blot. Altogether this study shows that sGC stimulators and activators have potential as cognition enhancers, while the underlying plasticity mechanisms may determine disease-specific effectiveness.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Nina Possemis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Nick P Van Goethem
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Melissa Schepers
- Neuro-Immune Connect and Repair Lab, Biomedical Research Institute, Hasselt University, 3500, Hasselt, Belgium
| | - Danielle A J Mulder-Jongen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Lisa Dietz
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
| | - Wiebke Janssen
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
| | - Michael Gerisch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
| | - Jörg Hüser
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113, Wuppertal, Germany
- Hannover Medical School, 30625, Hannover, Germany
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Neuro-Immune Connect and Repair Lab, Biomedical Research Institute, Hasselt University, 3500, Hasselt, Belgium
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Leite S, Moreira-Costa L, Cerqueira R, Sousa-Mendes C, Angélico-Gonçalves A, Fontoura D, Vasques-Nóvoa F, Leite-Moreira AF, Lourenço AP. Chronic Sildenafil Therapy in the ZSF1 Obese Rat Model of Metabolic Syndrome and Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol Ther 2021; 26:690-701. [PMID: 34328815 DOI: 10.1177/10742484211034253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although decreased protein kinase G (PKG) activity was proposed as potential therapeutic target in heart failure with preserved ejection fraction (HFpEF), randomized clinical trials (RCTs) with type-5 phosphodiesterase inhibitors (PDE5i) showed neutral results. Whether specific subgroups of HFpEF patients may benefit from PDE5i remains to be defined. Our aim was to test chronic sildenafil therapy in the young male ZSF1 obese rat model of HFpEF with severe hypertension and metabolic syndrome. Sixteen-week-old ZSF1 obese rats were randomly assigned to receive sildenafil 100 mg·Kg-1·d-1 dissolved in drinking water (ZSF1 Ob SIL, n = 8), or placebo (ZSF1 Ob PL, n = 8). A group of Wistar-Kyoto rats served as control (WKY, n = 8). Four weeks later animals underwent effort tests, glucose metabolism studies, hemodynamic evaluation, and samples were collected for aortic ring preparation, left ventricular (LV) myocardial adenosine triphosphate (ATP) quantification, immunoblotting and histology. ZSF1 Ob PL rats showed systemic hypertension, aortic stiffening, impaired LV relaxation and increased LV stiffness, with preserved ejection fraction and cardiac index. Their endurance capacity was decreased as assessed by maximum workload and peak oxygen consumption (V˙O2) and respiratory quotient were increased, denoting more reliance on anaerobic metabolism. Additionally, ATP levels were decreased. Chronic sildenafil treatment attenuated hypertension and decreased LV stiffness, modestly enhancing effort tolerance with a concomitant increase in peak, ATP levels and VASP phosphorylation. Chronic sildenafil therapy in this model of HFpEF of the young male with extensive and poorly controlled comorbidities has beneficial cardiovascular effects which support RCTs in HFpEF patient subgroups with similar features.
Collapse
Affiliation(s)
- Sara Leite
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Anta Family Health Unit, Espinho/Gaia Healthcare Centre, Espinho, Portugal
| | - Liliana Moreira-Costa
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal
| | - Rui Cerqueira
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Department of Cardiothoracic Surgery, São João Hospital Centre, Porto, Portugal
| | - Cláudia Sousa-Mendes
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal
| | | | - Dulce Fontoura
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Department of Internal Medicine, São João Hospital Centre, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Department of Cardiothoracic Surgery, São João Hospital Centre, Porto, Portugal
| | - André P Lourenço
- Department of Surgery and Physiology, Faculty of Medicine, 26705University of Porto, Porto, Portugal.,Department of Anesthesiology, São João Hospital Centre, Porto, Portugal
| |
Collapse
|
8
|
Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol 2021; 179:882-899. [PMID: 33973236 DOI: 10.1111/bph.15450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiac fibrosis (scarring), characterised by an increased deposition of extracellular matrix (ECM) proteins, is a hallmark of most types of cardiovascular disease and plays an essential role in heart failure progression. Inhibition of cardiac fibrosis could improve outcomes in patients with cardiovascular diseases and particularly heart failure. However, pharmacological treatment of the ECM build-up is still lacking. In this context, preclinical models of heart disease are important tools for understanding the complex pathogenesis involved in the development of cardiac fibrosis which in turn could identify new therapeutic targets and the facilitation of antifibrotic drug discovery. Many preclinical models have been used to study cardiac fibrosis and each model provides mechanistic insights into the many factors that contribute to cardiac fibrosis. This review discusses the most frequently used rodent models of cardiac fibrosis and also provides context for the use of particular models of heart failure.
