1
|
Inserte J, Barrabés JA, Aluja D, Otaegui I, Bañeras J, Castellote L, Sánchez A, Rodríguez-Palomares JF, Pineda V, Miró-Casas E, Milà L, Lidón RM, Sambola A, Valente F, Rafecas A, Ruiz-Meana M, Rodríguez-Sinovas A, Benito B, Buera I, Delgado-Tomás S, Beneítez D, Ferreira-González I. Implications of Iron Deficiency in STEMI Patients and in a Murine Model of Myocardial Infarction. JACC Basic Transl Sci 2021; 6:567-580. [PMID: 34368505 PMCID: PMC8326269 DOI: 10.1016/j.jacbts.2021.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
In patients with STEMI treated with primary percutaneous coronary intervention, iron deficiency is associated with larger infarcts, more extensive microvascular obstruction, and a higher frequency of adverse left ventricular remodeling. An iron-deficient diet reduces the tolerance to ischemia/reperfusion in mice at least in part by interfering with the cardioprotective pathway eNOS/soluble guanylate cyclase/protein kinase G. An iron-deficient diet reduces eNOS activity by increasing oxidative/nitrosative stress and its proteasome-dependent degradation. Not only iron excess but also iron deficiency may have deleterious effects in the context of acute myocardial ischemia.
In patients with a first anterior ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention, iron deficiency (ID) was associated with larger infarcts, more extensive microvascular obstruction, and higher frequency of adverse left ventricular remodeling as assessed by cardiac magnetic resonance imaging. In mice, an ID diet reduced the activity of the endothelial nitric oxide synthase/soluble guanylate cyclase/protein kinase G pathway in association with oxidative/nitrosative stress and increased infarct size after transient coronary occlusion. Iron supplementation or administration of an sGC activator before ischemia prevented the effects of the ID diet in mice. Not only iron excess, but also ID, may have deleterious effects in the setting of ischemia and reperfusion.
Collapse
Key Words
- CK-MB, creatine kinase-myocardial band
- CMR, cardiac magnetic resonance
- HSP90, heat-shock protein 90
- ID, iron deficiency
- LV, left ventricular
- MVO, microvascular obstruction
- PKG, protein kinase G
- STEMI, ST-segment elevation acute myocardial infarction
- STIR, short tau inversion recovery
- VASP, vasodilator-stimulated phosphoprotein
- acute myocardial infarction
- eNOS, endothelial nitric oxide synthase
- endothelial nitric oxide synthase
- iNOS, inducible nitric oxide synthase
- iron deficiency
- myocardial reperfusion
- sGC, soluble guanylyl cyclase
- soluble guanylate cyclase
Collapse
Affiliation(s)
- Javier Inserte
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José A Barrabés
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Aluja
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Imanol Otaegui
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jordi Bañeras
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laura Castellote
- Department of Biochemistry, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana Sánchez
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José F Rodríguez-Palomares
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Víctor Pineda
- Institut de Diagnòstic per la Imatge, Barcelona, Spain
| | - Elisabet Miró-Casas
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laia Milà
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rosa-Maria Lidón
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonia Sambola
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Filipa Valente
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Agnès Rafecas
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marisol Ruiz-Meana
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonio Rodríguez-Sinovas
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Begoña Benito
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Irene Buera
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Sara Delgado-Tomás
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Beneítez
- Department of Hematology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Ignacio Ferreira-González
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
2
|
