1
|
Shiina T, Suzuki Y, Horii K, Sawamura T, Yuki N, Horii Y, Shimizu Y. Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats. J Physiol Sci 2025; 74:26. [PMID: 39843018 PMCID: PMC11036717 DOI: 10.1186/s12576-024-00916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 μM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 μM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 μM), and a P2Y receptor antagonist, cibacron blue F3GA (200 μM), inhibited the ATP (100 μM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 μM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 μM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 μM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.
Collapse
Affiliation(s)
- Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan.
| | - Yuji Suzuki
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Kazuhiro Horii
- Division of Biological Principles, Department of Physiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Tomoya Sawamura
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Natsufu Yuki
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Yuuki Horii
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan
| |
Collapse
|
2
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Sun HZ, Li CY, Shi Y, Li JJ, Wang YY, Han LN, Zhu LJ, Zhang YF. Effect of exogenous hydrogen sulfide in the nucleus tractus solitarius on gastric motility in rats. World J Gastroenterol 2023; 29:4557-4570. [PMID: 37621756 PMCID: PMC10445002 DOI: 10.3748/wjg.v29.i29.4557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a recently discovered gaseous neurotransmitter in the nervous and gastrointestinal systems. It exerts its effects through multiple signaling pathways, impacting various physiological activities. The nucleus tractus solitarius (NTS), a vital nucleus involved in visceral sensation, was investigated in this study to understand the role of H2S in regulating gastric function in rats. AIM To examine whether H2S affects the nuclear factor kappa-B (NF-κB) and transient receptor potential vanilloid 1 pathways and the neurokinin 1 (NK1) receptor in the NTS. METHODS Immunohistochemical and fluorescent double-labeling techniques were employed to identify cystathionine beta-synthase (CBS) and c-Fos co-expressed positive neurons in the NTS during rat stress. Gastric motility curves were recorded by inserting a pressure-sensing balloon into the pylorus through the stomach fundus. Changes in gastric motility were observed before and after injecting different doses of NaHS (4 nmol and 8 nmol), physiological saline, Capsazepine (4 nmol) + NaHS (4 nmol), pyrrolidine dithiocarbamate (PDTC, 4 nmol) + NaHS (4 nmol), and L703606 (4 nmol) + NaHS (4 nmol). RESULTS We identified a significant increase in the co-expression of c-Fos and CBS positive neurons in the NTS after 1 h and 3 h of restraint water-immersion stress compared to the expressions observed in the control group. Intra-NTS injection of NaHS at different doses significantly inhibited gastric motility in rats (P < 0.01). However, injection of saline, first injection NF-κB inhibitor PDTC or transient receptor potential vanilloid 1 (TRPV1) antagonist Capsazepine or NK1 receptor blockers L703606 and then injection NaHS did not produce significant changes (P > 0.05). CONCLUSION NTS contains neurons co-expressing CBS and c-Fos, and the injection of NaHS into the NTS can suppress gastric motility in rats. This effect may be mediated by activating TRPV1 and NK1 receptors via the NF-κB channel.
Collapse
Affiliation(s)
- Hong-Zhao Sun
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Chen-Yu Li
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Yuan Shi
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Jin-Jin Li
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Yi-Ya Wang
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Li-Na Han
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Lu-Jie Zhu
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Ya-Fei Zhang
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| |
Collapse
|
4
|
Boudaka A, Tominaga M. Physiological and Pathological Significance of Esophageal TRP Channels: Special Focus on TRPV4 in Esophageal Epithelial Cells. Int J Mol Sci 2022; 23:ijms23094550. [PMID: 35562940 PMCID: PMC9099744 DOI: 10.3390/ijms23094550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel that is broadly expressed in different human tissues, including the digestive system, where it acts as a molecular sensor and a transducer that regulates a variety of functional activities. Despite the extensive research to determine the role of this channel in the physiology and pathophysiology of different organs, the unique morphological and functional features of TRPV4 in the esophagus remain largely unknown. Ten years ago, TRPV4 was shown to be highly expressed in esophageal epithelial cells where its activation induces Ca2+-dependent ATP release, which, in turn, mediates several functions, ranging from mechanosensation to wound healing. This review summarizes the research progress on TRPV4, and focuses on the functional expression of TRPV4 in esophageal epithelium and its possible role in different esophageal diseases that would support TRPV4 as a candidate target for future therapeutic approaches to treat patients with these conditions.