Collapse
Affiliation(s)
- Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
de Oliveira AA, Nunes KP. Hypertension and Erectile Dysfunction: Breaking Down the Challenges. Am J Hypertens 2021; 34:134-142. [PMID: 32866225 DOI: 10.1093/ajh/hpaa143] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/15/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023] Open
Abstract
A diagnostic of hypertension increases the risk of erectile dysfunction (ED); likewise, ED can be an early sign of hypertension. In both cases, there is evidence that endothelial dysfunction is a common link between the 2 conditions. During hypertension, the sustained and widespread release of procontractile factors (e.g., angiotensin II, endothelin 1, and aldosterone) impairs the balance between vasoconstrictors and vasodilators and, in turn, detrimentally impacts vascular and erectile structures. This prohypertensive state associates with an enhancement in the generation of reactive oxygen species, which is not compensated by internal antioxidant mechanisms. Recently, the innate immune system, mainly via Toll-like receptor 4, has also been shown to actively contribute to the pathophysiology of hypertension and ED not only by inducing oxidative stress but also by sustaining a low-grade inflammatory state. Furthermore, some drugs used to treat hypertension can cause ED and, consequently, reduce compliance with the prescribed pharmacotherapy. To break down these challenges, in this review, we focus on discussing the well-established as well as the emerging mechanisms linking hypertension and ED with an emphasis on the signaling network of the vasculature and corpora cavernosa, the vascular-like structure of the penis.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
10
|
Escudero DS, Brea MS, Caldiz CI, Amarillo ME, Aranda JO, Portiansky EL, Pérez NG, Díaz RG. PDE5 inhibition improves cardiac morphology and function in SHR by reducing NHE1 activity: Repurposing Sildenafil for the treatment of hypertensive cardiac hypertrophy. Eur J Pharmacol 2021; 891:173724. [PMID: 33152335 DOI: 10.1016/j.ejphar.2020.173724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/16/2023]
Abstract
Previously, we have shown that an increased cGMP-activated protein Kinase (PKG) activity after phosphodiesterase 5 (PDE5) inhibition by Sildenafil (SIL), leads to myocardial Na+/H+ exchanger (NHE1) inhibition preserving its basal homeostatic function. Since NHE1 is hyperactive in the hypertrophied myocardium of spontaneous hypertensive rats (SHR), while its inhibition was shown to prevent and revert this pathology, the current study was aimed to evaluate the potential antihypertrophic effect of SIL on adult SHR myocardium. We initially tested the inhibitory capability of SIL on NHE1 in isolated cardiomyocytes of SHR by comparing H+ efflux during the recovery from an acid load. After confirmed that effect, eight-month-old SHR were chronically treated for one month with SIL through drinking water. Compared to their littermate controls, SIL-treated rats presented a decreased NHE1 activity, which correlated with a reduction in its phosphorylation level assigned to activation of a PKG-p38 MAP kinase-PP2A signaling pathway. Moreover, treated animals showed a decreased oxidative stress that appears to be a consequence of a decreased mitochondrial NHE1 phosphorylation. Treated SHR showed a significant reduction in the pro-hypertrophic phosphatase calcineurin, despite slight tendency to decrease hypertrophy was detected. When SIL treatment was prolonged to three months, a significant decrease in myocardial hypertrophy and interstitial fibrosis that correlated with a lower myocardial stiffness was observed. In conclusion, the current study provides evidence concerning the ability of SIL to revert established cardiac hypertrophy in SHR, a clinically relevant animal model that resembles human essential hypertension.
Collapse
Affiliation(s)
- Daiana S Escudero
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - María S Brea
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - María E Amarillo
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Jorge O Aranda
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
| | - Néstor G Pérez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
11
|
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019; 73:e87-e120. [PMID: 30866654 DOI: 10.1161/hyp.0000000000000090] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Collapse
|
12
|
Bienvenu LA, Morgan J, Reichelt ME, Delbridge LM, Young MJ. Chronic in vivo nitric oxide deficiency impairs cardiac functional recovery after ischemia in female (but not male) mice. J Mol Cell Cardiol 2017; 112:8-15. [DOI: 10.1016/j.yjmcc.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022]
|
13
|
Mechanisms underlying the cardiac antifibrotic effects of losartan metabolites. Sci Rep 2017; 7:41865. [PMID: 28157237 PMCID: PMC5291109 DOI: 10.1038/srep41865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Excessive myocardial collagen deposition and cross-linking (CCL), a process regulated by lysyl oxidase (LOX), determines left ventricular (LV) stiffness and dysfunction. The angiotensin II antagonist losartan, metabolized to the EXP3179 and EXP3174 metabolites, reduces myocardial fibrosis and LV stiffness in hypertensive patients. Our aim was to investigate the differential influence of losartan metabolites on myocardial LOX and CCL in an experimental model of hypertension with myocardial fibrosis, and whether EXP3179 and EXP3174 modify LOX expression and activity in fibroblasts. In rats treated with NG-nitro-L-arginine methyl ester (L-NAME), administration of EXP3179 fully prevented LOX, CCL and connective tissue growth factor (CTGF) increase, as well as fibrosis, without normalization of blood pressure (BP). In contrast, administration of EXP3174 normalized BP and attenuated fibrosis but did not modify LOX, CCL and CTGF. In TGF-β1-stimulated fibroblasts, EXP3179 inhibited CTGF and LOX expression and activity with lower IC50 values than EXP3174. Our results indicate that, despite a lower antihypertensive effect, EXP3179 shows higher anti-fibrotic efficacy than EXP3174, likely through its ability to prevent the excess of LOX and CCL. It is suggested that the anti-fibrotic effect of EXP3179 may be partially mediated by the blockade of CTGF-induced LOX in fibroblasts.
Collapse
|
14
|
Santa Catharina A, Modolo R, Ritter AMV, Quinaglia T, de Amorim RFB, Moreno H, de Faria AP. Acute Sildenafil Use Reduces 24-Hour Blood Pressure Levels in Patients With Resistant Hypertension: A Placebo-Controlled, Crossover Trial. J Clin Hypertens (Greenwich) 2016; 18:1168-1172. [PMID: 27246899 PMCID: PMC8031787 DOI: 10.1111/jch.12850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 01/09/2023]
Abstract
The authors previously demonstrated that acute administration of sildenafil-a phosphodiesterase 5 (PDE5) inhibitor-improves hemodynamic parameters in patients with resistant hypertensive (RH), but its effect on ambulatory blood pressure monitoring (ABPM) is unknown. This interventional, nonrandomized, single-blinded, placebo-controlled, crossover trial included 26 patients with RH. A dose of sildenafil (187.5mg) was given, and after a washout period of 14 days the patients received a single oral dose of placebo and the protocol was repeated. The patients underwent 24-hour ABPM recordings the day before and immediately after the protocols. The reduction of systolic (-8.8±1.4 vs 1.3±1.2 mm Hg, P=.02), diastolic (-5.3±3.3 vs 1.8±1.1 mm Hg, P=.03), and mean (-7.9±3.6 vs 0.8±0.9 mm Hg, P=.01) 24-hour BP were found after the use of sildenafil compared with placebo. Improvement in daytime BP levels was also observed (systolic -6.0±4.7 vs 4.4±1.5 mm Hg [P=.02] and mean -4.8±3.9 vs 3.5±1.4 mm Hg [P=.02] for sildenafil vs placebo, respectively). Considering its antihypertensive effect, sildenafil may represent a therapeutic option for RH treatment.