Mesquita TRR, de Jesus ICG, Dos Santos JF, de Almeida GKM, de Vasconcelos CML, Guatimosim S, Macedo FN, Dos Santos RV, de Menezes-Filho JER, Miguel-Dos-Santos R, Matos PTD, Scalzo S, Santana-Filho VJ, Albuquerque-Júnior RLC, Pereira-Filho RN, Lauton-Santos S. Cardioprotective Action of Ginkgo biloba Extract against Sustained β-Adrenergic Stimulation Occurs via Activation of M 2/NO Pathway. Front Pharmacol 2017; 8:220. [PMID: 28553225 PMCID: PMC5426084 DOI: 10.3389/fphar.2017.00220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023] Open
Abstract
Ginkgo biloba is the most popular phytotherapic agent used worldwide for treatment of several human disorders. However, the mechanisms involved in the protective actions of Ginkgo biloba on cardiovascular diseases remain poorly elucidated. Taking into account recent studies showing beneficial actions of cholinergic signaling in the heart and the cholinergic hypothesis of Ginkgo biloba-mediated neuroprotection, we aimed to investigate whether Ginkgo biloba extract (GBE) promotes cardioprotection via activation of cholinergic signaling in a model of isoproterenol-induced cardiac hypertrophy. Here, we show that GBE treatment (100 mg/kg/day for 8 days, v.o.) reestablished the autonomic imbalance and baroreflex dysfunction caused by chronic β-adrenergic receptor stimulation (β-AR, 4.5 mg/kg/day for 8 days, i.p.). Moreover, GBE prevented the upregulation of muscarinic receptors (M2) and downregulation of β1-AR in isoproterenol treated-hearts. Additionally, we demonstrated that GBE prevents the impaired endothelial nitric oxide synthase activity in the heart. GBE also prevented the pathological cardiac remodeling, electrocardiographic changes and impaired left ventricular contractility that are typical of cardiac hypertrophy. To further investigate the mechanisms involved in GBE cardioprotection in vivo, we performed in vitro studies. By using neonatal cardiomyocyte culture we demonstrated that the antihypertrophic action of GBE was fully abolished by muscarinic receptor antagonist or NOS inhibition. Altogether, our data support the notion that antihypertrophic effect of GBE occurs via activation of M2/NO pathway uncovering a new mechanism involved in the cardioprotective action of Ginkgo biloba.
Collapse
Affiliation(s)
| | - Itamar C G de Jesus
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | | | | | | | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Fabrício N Macedo
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | | | | | | | - Paulo T D Matos
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | - Sérgio Scalzo
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
3
|
Lee J, Bae EH, Ma SK, Kim SW. Altered Nitric Oxide System in Cardiovascular and Renal Diseases. Chonnam Med J 2016; 52:81-90. [PMID: 27231671 PMCID: PMC4880583 DOI: 10.4068/cmj.2016.52.2.81] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is synthesized by a family of NO synthases (NOS), including neuronal, inducible, and endothelial NOS (n/i/eNOS). NO-mediated effects can be beneficial or harmful depending on the specific risk factors affecting the disease. In hypertension, the vascular relaxation response to acetylcholine is blunted, and that to direct NO donors is maintained. A reduction in the activity of eNOS is mainly responsible for the elevation of blood pressure, and an abnormal expression of iNOS is likely to be related to the progression of vascular dysfunction. While eNOS/nNOS-derived NO is protective against the development of atherosclerosis, iNOS-derived NO may be proatherogenic. eNOS-derived NO may prevent the progression of myocardial infarction. Myocardial ischemia/reperfusion injury is significantly enhanced in eNOS-deficient animals. An important component of heart failure is the loss of coronary vascular eNOS activity. A pressure-overload may cause severer left ventricular hypertrophy and dysfunction in eNOS null mice than in wild-type mice. iNOS-derived NO has detrimental effects on the myocardium. NO plays an important role in regulating the angiogenesis and slowing the interstitial fibrosis of the obstructed kidney. In unilateral ureteral obstruction, the expression of eNOS was decreased in the affected kidney. In triply n/i/eNOS null mice, nephrogenic diabetes insipidus developed along with reduced aquaporin-2 abundance. In chronic kidney disease model of subtotal-nephrectomized rats, treatment with NOS inhibitors decreased systemic NO production and induced left ventricular systolic dysfunction (renocardiac syndrome).