Collapse
Affiliation(s)
- Ammar Boudaka
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 35, Muscat 123, Oman
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki 444-8787, Aichi, Japan;
- Correspondence:
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki 444-8787, Aichi, Japan;
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Aichi, Japan
- Exploratory Research Center on Life and Living Systems, Thermal Biology Group, Okazaki 444-8787, Aichi, Japan
| |
Collapse
|
5
|
Chao G, Wang Q, Ye F, Zhang S. Gene expression analysis in NSAID-induced rat small intestinal disease model with the intervention of berberine by the liquid chip technology. Genes Environ 2021; 43:32. [PMID: 34284820 PMCID: PMC8290548 DOI: 10.1186/s41021-021-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Investigate the effect and mechanism of berberine on the small intestinal mucosa of non-steroidal anti-inflammatory drugs (NSAIDs) related small intestinal injury. Materials and methods Twenty-four SD rats were randomly divided into control group, model group and intervention group. The model group and intervention group were treated with diclofenac (7.5 mg/kg·d, 2/d), a total of 4 days tube feeding, and the intervention group was treated with 50 mg/kg·d intragastric administration of berberine after 2 days. The control group was treated with 7.5 mg/kg·d, 2/d 0.9% saline tube feeding. Then we screened differential expression of colonic mucosal gene by the liquid chip technology. Results Compared with the control group, macroscopic and histology score of the model group increased significantly (P < 0.05), HTR4, HTR1a, F2RL3, CALCA, NPY, CRHR2, IL1b, P2RX3, TPH1, HMOX1, TRPV1, VIP, F2RL1, SLC6A4, TFF2, AQP8 content were significantly increased (P < 0.05), NOS1 content decreased significantly (P < 0.05); Compared with the model group, macroscopic and histology score of the intervention group improved significantly (P < 0.05), and HTR4, F2RL3, NPY, CRHR2, IL1b, VIP, AQP8 content were significantly lower (P < 0.05), NOS1 content increased significantly (P < 0.05). Conclusion Berberine has a protective effect on NSAID-associated small intestinal injury, the mechanism may be that berberine decreases the expression of intestinal mucosa HTR4, F2RL3, NPY, CRHR2, IL1b, VIP, AQP8, and increases the expression of NOS1, that to reduce intestinal permeability and protect intestinal mucosal barrier.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of General practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qianqian Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Youdian Road No. 54, Hangzhou, 310006, China
| | - Fangxu Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Youdian Road No. 54, Hangzhou, 310006, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Youdian Road No. 54, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Capsaicin-Induced Impairment of Functional Network Dynamics in Mouse Hippocampus via a TrpV1 Receptor-Independent Pathway: Putative Involvement of Na +/K +-ATPase. Mol Neurobiol 2019; 57:1170-1185. [PMID: 31701438 PMCID: PMC7031213 DOI: 10.1007/s12035-019-01779-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin’s CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1. Recently, we have reported that capsaicin induces impairment in hippocampal gamma oscillations via a TrpV1-independent pathway. Here, we dissect the underlying mechanisms of capsaicin-induced alterations to functional network dynamics. We found that capsaicin induces a reduction in action potential (AP) firing rate and a subsequent loss of synchronicity in pyramidal cell (PC) spiking activity in hippocampus. Moreover, capsaicin induces alterations in PC spike-timing since increased first-spike latency was observed after capsaicin treatment. First-spike latency can be regulated by the voltage-dependent potassium current D (ID) or Na+/K+-ATPase. Selective inhibition of ID via low 4-AP concentration and Na+/K+-ATPase using its blocker ouabain, we found that capsaicin effects on AP spike timing were completely inhibited by ouabain but not with 4-AP. In conclusion, our study shows that capsaicin in a TrpV1-independent manner and possibly involving Na+/K+-ATPase activity can impair cognition-relevant functional network dynamics such as gamma oscillations and provides important data regarding the use of capsaicin as a tool to study TrpV1 function in the CNS.