Collapse
Affiliation(s)
- Arthur Santa Catharina
- Laboratory of Cardiovascular Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rodrigo Modolo
- Laboratory of Cardiovascular Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alessandra Mileni Versuti Ritter
- Laboratory of Cardiovascular Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thiago Quinaglia
- Laboratory of Cardiovascular Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rivadávio Fernandes Batista de Amorim
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation (PM&R), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - Heitor Moreno
- Laboratory of Cardiovascular Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ana Paula de Faria
- Laboratory of Cardiovascular Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
15
|
Cavalcanti CDO, Alves RR, de Oliveira AL, Cruz JDC, de França-Silva MDS, Braga VDA, Balarini CDM. Inhibition of PDE5 Restores Depressed Baroreflex Sensitivity in Renovascular Hypertensive Rats. Front Physiol 2016; 7:15. [PMID: 26858657 PMCID: PMC4729906 DOI: 10.3389/fphys.2016.00015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/11/2016] [Indexed: 01/05/2023] Open
Abstract
Renal artery stenosis is frequently associated with resistant hypertension, which is defined as failure to normalize blood pressure (BP) even when combined drugs are used. Inhibition of PDE5 by sildenafil has been shown to increase endothelial function and decrease blood pressure in experimental models. However, no available study evaluated the baroreflex sensitivity nor autonomic balance in renovascular hypertensive rats treated with sildenafil. In a translational medicine perspective, our hypothesis is that sildenafil could improve autonomic imbalance and baroreflex sensitivity, contributing to lower blood pressure. Renovascular hypertensive 2-kidney-1-clip (2K1C) and sham rats were treated with sildenafil (45 mg/Kg/day) during 7 days. At the end of treatment, BP and heart rate (HR) were recorded in conscious rats after a 24-h-recovery period. Spontaneous and drug-induced baroreflex sensitivity and autonomic tone were evaluated; in addition, lipid peroxidation was measured in plasma samples. Treatment was efficient in increasing both spontaneous and induced baroreflex sensitivity in treated hypertensive animals. Inhibition of PDE5 was also capable of ameliorating autonomic imbalance in 2K1C rats and decreasing systemic oxidative stress. Taken together, these beneficial effects resulted in significant reductions in BP without affecting HR. We suggest that sildenafil could be considered as a promising alternative to treat resistant hypertension.
Collapse
Affiliation(s)
| | - Rafael R Alves
- Centro de Ciências Médicas, Universidade Federal da ParaíbaJoao Pessoa, Brazil; Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoao Pessoa, Brazil
| | - Alessandro L de Oliveira
- Centro de Ciências Médicas, Universidade Federal da ParaíbaJoao Pessoa, Brazil; Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoao Pessoa, Brazil
| | | | | | | | - Camille de Moura Balarini
- Centro de Biotecnologia, Universidade Federal da ParaíbaJoao Pessoa, Brazil; Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoao Pessoa, Brazil
| |
Collapse
|
16
|
Guimarães DA, Rizzi E, Ceron CS, Martins-Oliveira A, Gerlach RF, Shiva S, Tanus-Santos JE. Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension. Redox Biol 2015; 6:386-395. [PMID: 26343345 PMCID: PMC4564390 DOI: 10.1016/j.redox.2015.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 11/30/2022] Open
Abstract
Imbalanced matrix metalloproteinase (MMP)-2 activity and transforming growth factor expression (TGF-β) are involved in vascular remodeling of hypertension. Atorvastatin and sildenafil exert antioxidant and pleiotropic effects that may result in cardiovascular protection. We hypothesized that atorvastatin and sildenafil alone or in association exert antiproliferative effects by down-regulating MMP-2 and TGF-β, thus reducing the vascular hypertrophy induced by two kidney, one clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral atorvastatin 50 mg/kg, sildenafil 45 mg/kg, or both, daily for 8 weeks. Blood pressure was monitored weekly. Morphologic changes in the aortas were studied. TGF-β levels were determined by immunofluorescence. MMP-2 activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence. The effects of both drugs on proliferative responses of aortic smooth muscle cells to PDGF and on on MMP-2 activity in vitro were determined. Atorvastatin, sildenafil, or both drugs exerted antiproliferative effects in vitro. All treatments attenuated 2K1C-induced hypertension and prevented the increases in the aortic cross-sectional area and media/lumen ratio in 2K1C rats. Aortas from 2K1C rats showed higher collagen deposition, TGF-β levels and MMP-2 activity and expression when compared with Sham-operated animals. Treatment with atorvastatin and/or sildenafil was associated with attenuation of 2K1C hypertension-induced increases in these pro-fibrotic factors. However, these drugs had no in vitro effects on hr-MMP-2 activity. Atorvastatin and sildenafil was associated with decreased vascular TGF-β levels and MMP-2 activity in renovascular hypertensive rats, thus ameliorating the vascular remodeling. These novel pleiotropic effects of both drugs may translate into protective effects in patients. Atorvastatin and sildenafil exert antioxidant and other pleotropic effects. Imbalanced MMP-2 activity and TGF-β expression promote vascular remodeling in hypertension. Atorvastatin and sildenafil exerted antiproliferative effects in vitro. Both drugs prevented hypertension-induced increases pro-fibrotic factors. These additional pleiotropic effects may translate into protective effects in patients.