Collapse
Affiliation(s)
- JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
4
|
p38α subtype is a potential target to inhibit eNOS activity and NO production in human endothelial cells. Microvasc Res 2014; 91:58-65. [DOI: 10.1016/j.mvr.2013.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/06/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
|
5
|
Koch SE, Haworth KJ, Robbins N, Smith MA, Lather N, Anjak A, Jiang M, Varma P, Jones WK, Rubinstein J. Age- and gender-related changes in ventricular performance in wild-type FVB/N mice as evaluated by conventional and vector velocity echocardiography imaging: a retrospective study. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2034-2043. [PMID: 23791351 PMCID: PMC4857602 DOI: 10.1016/j.ultrasmedbio.2013.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Detailed studies in animal models to assess the importance of aging animals in cardiovascular research are rather scarce. The increase in mouse models used to study cardiovascular disease makes the establishment of physiologic aging parameters in myocardial function in both male and female mice critical. Forty-four FVB/N mice were studied at multiple time points between the ages of 3 and 16 mo using high-frequency echocardiography. Our study found that there is an age-dependent decrease in several systolic and diastolic function parameters in male mice, but not in female mice. This study establishes the physiologic age- and gender-related changes in myocardial function that occur in mice and can be measured with echocardiography. We report baseline values for traditional echocardiography and advanced echocardiographic techniques to measure discrete changes in cardiac function in the commonly employed FVB/N strain.
Collapse
Affiliation(s)
- Sheryl E. Koch
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J. Haworth
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan Robbins
- Emergency Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Margaret A. Smith
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Navneet Lather
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ahmad Anjak
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Min Jiang
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Priyanka Varma
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - W. Keith Jones
- Department of Pharmacology & Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jack Rubinstein
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Dinicolantonio JJ, Lavie CJ, O'Keefe JH. Not all angiotensin-converting enzyme inhibitors are equal: focus on ramipril and perindopril. Postgrad Med 2013; 125:154-68. [PMID: 23933903 DOI: 10.3810/pgm.2013.07.2687] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are a heterogeneous class, varying in pharmacologic properties, which have different therapeutic impacts on patient profiles, including lipophilicity, tissue-ACE binding, duration of action, half-life, and increased bradykinin availability. Among the ACE inhibitor class, the agent perindopril, in particular, has pleiotropic effects that are not equally shared by other ACE inhibitors, including bradykinin site selectivity and subsequent enhancement of nitric oxide and inhibition of endothelial cell apoptosis. Moreover, there is a large amount of evidence to suggest that perindopril therapy may reduce cardiovascular event rates in patients, yet perindopril is rarely prescribed in the United States. Ramipril is another ACE inhibitor with both a favorable clinical profile and impressive outcomes data. Our review compares the pharmacologic and trial data among perindopril, ramipril, and other ACE inhibitors. In patients with or at high risk for coronary heart disease who do not have heart failure, or in patients with heart failure with preserved ejection fraction, perindopril should be among the preferred treatment agents in the ACE inhibitor class. Ramipril has an impressive track record of improving cardiovascular outcomes, too, and should be considered a preferred agent among the ACE inhibitor class.