Collapse
|
7
|
Horii K, Suzuki Y, Shiina T, Saito S, Onouchi S, Horii Y, Shimaoka H, Shimizu Y. ATP-dependent potassium channels contribute to motor regulation of esophageal striated muscle in rats. J Vet Med Sci 2019; 81:1266-1272. [PMID: 31292350 PMCID: PMC6785617 DOI: 10.1292/jvms.19-0197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to clarify roles of ATP-dependent potassium channels (KATP channels) in motility of the striated muscle portion in the esophagus. An isolated segment of the rat esophagus was placed in an organ bath and mechanical responses were recorded using a force transducer. Electrical stimulation of the vagus nerve evoked contractile response of striated muscle in the esophageal segment. Application of glibenclamide, an antagonist of KATP channels, increased amplitude of vagally mediated twitch contractions of the rat esophagus. On the other hand, minoxidil, an agonist of KATP channels, decreased amplitude of twitch contractions. RT-PCR revealed the expression of subunits of KATP channels in esophageal tissue. In addition, immunopositivity for subunits of KATP channels was observed in the striated muscle cells of the esophageal muscle layer. These findings indicate that KATP channels contribute to motor regulation of striated muscle in the rat esophagus.
Collapse
Affiliation(s)
- Kazuhiro Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Yuji Suzuki
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Shouichiro Saito
- Department of Basic Veterinary Science, Laboratory of Anatomy, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Sawa Onouchi
- Department of Basic Veterinary Science, Laboratory of Anatomy, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Yuuki Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Hiroki Shimaoka
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagaido, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Horii K, Shiina T, Naitou K, Nakamori H, Horii Y, Shimaoka H, Shimizu Y. Characterization of peristaltic motility in the striated muscle portion of the esophagus using a novel in vivo method in rats. Neurogastroenterol Motil 2019; 31:e13518. [PMID: 30549155 DOI: 10.1111/nmo.13518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Esophageal peristalsis is controlled by the brainstem via vago-vagal reflex. However, the precise regulatory mechanisms in the striated muscle portion are largely unknown. The aim of this study was to characterize peristaltic motility in the portion of the esophagus using a novel in vivo method in rats. METHODS A balloon-tipped catheter was placed in the esophagus of a rat anesthetized with urethane. To induce esophageal peristalsis, the balloon was inflated by water injection. KEY RESULTS When the balloon was inflated near the bronchial bifurcation, the balloon was transported in the aboral direction. Vagotomy abolished the peristaltic response. The threshold volume for inducing esophageal peristalsis varied according to the velocity of balloon distention; the volume being effective to induce peristalsis at a low inflation speed was smaller than the threshold volume at a rapid inflation speed. Even in the absence of inflation, keeping the balloon inside the esophagus during an interval period prevented subsequent induction of peristaltic motility. In addition, a nitric oxide synthase inhibitor abolished the induction of esophageal peristalsis. CONCLUSIONS AND INFERENCES Our findings suggest that (a) in addition to the intensity, the velocity of distention is important for activating the mechanosensory mechanism to induce esophageal peristalsis, (b) tonic inputs from afferent fibers located at the mucosa may reduce the excitability of mechanosensors which is necessary for inducing peristalsis, and (c) nitric oxide plays essential roles in the induction of esophageal peristalsis. These results provide novel insights into the regulatory mechanisms of esophageal motility.