Collapse
Affiliation(s)
- Danielle A Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | | | - Raquel F Gerlach
- Department of Morphology, Estomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
17
|
Ahmad AS, Satriotomo I, Fazal J, Nadeau SE, Doré S. Considerations for the Optimization of Induced White Matter Injury Preclinical Models. Front Neurol 2015; 6:172. [PMID: 26322013 PMCID: PMC4532913 DOI: 10.3389/fneur.2015.00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
White matter (WM) injury in relation to acute neurologic conditions, especially stroke, has remained obscure until recently. Current advances in imaging technologies in the field of stroke have confirmed that WM injury plays an important role in the prognosis of stroke and suggest that WM protection is essential for functional recovery and post-stroke rehabilitation. However, due to the lack of a reproducible animal model of WM injury, the pathophysiology and mechanisms of this injury are not well studied. Moreover, producing selective WM injury in animals, especially in rodents, has proven to be challenging. Problems associated with inducing selective WM ischemic injury in the rodent derive from differences in the architecture of the brain, most particularly, the ratio of WM to gray matter in rodents compared to humans, the agents used to induce the injury, and the location of the injury. Aging, gender differences, and comorbidities further add to this complexity. This review provides a brief account of the techniques commonly used to induce general WM injury in animal models (stroke and non-stroke related) and highlights relevance, optimization issues, and translational potentials associated with this particular form of injury.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA
| | - Irawan Satriotomo
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA
| | - Jawad Fazal
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA
| | - Stephen E Nadeau
- Research Service, Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL , USA ; Department of Neurology, University of Florida , Gainesville, FL , USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida , Gainesville, FL , USA ; Research Service, Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center , Gainesville, FL , USA ; Department of Neurology, University of Florida , Gainesville, FL , USA ; Department of Neuroscience, University of Florida , Gainesville, FL , USA ; Department of Neurology, University of Florida , Gainesville, FL , USA ; Department of Pharmaceutics, University of Florida , Gainesville, FL , USA ; Department of Psychology, University of Florida , Gainesville, FL , USA ; Department of Psychiatry, University of Florida , Gainesville, FL , USA
| |
Collapse
|
18
|
Charalampopoulos A, Howard LS, Tzoulaki I, Gin-Sing W, Grapsa J, Wilkins MR, Davies RJ, Nihoyannopoulos P, Connolly SB, Gibbs JSR. Response to pulmonary arterial hypertension drug therapies in patients with pulmonary arterial hypertension and cardiovascular risk factors. Pulm Circ 2015; 4:669-78. [PMID: 25610602 DOI: 10.1086/678512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/07/2014] [Indexed: 12/11/2022] Open
Abstract
The age at diagnosis of pulmonary arterial hypertension (PAH) and the prevalence of cardiovascular (CV) risk factors are increasing. We sought to determine whether the response to drug therapy was influenced by CV risk factors in PAH patients. We studied consecutive incident PAH patients (n = 146) between January 1, 2008, and July 15, 2011. Patients were divided into two groups: the PAH-No CV group included patients with no CV risk factors (obesity, systemic hypertension, type 2 diabetes mellitus, permanent atrial fibrillation, mitral and/or aortic valve disease, and coronary artery disease), and the PAH-CV group included patients with at least one. The response to PAH treatment was analyzed in all the patients who received PAH drug therapy. The PAH-No CV group included 43 patients, and the PAH-CV group included 69 patients. Patients in the PAH-No CV group were younger than those in the PAH-CV group (P < 0.0001). In the PAH-No CV group, 16 patients (37%) improved on treatment and 27 (63%) did not improve, compared with 11 (16%) and 58 (84%) in the PAH-CV group, respectively (P = 0.027 after adjustment for age). There was no difference in survival at 30 months (P = 0.218). In conclusion, in addition to older age, CV risk factors may predict a reduced response to PAH drug therapy in patients with PAH.
Collapse
Affiliation(s)
- Athanasios Charalampopoulos
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Luke S Howard
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Ioanna Tzoulaki
- Imperial College London, London, United Kingdom ; University of Ioannina, Ioannina, Greece
| | - Wendy Gin-Sing
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Julia Grapsa
- Imperial College London, London, United Kingdom ; King's Lynn and Papworth Hospitals, Cambridge, United Kingdom ; Echocardiography Department, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Rachel J Davies
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Petros Nihoyannopoulos
- Imperial College London, London, United Kingdom ; Echocardiography Department, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Susan B Connolly
- Cardiology Department, Imperial College Healthcare NHS Trust, London, United Kingdom ; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - J Simon R Gibbs
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom ; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Faria APCD, Modolo R, Moreno BVD, Moreno H. Effects of PDE type 5 inhibitors on left ventricular diastolic dysfunction in resistant hypertension. Arq Bras Cardiol 2014; 104:85-9. [PMID: 25352458 PMCID: PMC4387615 DOI: 10.5935/abc.20140159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/15/2014] [Indexed: 01/20/2023] Open
Abstract
Resistant hypertension (RHTN) is a multifactorial disease characterized by blood
pressure (BP) levels above goal (140/90 mmHg) in spite of the concurrent use of three
or more antihypertensive drugs of different classes. Moreover, it is well known that
RHTN subjects have high prevalence of left ventricular diastolic dysfunction (LVDD),
which leads to increased risk of heart failure progression. This review gathers data
from studies evaluating the effects of phosphodiesterase-5 (PDE-5) inhibitors
(administration of acute sildenafil and short-term tadalafil) on diastolic function,
biochemical and hemodynamic parameters in patients with RHTN. Acute study with
sildenafil treatment found that inhibition of PDE-5 improved hemodynamic parameters
and diastolic relaxation. In addition, short-term study with the use of tadalafil
demonstrated improvement of LVDD, cGMP and BNP-32 levels, regardless of BP reduction.
No endothelial function changes were observed in the studies. The findings of acute
and short-term studies revealed potential therapeutic effects of IPDE-5 drugs on LVDD
in RHTN patients.