Collapse
|
7
|
Evangelista AM, Deschamps AM, Liu D, Raghavachari N, Murphy E. miR-222 contributes to sex-dimorphic cardiac eNOS expression via ets-1. Physiol Genomics 2013; 45:493-8. [PMID: 23632416 DOI: 10.1152/physiolgenomics.00008.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well recognized that there is sex-dimorphic expression of mRNA and protein in the heart; however, the underlying mechanism is poorly understood. Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiac function, and the expression levels of eNOS differ between male and female hearts. The aim of this study was to examine whether expression of specific microRNA (miRNA, miR) in males and females contributes to changes in the expression of eNOS. miRNA was extracted from the myocardium of male and female C57BL/6 mice and subjected to an Affymetrix miRNA array. Decreased expression of miR-222 was discovered in females and confirmed by qRT-PCR from whole heart or isolated cardiomyocytes. The transcription factor V-ets erythroblastosis virus E26 oncogene homolog-1 (ets-1) was identified as a potential target of miR-222 using TargetScan, and fivefold increased ets-1 protein expression in females was confirmed by Western blot. Targeting of ets-1 by miR-222 was determined in HEK293 cells overexpressing luciferase under regulation of either the ets-1 3'-UTR, a null 3'-UTR control, or a scrambled ets-1 3'-UTR and treated with a small molecule miR-222 mimic or inhibitor. Additionally qRT-PCR confirmed that mRNA levels of the ets-1 transcriptional target, eNOS, were 25% higher in females. Compared with untreated myocyte controls, 50% inhibition of eNOS expression was achieved by treatment with a miR-222 mimic, compared with a 25% increase due to miR-222 inhibitor. Our findings indicate that sex-dependent miR-222 regulation alters the expression of the cardiac regulatory protein eNOS.
Collapse
Affiliation(s)
- Alicia M Evangelista
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
8
|
Fensterer TF, Keeling WB, Patibandla PK, Pushpakumar S, Perez-Abadia G, Bauer P, Soni CV, Anderson GL, Maldonado C. Stabilizing endothelium of donor hearts with fusogenic liposomes reduces myocardial injury and dysfunction. J Surg Res 2012; 182:331-8. [PMID: 23140789 DOI: 10.1016/j.jss.2012.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/27/2012] [Accepted: 10/12/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Myocardial injury after heart transplantation is a consequence of pathophysiologic events initiated by local ischemia/reperfusion injury that is further aggravated by the inflammatory response due to blood exposure to the pump's artificial surfaces during cardiopulmonary bypass. The purpose of the present study was to determine the effectiveness of fusogenic lipid vesicles (FLVs) in enhancing the cardioprotective effect of St. Thomas organ preservation solution (ST). We hypothesized that donor hearts preserved with ST+FLVs will stabilize the endothelium during reperfusion, which, in turn, will reduce both endothelial barrier dysfunction and myocardial damage. METHODS To examine the effect of ST+FLVs therapy in vitro, C3b deposition and adhesion molecule expression studies were performed on human umbilical vein endothelial cells challenged with plastic contact-activated plasma. To assess the therapy in vivo, a cervical heterotopic working heart transplantation model in rats was used. Donor hearts were preserved for 1 h at 27°C (15 min) and 4°C (45 min) and, after transplantation, were followed up for 2 h. Left ventricular function and the blood cardiac troponin I levels were quantified. RESULTS Human umbilical vein endothelial cells treated with ST+FLVs had reduced C3b deposition and expression of adhesion molecules compared with ST alone (P < 0.05). Donor hearts receiving ST+FLVs therapy had reduced left ventricular dysfunction and cardiac troponin I compared with ST alone. CONCLUSIONS We concluded that FLVs enhanced the cardioprotective effect of ST and reduced postischemic left ventricular dysfunction and myocardial damage. The mechanism of protection appears to be associated with the stabilization of endothelial cell membranes owing to incorporation of FLV-derived lipids.