Collapse
Affiliation(s)
- Kazuhiro Horii
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takahiko Shiina
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kiyotada Naitou
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Hiroyuki Nakamori
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yuuki Horii
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Hiroki Shimaoka
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasutake Shimizu
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
9
|
Balleza-Tapia H, Crux S, Andrade-Talavera Y, Dolz-Gaiton P, Papadia D, Chen G, Johansson J, Fisahn A. TrpV1 receptor activation rescues neuronal function and network gamma oscillations from Aβ-induced impairment in mouse hippocampus in vitro. eLife 2018; 7:37703. [PMID: 30417826 PMCID: PMC6281315 DOI: 10.7554/elife.37703] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
Amyloid-β peptide (Aβ) forms plaques in Alzheimer’s disease (AD) and is responsible for early cognitive deficits in AD patients. Advancing cognitive decline is accompanied by progressive impairment of cognition-relevant EEG patterns such as gamma oscillations. The endocannabinoid anandamide, a TrpV1-receptor agonist, reverses hippocampal damage and memory impairment in rodents and protects neurons from Aβ-induced cytotoxic effects. Here, we investigate a restorative role of TrpV1-receptor activation against Aβ-induced degradation of hippocampal neuron function and gamma oscillations. We found that the TrpV1-receptor agonist capsaicin rescues Aβ-induced degradation of hippocampal gamma oscillations by reversing both the desynchronization of AP firing in CA3 pyramidal cells and the shift in excitatory/inhibitory current balance. This rescue effect is TrpV1-receptor-dependent since it was absent in TrpV1 knockout mice or in the presence of the TrpV1-receptor antagonist capsazepine. Our findings provide novel insight into the network mechanisms underlying cognitive decline in AD and suggest TrpV1 activation as a novel therapeutic target.
Collapse
Affiliation(s)
- Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Crux
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Pablo Dolz-Gaiton
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Papadia
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Gefei Chen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Shiina T, Naitou K, Nakamori H, Suzuki Y, Horii K, Sano Y, Shimaoka H, Shimizu Y. Serotonin-induced contractile responses of esophageal smooth muscle in the house musk shrew (Suncus murinus). Neurogastroenterol Motil 2016; 28:1641-1648. [PMID: 27194102 DOI: 10.1111/nmo.12863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) is a regulatory factor in motility of the gastrointestinal tract including the esophagus. Although we proposed that vagal cholinergic and mast cell-derived non-cholinergic components including serotonin coordinately shorten the esophagus, the precise mechanism of serotonin-induced contractions in the suncus esophagus is still unclear. Therefore, the aims of this study were to determine characteristics of contractile responses induced by serotonin and to identify 5-HT receptor subtypes responsible for regulating motility in the suncus esophagus. METHODS An isolated segment of the suncus esophagus was placed in an organ bath, and longitudinal or circular mechanical responses were recorded using a force transducer. KEY RESULTS Serotonin evoked contractile responses of the suncus esophagus in the longitudinal direction but not in the circular direction. Tetrodotoxin did not affect the serotonin-induced contractions. Pretreatment with a non-selective 5-HT receptor antagonist or double application of 5-HT1 and 5-HT2 receptor antagonists blocked the serotonin-induced contractions. 5-HT1 and 5-HT2 receptor agonists, but not a 5-HT3 receptor agonist, evoked contractile responses in the suncus esophagus. CONCLUSION & INFERENCES The findings suggest that serotonin induces contractile responses of the longitudinal smooth muscle in the muscularis mucosae of the suncus esophagus that are mediated via 5-HT1 and 5-HT2 receptors on muscle cells. The serotonin-induced contractions might contribute to esophageal peristalsis and emetic response.
Collapse
Affiliation(s)
- T Shiina
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| | - K Naitou
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - H Nakamori
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Y Suzuki
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - K Horii
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Y Sano
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - H Shimaoka
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Y Shimizu
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
11
|
Neuhuber WL, Wörl J. Enteric co-innervation of striated muscle in the esophagus: still enigmatic? Histochem Cell Biol 2016; 146:721-735. [PMID: 27678007 DOI: 10.1007/s00418-016-1500-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 01/10/2023]
Abstract
The existence of a distinct ganglionated myenteric plexus between the two layers of the striated tunica muscularis of the mammalian esophagus has represented an enigma for quite a while. Although an enteric co-innervation of vagally innervated motor endplates in the esophagus has been suggested repeatedly, it was not possible until recently to demonstrate this dual innervation. Twenty-two years ago, we were able to demonstrate that motor endplates in the rat esophagus receive dual innervation from both vagal nerve fibers originating in the brain stem and from varicose enteric nerve fibers originating in the myenteric plexus. Meanwhile, a considerable amount of data has been gathered on enteric co-innervation and its occurrence in the esophagus of a variety of species including humans, its neurochemistry, spatial relationships on motor endplates, ontogeny and possible functional roles. These data underline the significance of this newly discovered innervation component, although its function in vivo is still largely unknown. The aim of this review, which is an update of our previous paper (Wörl and Neuhuber in Histochem Cell Biol 123(2):117-130. doi: 10.1007/s00418-005-0764-7 , 2005a), is to summarize the current knowledge about enteric co-innervation of esophageal striated muscle and to provide some hints as to its functional significance.