Collapse
Affiliation(s)
| | - Rodrigo Modolo
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, SP, Brazil
| | | | - Heitor Moreno
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Guimarães DA, Rizzi E, Ceron CS, Pinheiro LC, Gerlach RF, Tanus-Santos JE. Atorvastatin and sildenafil lower blood pressure and improve endothelial dysfunction, but only atorvastatin increases vascular stores of nitric oxide in hypertension. Redox Biol 2013; 1:578-85. [PMID: 24363994 PMCID: PMC3863772 DOI: 10.1016/j.redox.2013.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO)-derived metabolites including the anion nitrite can recycle back to NO and thus complement NO formation independent of NO synthases. While nitrite is as a major vascular storage pool and source of NO, little is known about drugs that increase tissue nitrite concentrations. This study examined the effects of atorvastatin or sildenafil, or the combination, on vascular nitrite concentrations and on endothelial dysfunction in the 2 kidney-1 clip (2K1C) hypertension model. Sham-operated or 2K1C hypertensive rats were treated with vehicle, atorvastatin (50 mg/Kg), sildenafil (45 mg/Kg), or both for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Nitrite concentrations were assessed in the aortas and in plasma samples by ozone-based reductive chemiluminescence assay. Aortic rings were isolated to assess endothelium-dependent and independent relaxation. Aortic NADPH activity and ROS production were evaluated by luminescence and dihydroethidium, respectively, and plasma TBARS levels were measured. Aortic nitrotyrosine staining was evaluated to assess peroxynitrite formation. Atorvastatin and sildenafil, alone or combined, significantly lowered SBP by approximately 40 mmHg. Atorvastatin significantly increased vascular nitrite levels by 70% in hypertensive rats, whereas sildenafil had no effects. Both drugs significantly improved the vascular function, and decreased vascular NADPH activity, ROS, and nitrotyrosine levels. Lower plasma TBARS concentrations were found with both treatments. The combination of drugs showed no improved responses compared to each drug alone. These findings show evidence that atorvastatin, but not sildenafil, increases vascular NO stores, although both drugs exert antioxidant effects, improve endothelial function, and lower blood pressure in 2K1C hypertension. Nitrite recycles back to NO and complements NO formation independent of NO synthases. Little is known about drugs that increase tissue nitrite concentrations. Atorvastatin or sildenafil lowered blood pressure in renovascular hypertension. Both drugs exerted antioxidant effects and improved endothelial dysfunction. Only atorvastatin increased vascular nitrite levels by 70% in hypertensive rats.
Collapse
Affiliation(s)
- Danielle A Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Physiology, and Basic Pathology, University of Sao Paulo, s/n Av. Café, Ribeirao Preto 14040-904, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
21
|
L-NAME in the cardiovascular system - nitric oxide synthase activator? Pharmacol Rep 2013; 64:511-20. [PMID: 22814004 DOI: 10.1016/s1734-1140(12)70846-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/14/2012] [Indexed: 11/21/2022]
Abstract
L-arginine analogues are widely used inhibitors of nitric oxide synthase (NOS) activity both in vitro and in vivo, with N(ω)-nitro-L-arginine methyl ester (L-NAME) being at the head. On the one hand, acute and chronic L-NAME treatment leads to changes in blood pressure and vascular reactivity due to decreased nitric oxide (NO) bioavailability. However, lower doses of L-NAME may also activate NO production via feedback regulatory mechanisms if administered for longer time. Such L-NAME-induced activation has been observed in both NOS expression and activity and revealed considerable differences in regulatory mechanisms of NO production between particular tissues depending on the amount of L-NAME. Moreover, feedback activation of NO production by L-NAME seems to be regulated diversely under conditions of hypertension. This review summarizes the mechanisms of NOS regulation in order to better understand the apparent discrepancies found in the current literature.
Collapse
|
22
|
Biwer LA, Broderick TL, Xu H, Carroll C, Hale TM. Protection against L-NAME-induced reduction in cardiac output persists even after cessation of angiotensin-converting enzyme inhibitor treatment. Acta Physiol (Oxf) 2013; 207:156-65. [PMID: 22834875 DOI: 10.1111/j.1748-1716.2012.02474.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/12/2012] [Accepted: 07/19/2012] [Indexed: 01/19/2023]
Abstract
AIM We have demonstrated that short-term angiotensin-converting enzyme (ACE) inhibition in adult spontaneously hypertensive rats produces cardiac changes that persist following cessation of treatment that result in a reduced inflammatory, proliferative and fibrotic response to the nitric oxide synthase inhibitor N(ω) -Nitro-l-arginine methyl ester (L-NAME). The present study examines whether prior ACE inhibition with enalapril also protects against L-NAME-induced cardiac dysfunction. METHODS Rats were treated with enalapril (Enal + L) or tap water (Con, Con + L) for 2 weeks followed by a 2-week washout period. At this point, Con + L and Enal + L rats were treated with L-NAME for 10 days. Hearts were perfused in the working mode, mean arterial pressure (MAP) was assessed via radiotelemetry, and myocardial injury was evaluated in hematoxylin and eosin-stained sections. RESULTS L-NAME increased MAP by a similar magnitude in Con + L and Enal + L. L-NAME-induced statistically significant decreases in flow-mediated functional parameters in Con + L rats including cardiac output, stroke volume and coronary flow. This was prevented by prior enalapril treatment. Prior enalapril did not prevent L-NAME-induced myocardial injury, but may have lessened the degree of it. Regardless of treatment, changes in cardiac function did not correlate with myocardial injury. CONCLUSION Despite equivalent impact on MAP and incidence of myocardial infarction, prior enalapril treatment resulted in the preservation of cardiac function following L-NAME. Understanding the mechanisms by which transient ACE inhibition protects against reductions in cardiac function in the absence of ongoing treatment may reveal novel targets for heart failure treatment.