Collapse
Affiliation(s)
- Tathyana F Fensterer
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Achala de Mel
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | | | | |
Collapse
|
10
|
Weerateerangkul P, Chattipakorn S, Chattipakorn N. Roles of the nitric oxide signaling pathway in cardiac ischemic preconditioning against myocardial ischemia-reperfusion injury. Med Sci Monit 2011; 17:RA44-52. [PMID: 21278703 PMCID: PMC3524696 DOI: 10.12659/msm.881385] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nitric oxide (NO), a vasoactive gas that can freely diffuse into the cell, has many physiological effects in various cell types. Since 1986, numerous studies of ischemic preconditioning against ischemia-reperfusion (I/R) injury have been undertaken and the roles of the NO signaling pathway in cardioprotection have been explored. Many studies have confirmed the effect of NO and that its relative signaling pathway is important for preconditioning of the cardioprotective effect. The NO signaling against I/R injury targeted on the mitochondria is believed to be the end-target for cardioprotection. If the NO signaling pathway is disrupted or inhibited, cardioprotection by preconditioning disappears. During preconditioning, signaling is initiated from the sarcolemmal membrane, and then spread into the cytoplasm via many series of enzymes, including nitric oxide synthase (NOS), the NO-producing enzyme, soluble guanylyl cyclase (sGC), and protein kinase G (PKG). Finally, the signal is transmitted into the mitochondria, where the cardioprotective effect occurs. It is now well established that mitochondria act to protect the heart against I/R injury via the opening of the mitochondrial ATP-sensitive K+ channel and the inhibition of mitochondrial permeability transition (MPT). This knowledge may be useful in developing novel strategies for clinical cardioprotection from I/R injury.
Collapse
Affiliation(s)
- Punate Weerateerangkul
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | |
Collapse
|
11
|
Talukder MAH, Yang F, Shimokawa H, Zweier JL. eNOS is required for acute in vivo ischemic preconditioning of the heart: effects of ischemic duration and sex. Am J Physiol Heart Circ Physiol 2010; 299:H437-45. [PMID: 20525875 DOI: 10.1152/ajpheart.00384.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ischemic preconditioning (IPC) is a powerful phenomenon that provides potent cardioprotection in mammalian hearts; however, the role of endothelial nitric oxide (NO) synthase (eNOS)-mediated NO in this process remains highly controversial. Questions also remain regarding this pathway as a function of sex and ischemic duration. Therefore, we performed extensive experiments in wild-type (WT) and eNOS knockout (eNOS(-/-)) mice to evaluate whether the infarct-limiting effect of IPC depends on eNOS, ischemic periods, and sex. Classical IPC was induced by three cycles of 5 min of regional coronary ischemia separated by 5 min of reperfusion and was followed by 30 or 60 min of sustained ischemia and 24 h of reperfusion. The control ischemia-reperfusion protocol had 30 or 60 min of ischemia followed by 24 h of reperfusion. Protection was evaluated by measuring the myocardial infarct size as a percentage of the area at risk. The major findings were that regardless of sex, WT mice exhibited robust IPC with significantly smaller myocardial infarction, whereas eNOS(-/-) mice did not. IPC-induced cardiac protection was absent in eNOS(-/-) mice of both Jackson and Harvard origin. In general, female WT mice had smaller infarctions compared with male WT mice. Although prolonged ischemia caused significantly larger infarctions in WT mice of both sexes, they were consistently protected by IPC. Importantly, prolonged myocardial ischemia was associated with increased mortality in eNOS(-/-) mice, and the survival rate was higher in female eNOS(-/-) mice compared with male eNOS(-/-) mice. In conclusion, IPC protects WT mice against in vivo myocardial ischemia-reperfusion injury regardless of sex and ischemic duration, but the deletion of eNOS abolishes the cardioprotective effect of classical IPC.
Collapse
Affiliation(s)
- M A Hassan Talukder
- Davis Heart and Lung Research Institute, The Ohio State Univ., 473 W. 12th Ave., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
12
|
Effects of selective phosphodiesterase-5-inhibition on myocardial contractility and reperfusion injury after heart transplantation. Transplantation 2008; 86:1414-8. [PMID: 19034012 DOI: 10.1097/tp.0b013e31818aa34e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recently, the infarct reducing and cardioprotective effects of phosphodiesterase-5-inhibitors were described. In this study, we investigated these effects on ischemia/reperfusion injury in a rat model of heart transplantation. Three groups were assigned for our study: a vardenafil preconditioning group, an ischemic control, and a nonischemic control. Hemodynamic parameters were significantly increased in the vardenafil group (Pmax: 82+/-4 vs. 110+/-12 vs. 127+/-13 mm Hg; dP/dtmax: 1740+/-116 vs. 3197+/-599 vs. 4397+/-602 mm Hg/sec; ischemic control vs. vardenafil vs. nonischemic control; P<0.05 vs. ischemic control). Furthermore, we recorded increased ATP levels and significantly less apoptosis in the treatment group after terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (apoptosis index: 27.23%+/-1.54% vs. 16.77%+/-1.42% vs. 18.86%+/-1.07%; ischemic control vs. vardenafil vs. nonischemic control; P<0.05 vs. ischemic control). Our current results support the concept that the cGMP-PKG-pathway plays an important role in ischemia/reperfusion injury. We could show that up-regulating this pathway has a preconditioning-like effect and can effectively reduce ischemia/reperfusion injury.