Collapse
Affiliation(s)
- Winfried L Neuhuber
- Institut für Anatomie I, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany.
| | - Jürgen Wörl
- Institut für Anatomie I, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| |
Collapse
|
12
|
Shima T, Shiina T, Naitou K, Nakamori H, Sano Y, Shimizu Y. Does the capsaicin-sensitive local neural circuit constitutively regulate vagally evoked esophageal striated muscle contraction in rats? J Physiol Sci 2016; 66:105-11. [PMID: 26424590 PMCID: PMC10717485 DOI: 10.1007/s12576-015-0401-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/07/2015] [Indexed: 01/06/2023]
Abstract
To determine whether a capsaicin-sensitive local neural circuit constitutively modulates vagal neuromuscular transmission in the esophageal striated muscle or whether the neural circuit operates in a stimulus-dependent manner, we compared the motility of esophageal preparations isolated from intact rats with those in which capsaicin-sensitive neurons had been destroyed. Electrical stimulation of the vagus nerve trunk evoked contractile responses in the esophagus isolated from a capsaicin-treated rat in a manner similar to those in the esophagus from a control rat. No obvious differences were observed in the inhibitory effects of D-tubocurarine on intact and capsaicin-treated rat esophageal motility. Destruction of the capsaicin-sensitive neurons did not significantly affect latency, time to peak and duration of a vagally evoked twitch-like contraction. These findings indicate that the capsaicin-sensitive neural circuit does not operate constitutively but rather is activated in response to an applied stimulus.
Collapse
Affiliation(s)
- Takeshi Shima
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takahiko Shiina
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Kiyotada Naitou
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiroyuki Nakamori
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuuki Sano
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yasutake Shimizu
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
13
|
Inhibitory action of hydrogen sulfide on esophageal striated muscle motility in rats. Eur J Pharmacol 2016; 771:123-9. [PMID: 26687631 DOI: 10.1016/j.ejphar.2015.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is recognized as a gaseous transmitter and has many functions including regulation of gastrointestinal motility. The aim of the present study was to clarify the effects of H2S on the motility of esophageal striated muscle in rats. An isolated segment of the rat esophagus was placed in an organ bath and mechanical responses were recorded using a force transducer. Electrical stimulation of the vagus nerve evoked contractile response in the esophageal segment. The vagally mediated contraction was inhibited by application of an H2S donor. The H2S donor did not affect the contraction induced by electrical field stimulation, which can excite the striated muscle directly, not via vagus nerves. These results show that H2S has an inhibitory effect on esophageal motility not by directly attenuating striated muscle contractility but by blocking vagal motor nerve activity and/or neuromuscular transmissions. The inhibitory actions of H2S were not affected by pretreatment with the transient receptor potential vanniloid-1 blocker, transient receptor potential ankyrin-1 blocker, nitric oxide synthase inhibitor, blockers of potassium channels, and ganglionic blocker. RT-PCR and Western blot analysis revealed the expression of H2S-producing enzymes in esophageal tissue, whereas application of inhibitors of H2S-producing enzymes did not change vagally evoked contractions in the esophageal striated muscle. These findings suggest that H2S, which might be produced in the esophageal tissue endogenously, can regulate the motor activity of esophageal striated muscle via a novel inhibitory neural pathway.