Collapse
Affiliation(s)
- L. A. Biwer
- Department of Basic Medical Sciences; University of Arizona, College of Medicine - Phoenix; Phoenix; AZ; USA
| | - T. L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism; Midwestern University; Glendale; AZ; USA
| | - H. Xu
- Department of Pathology and Laboratory Medicine; University of Rochester School of Medicine and Dentistry; Rochester; NY; USA
| | - C. Carroll
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism; Midwestern University; Glendale; AZ; USA
| | - T. M. Hale
- Department of Basic Medical Sciences; University of Arizona, College of Medicine - Phoenix; Phoenix; AZ; USA
| |
Collapse
|
23
|
Hepatoprotective and anti-inflammatory effects of silibinin on experimental preeclampsia induced by l-NAME in rats. Life Sci 2012; 91:159-65. [DOI: 10.1016/j.lfs.2012.06.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 05/31/2012] [Accepted: 06/25/2012] [Indexed: 11/23/2022]
|
24
|
Zeidan A, Siam A, Al Kaabba A, Mohammad M, Khatib S. The ability of phosphodiesterase-5 inhibitors sildenafil and ordonafil to reverse L-NAME induced cardiac hypertrophy in the rabbit: possible role of calcineurin and p38. Can J Physiol Pharmacol 2012; 90:1247-55. [PMID: 22913522 DOI: 10.1139/y2012-098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phosphodiesterase 5 inhibitors (PDE-5Is) can suppress and (or) reverse pressure overload induced myocardial hypertrophy. This study investigated the suppressive effect of 2 PDE-5Is (sildenafil and ordonafil) on N-nitro-l-arginine methyl ester (L-NAME)-induced cardiac hypertrophy in rabbit heart, and examined their possible mechanism of action. L-NAME increased left ventricular thickness to 6.1± 0.18 mm from 4.6 ± 0.13 mm (p < 0.05), which regressed after treatment with either sildenafil or ordonafil to 5.1 ± 0.1 mm and 4.8 ± 0.2 mm, respectively (p < 0.05). Phenylephrine increased neonatal rat ventricular myocyte cell surface area to 131% ± 3% of the control value, which was associated with significant increment in ERK1/2 to 143% ± 5% of the control value (p < 0.05). Ordonafil and sildenafil decreased cell surface area to 95% ± 3% and 90% ± 1% of the control value, respectively. Both drugs decreased ERK1/2 to 88% ± 4% of the control value. Calcineurin activity was significantly decreased after 1 h of treatment with 0.1 mg·L(-1) ordonafil (1.15 ± 0.05, p < 0.05). For sildenafil (0.1 mg·L(-1)), calcineurin activity significantly decreased only after 24 h of incubation (22%). Also p38 activation was attenuated by ordonafil and sildenafil (0.1 mg·L(-1)). It is suggested that both drugs have the ability to reverse L-NAME-induced cardiac hypertrophy and suppress phenylphrine-induced myocyte hypertrophy, and that these effects may be mediated through the attenuation of calcineurin and its downstream signaling pathways (p38) in neonatal rat ventricular myocytes.
Collapse
Affiliation(s)
- Asad Zeidan
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Lebanon
| | | | | | | | | |
Collapse
|
25
|
Giannetta E, Isidori AM, Galea N, Carbone I, Mandosi E, Vizza CD, Naro F, Morano S, Fedele F, Lenzi A. Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 2012; 125:2323-33. [PMID: 22496161 DOI: 10.1161/circulationaha.111.063412] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND cGMP phosphodiesterase type 5 protein is upregulated in myocardial hypertrophy. However, it has never been ascertained whether phosphodiesterase type 5 inhibition exerts an antiremodeling effect in nonischemic heart disease in humans. We explored the cardioreparative properties of a selective phosphodiesterase type 5 inhibitor, sildenafil, in a model of diabetic cardiomyopathy. METHODS AND RESULTS Fifty-nine diabetic men (60.3 ± 7.4 years) with cardiac magnetic resonance imaging consistent with nonischemic, nonfailing diabetic cardiomyopathy (reduced circumferential strain [σ], -12.6 ± 3.1; increased left ventricular [LV] torsion [θ], 18.4 ± 4.6°; and increased ratio of LV mass to volume, 2.1 ± 0.5 g/mL) were randomized to receive sildenafil or placebo (100 mg/d). At baseline, the metabolic indices were correlated with torsion, strain, N-terminal pro-B-type natriuretic peptide, vascular endothelial growth factor, monocyte chemotactic protein-1, and blood pressure. After 3 months, sildenafil produced a significant improvement compared with placebo in LV torsion (Δθ: sildenafil, -3.89 ± 3.11° versus placebo, 2.13 ± 2.35°; P<0.001) and strain (Δσ: sildenafil, -3.30 ± 1.86 versus placebo, 1.22 ± 1.84; P<0.001). Sildenafil-induced improvement of LV contraction was accompanied by consistent changes in chamber geometry and performance, with a 6.5 ± 11 improvement in mass-to-volume ratio over placebo (P=0.021). Monocyte chemotactic protein-1 and transforming growth factor-β were the only markers affected by active treatment (Δmonocyte chemotactic protein-1: -75.30 ± 159.28 pg/mL, P=0.032; Δtransforming growth factor-β: 5.26 ± 9.67 ng/mL, P=0.009). No changes were found in endothelial function, afterload, or metabolism. CONCLUSIONS The early features of diabetic cardiomyopathy are LV concentric hypertrophy associated with altered myocardial contraction dynamics. Chronic phosphodiesterase type 5 inhibition, at this stage, has an antiremodeling effect, resulting in improved cardiac kinetics and circulating markers. This effect is independent of any other vasodilatory or endothelial effects and is apparently exerted through a direct intramyocardial action.