Collapse
|
13
|
Lysophosphatidylcholine up-regulates human endothelial nitric oxide synthase gene transactivity by c-Jun N-terminal kinase signalling pathway. J Cell Mol Med 2008; 13:1136-48. [PMID: 18624763 PMCID: PMC4496109 DOI: 10.1111/j.1582-4934.2008.00394.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway.
Collapse
|
14
|
Burley DS, Ferdinandy P, Baxter GF. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br J Pharmacol 2007; 152:855-69. [PMID: 17700722 PMCID: PMC2078226 DOI: 10.1038/sj.bjp.0707409] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is clear that multiple signalling pathways regulate the critical balance between cell death and survival in myocardial ischaemia-reperfusion. Recent attention has focused on the activation of survival or salvage kinases, particularly during reperfusion, as a common mechanism of many cardioprotective interventions. The phosphatidyl inositol 3'-hydroxy kinase/Akt complex (PI3K/Akt) and p42/p44 mitogen-activated protein kinase cascades have been widely promoted in this respect but the cyclic guanosine 3',5'-monophosphate/cGMP-dependent protein kinase (cGMP/PKG) signal transduction cassette has been less systematically investigated as a survival cascade. We propose that activation of the cGMP/PKG signalling pathway, following activation of soluble or particulate guanylate cyclases, may play a pivotal role in survival signalling in ischaemia-reperfusion, especially in the classical preconditioning, delayed preconditioning and postconditioning paradigms. The resurgence of interest in reperfusion injury, largely as a result of postconditioning-related research, has confirmed that the cGMP/PKG pathway is a pivotal salvage mechanism in reperfusion. Numerous studies suggest that the infarct-limiting effects of preconditioning and postconditioning, exogenously donated nitric oxide (NO), natriuretic peptides, phosphodiesterase inhibitors, and other diverse drugs and mediators such as HMG co-A reductase inhibitors (statins), Rho-kinase inhibitors and adrenomedullin, whether given before and during ischaemia, or specifically at the onset of reperfusion, may be mediated by activation or enhancement of the cGMP pathway, either directly or indirectly via endogenous NO generation downstream of PI3K/Akt. Putative mechanisms of protection include PKG regulation of Ca(2+) homeostasis through the modification of sarcoplasmic reticulum Ca(2+) uptake mechanisms, and PKG-induced opening of ATP-sensitive K(+) channels during ischaemia and/or reperfusion. At present, significant technical obstacles in defining the precise roles played by cGMP/PKG signalling include the heavy reliance on pharmacological PKG inhibitors of uncertain selectivity, difficulties in determining PKG activity in intact tissue, and the growing recognition that intracellular compartmentalisation of the cGMP pool may contribute markedly to the nucleotide's biological actions and biochemical determination. Overall, the body of experimental evidence suggests that cGMP/PKG survival signalling ameliorates irreversible injury associated with ischaemia-reperfusion and may be a tractable therapeutic target.
Collapse
Affiliation(s)
- D S Burley
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University Cardiff, UK
| | - P Ferdinandy
- Cardiovascular Research Group, University of Szeged Szeged, Hungary
| | - G F Baxter
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University Cardiff, UK
- Author for correspondence:
| |
Collapse
|