Collapse
Affiliation(s)
- Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ferreira-Melo SE, Demacq C, Lacchini S, Krieger JE, Irigoyen MC, Moreno H. Sildenafil preserves diastolic relaxation after reduction by L-NAME and increases phosphodiesterase-5 in the intercalated discs of cardiac myocytes and arterioles. Clinics (Sao Paulo) 2011; 66:1253-8. [PMID: 21876983 PMCID: PMC3148473 DOI: 10.1590/s1807-59322011000700022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 04/04/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES We investigated the influence of sildenafil on cardiac contractility and diastolic relaxation and examined the distribution of phosphodiesterase-5 in the hearts of hypertensive rats that were treated with by NG-nitro-L-arginine methyl ester (L-NAME). METHODS Male Wistar rats were treated with L-NAME and/or sildenafil for eight weeks. The Langendorff method was used to examine the effects of sildenafil on cardiac contractility and diastolic relaxation. The presence and location of phosphodiesterase-5 and phosphodiesterase-3 were assessed by immunohistochemistry, and cGMP plasma levels were measured by ELISA. RESULTS In isolated hearts, sildenafil prevented the reduction of diastolic relaxation (dP/dt) that was induced by L-NAME. In addition, phosphodiesterase-5 immunoreactivity was localized in the intercalated discs between the myocardial cells. The staining intensity was reduced by L-NAME, and sildenafil treatment abolished this reduction. Consistent with these results, the plasma levels of cGMP were decreased in the L-NAME-treated rats but not in rats that were treated with L-NAME + sildenafil. CONCLUSION The sildenafil-induced attenuation of the deleterious hemodynamic and cardiac morphological effects of L-NAME in cardiac myocytes is mediated (at least in part) by the inhibition of phosphodiesterase-5.
Collapse
|
27
|
Istanbulluoglu MO, Zor M, Celik A, Cicek T, Basal S, Ozgok A, Ustun H, Ozgok Y. Effects of vardenafil on testicular torsion/detorsion damage: an experimental study in pigs. Urol Int 2010; 86:228-32. [PMID: 21124003 DOI: 10.1159/000321492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/27/2010] [Indexed: 12/26/2022]
Abstract
PURPOSE To investigate the effects of vardenafil HCl on testicular germ cell apoptosis and the expressions of iNOS and eNOS within the bilateral testes after unilateral torsion/detorsion (T/D) in a pig model. METHODS 12 male pigs weighing 50-55 kg were divided randomly into three groups (n = 4). Sham operation and T/D was performed in groups 1 and 2, respectively. Group 3 underwent T/D and received vardenafil (0.4 mg/kg) orally 45 min before detorsion. The testes were left in torsion for 2 h. In all groups, both testes were removed 8 h after the operation for histopathological analysis. RESULTS Except for group 1, the histopathologic parameters of the ipsilateral testes were higher than in the contralateral testes, and this difference was statistically significant (p < 0.05). Testicular ischemia/reperfusion (I/R) (group 2) resulted in marked increases in germ cell apoptosis, iNOS and eNOS in the ischemic testes compared to the sham-operated group. The pigs treated with vardenafil (group 3) also showed significantly increased apoptotic cells, iNOS and eNOS levels compared to the sham-operated group. CONCLUSIONS The results suggest that vardenafil HCl worsened histopathological changes related to oxidative stress in testicular injury and had no protective effect on testicular I/R injury in pigs.
Collapse
|
28
|
Tousoulis D, Papageorgiou N, Androulakis E, Paroutoglou K, Stefanadis C. Novel therapeutic strategies targeting vascular endothelium in essential hypertension. Expert Opin Investig Drugs 2010; 19:1395-412. [DOI: 10.1517/13543784.2010.522989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-L-arginine-methyl ester hypertensive rats. J Hypertens 2009; 27:S11-6. [DOI: 10.1097/01.hjh.0000358831.33558.97] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Abstract
A growing body of animal studies provides evidence for potential cardioprotective effects of inhibitors of the enzyme phosphodiesterase isoform 5. Infarct size reduction by administration of phosphodiesterase 5 inhibitors was described in various experimental models of ischaemia and reperfusion. Furthermore, potential beneficial effects were demonstrated in experimental models of congestive heart failure and left ventricular hypertrophy. Some of the observed effects resemble the basic mechanisms of ischaemic pre-conditioning, mimicking both acute and delayed effects. Other effects may be due to action on systemic and cardiac haemodynamics. Mechanisms and signalling pathways, characterized in some of the experimental models, appear to be complex: for instance, the rate of cyclic guanosine monophosphate (cGMP) synthesis and the functional compartmentalization of intracellular cGMP metabolism as well as interaction with ss-adrenergic and nitric oxide signalling may influence effects in different experimental settings. In this review, we discuss mechanisms, signalling pathways, and experimental limitations and touch on considerations for translation into potentially useful applications in the clinical arena.
Collapse
Affiliation(s)
- Thorsten Reffelmann
- Klinik und Poliklinik für Innere Medizin B, Universitätsklinikum der Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Löffler-Str. 23 a, 17475 Greifswald, Germany.
| | | |
Collapse
|
31
|
Rao YJ, Xi L. Pivotal effects of phosphodiesterase inhibitors on myocyte contractility and viability in normal and ischemic hearts. Acta Pharmacol Sin 2009; 30:1-24. [PMID: 19060915 DOI: 10.1038/aps.2008.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphodiesterases (PDEs) are enzymes that degrade cellular cAMP and cGMP and are thus essential for regulating the cyclic nucleotides. At least 11 families of PDEs have been identified, each with a distinctive structure, activity, expression, and tissue distribution. The PDE type-3, -4, and -5 (PDE3, PDE4, PDE5) are localized to specific regions of the cardiomyocyte, such as the sarcoplasmic reticulum and Z-disc, where they are likely to influence cAMP/cGMP signaling to the end effectors of contractility. Several PDE inhibitors exhibit remarkable hemodynamic and inotropic properties that may be valuable to clinical practice. In particular, PDE3 inhibitors have potent cardiotonic effects that can be used for short-term inotropic support, especially in situations where adrenergic stimulation is insufficient. Most relevant to this review, PDE inhibitors have also been found to have cytoprotective effects in the heart. For example, PDE3 inhibitors have been shown to be cardioprotective when given before ischemic attack, whereas PDE5 inhibitors, which include three widely used erectile dysfunction drugs (sildenafil, vardenafil and tadalafil), can induce remarkable cardioprotection when administered either prior to ischemia or upon reperfusion. This article provides an overview of the current laboratory and clinical evidence, as well as the cellular mechanisms by which the inhibitors of PDE3, PDE4 and PDE5 exert their beneficial effects on normal and ischemic hearts. It seems that PDE inhibitors hold great promise as clinically applicable agents that can improve cardiac performance and cell survival under critical situations, such as ischemic heart attack, cardiopulmonary bypass surgery, and heart failure.
Collapse
|
32
|
Effect of phospodiesterase 5 inhibitors on apoptosis and nitric oxide synthases in testis torsion: an experimental study. Pediatr Surg Int 2008; 24:205-11. [PMID: 17985135 DOI: 10.1007/s00383-007-2058-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
To investigate the effects of phosphodiesterase (PDE) 5 inhibitors, sildenafil citrate and vardenafil HCl, on testicular germ cell apoptosis and also on the expressions of eNOS and iNOS within the bilateral testis after a unilateral torsion in a rat model. Forty-eight Wistar Albino rats, weighing between 210 and 262 g, were housed in individual cages. The rats were randomly assigned into four main groups and each group received drugs. Saline, sildenafil citrate and vardenafil HCl were given to each for 1 month and the last received no drug. After 1 month, testicular torsion was created for 1 h of ischemia and the left testis was untwisted and replaced to the scrotum for 2 h of reperfusion. At the end of 3 h, contralateral and ipsilateral testes were removed for histopathologic and biochemical examinations. Under light microscopy; the histopathological patterns of the contralateral testes in all groups were not affected. Mean apoptotic cell, eNOS and iNOS levels were increased in saline study group. The rats treated with vardenafil and sildenafil (groups 2s and 3s) showed significantly increased apoptotic cell, eNOS and iNOS values in ipsilateral testis (P < 0.05). Sildenafil citrate and vardenafil HCl caused an exaggerated testicular apoptosis after IR injury in rats. Additionally these drugs increased the NOSs levels in the testicular tissue.
Collapse
|
33
|
Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G. Nitric oxide and cardiac function. Life Sci 2007; 81:779-93. [PMID: 17707439 DOI: 10.1016/j.lfs.2007.07.019] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 07/16/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
Nitric oxide (NO) participates in the control of contractility and heart rate, limits cardiac remodeling after an infarction and contributes to the protective effect of ischemic pre- and postconditioning. Low concentrations of NO, with production of small amounts of cGMP, inhibit phosphodiesterase III, thus preventing the hydrolysis of cAMP. The subsequent activation of a protein-kinase A causes the opening of sarcolemmal voltage-operated and sarcoplasmic ryanodin receptor Ca(2+) channels, thus increasing myocardial contractility. High concentrations of NO induce the production of larger amounts of cGMP which are responsible for a cardiodepression in response to an activation of protein kinase G (PKG) with blockade of sarcolemmal Ca(2+) channels. NO is also involved in reduced contractile response to adrenergic stimulation in heart failure. A reduction of heart rate is an evident effect of NO-synthase (NOS) inhibition. It is noteworthy that the direct effect of NOS inhibition can be altered if baroreceptors are stimulated by increases in blood pressure. Finally, NO can limit the deleterious effects of cardiac remodeling after myocardial infarction possibly via the cGMP pathway. The protective effect of NO is mainly mediated by the guanylyl cyclase-cGMP pathway resulting in activation of PKG with opening of mitochondrial ATP-sensitive potassium channels and inhibition of the mitochondrial permeability transition pores. NO acting on heart is produced by vascular and endocardial endothelial NOS, as well as neuronal and inducible synthases. In particular, while in the basal control of contractility, endothelial synthase has a predominant role, the inducible isoform is mainly responsible for the cardiodepression in septic shock.
Collapse
Affiliation(s)
- R Rastaldo
- Department of Neurosciences, Physiology Division, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Rossoni G, Manfredi B, De Gennaro Colonna V, Berti M, Guazzi M, Berti F. Sildenafil reduces L-NAME-induced severe hypertension and worsening of myocardial ischaemia-reperfusion damage in the rat. Br J Pharmacol 2007; 150:567-76. [PMID: 17245365 PMCID: PMC2189760 DOI: 10.1038/sj.bjp.0707131] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Phosphodiesterase-5 inhibitors are beneficial in pulmonary hypertension and congestive heart failure, the two conditions associated with coronary heart disease and ischaemia. We investigated whether sildenafil counteracts the cardiovascular alterations induced by N -nitro-L-arginine methyl ester (L-NAME) in the rat. EXPERIMENTAL APPROACH Sildenafil was given orally to rats at doses of 0.37, 0.75 or 1.5 mg kg-1day-1 for four weeks, either alone or with L-NAME (35-40 mg kg-1 day-1 in the drinking water). Systolic blood pressure and urinary parameters (6-keto-prostaglandin F1alpha, thromboxane B2, 8-isoprostane-prostaglandin F2 and nitrite/nitrate) were measured in conscious rats. Isolated hearts were subjected to low flow ischaemia-reperfusion, and myocardial levels of guanosine 3', 5'cyclic monophosphate (cGMP) were determined. Endothelial vascular dysfunction was examined in aortic rings. KEY RESULTS Sildenafil dose-dependently prevented the rise in systolic blood pressure in L-NAME-treated rats. This activity was associated with a normalization of urinary 8-isoprostane-prostaglandin F2alpha and other biochemical parameters. In perfused hearts, the post-ischaemic ventricular dysfunction was worse in preparations from L-NAME-treated rats than in controls. Sildenafil dose-dependently reduced this effect, and creatine kinase and lactate dehydrogenase release were lower too. cGMP levels, which were low in myocardial tissue from L-NAME-treated rats, were restored by sildenafil. In noradrenaline-precontracted aortic rings from L-NAME-treated rats acetylcholine lost its vasorelaxant effect, and sildenafil restored it. CONCLUSION AND IMPLICATIONS In a rat model of chronic nitric oxide deprivation, where hypertension and aggravation of post-ischaemic ventricular dysfunction are associated with loss of vascular endothelium-relaxant function, sildenafil provided significant cardiovascular protection, primarily by maintaining tissue cGMP levels.
Collapse
Affiliation(s)
- G Rossoni
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|