Collapse
|
14
|
Matsumoto K, Hosoya T, Ishikawa E, Tashima K, Amagase K, Kato S, Murayama T, Horie S. Distribution of transient receptor potential cation channel subfamily V member 1-expressing nerve fibers in mouse esophagus. Histochem Cell Biol 2014; 142:635-44. [PMID: 25002127 DOI: 10.1007/s00418-014-1246-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2014] [Indexed: 12/11/2022]
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) plays a role in esophageal function. However, the distribution of TRPV1 nerve fibers in the esophagus is currently not well understood. In the present study, we investigated the distribution of TRPV1 and neurotransmitters released from TRPV1 nerve fibers in the mouse lower esophagus. Furthermore, we investigated changes in the presence of TRPV1 in the mouse model of esophagitis. Numerous TRPV1-immunoreactive nerve fibers were seen in both the submucosal layer and myenteric plexus of the lower esophagus and colocalized with calcitonin gene-related peptide (CGRP). TRPV1 colocalized with substance P in axons in the submucosal layer and myenteric plexus. TRPV1 colocalized with neuronal nitric oxide synthase in the myenteric plexus. We observed some colocalization of CGRP with the vesicular acetylcholine (ACh) transporter, packaging of ACh into synaptic vesicles after its synthesis in terminal cytoplasm, in the submucosal layer and myenteric plexus. In the esophagitis model, the number of the TRPV1 nerve fibers did not change, but their immunoreactive intensity increased compared with sham-operated mice. Inhibitory effect of exogenous capsaicin on electrically stimulated twitch contraction significantly increased in esophagitis model compared with the effect in sham-operated mice. Overall, these results suggest that TRPV1 nerve fibers projecting to both the submucosal and muscle layer of the esophagus are extrinsic spinal and vagal afferent neurons. Furthermore, TRPV1 nerve fibers contain CGRP, substance P, nitric oxide, and ACh. Therefore, acid influx-mediated TRPV1 activation may play a role in regulating esophageal relaxation.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Shima T, Shiina T, Naitou K, Nakamori H, Shimizu Y. Functional roles of capsaicin-sensitive intrinsic neural circuit in the regulation of esophageal peristalsis in rats: in vivo studies using a novel method. Am J Physiol Gastrointest Liver Physiol 2014; 306:G811-8. [PMID: 24650548 DOI: 10.1152/ajpgi.00250.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A well-developed myenteric plexus exists in the esophagus composed of striated muscle layers, but its functional role in controlling peristaltic movements remains to be clarified. The purpose of this study was to clarify the role of a local neural reflex consisting of capsaicin-sensitive primary afferent neurons and intrinsic neurons in esophageal peristalsis. We firstly devised a method to measure peristaltic movement of esophagus in vivo in rats. Rats were anesthetized with urethane, and esophageal intraluminal pressure and propelled intraluminal liquid volume were recorded. In the experimental system, an intraluminal pressure stimulus evoked periodic changes in intraluminal pressure of the esophagus, which were consistently accompanied by intraluminal liquid propulsion. Bilateral vagotomy abolished changes in intraluminal pressure as well as liquid propulsion. These results indicate that the novel method is appropriate for inducing peristalsis in the esophagus composed of striated muscles. Then, by using the method, we examined functional roles of the local reflex in esophageal peristalsis. For that purpose, we used rats in which capsaicin-sensitive neurons had been destroyed. The esophagus of capsaicin-treated rats showed a multiphasic rise in intraluminal pressure, which may due to noncoordinated contractions of esophageal muscles, whereas a monophasic response was observed in the intact rat esophagus. In addition, destruction of capsaicin-sensitive neurons increased the propelled liquid volume and lowered the pressure threshold for initiating peristalsis. These results suggest that the local neural reflex consisting of capsaicin-sensitive neurons and intrinsic neurons contributes to coordination of peristalsis and suppresses mechanosensory function of vagal afferents in the esophagus.
Collapse
Affiliation(s)
- Takeshi Shima
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | | | | | | | | |
Collapse
|
16
|
Yang R, Xiong Z, Liu C, Liu L. Inhibitory effects of capsaicin on voltage-gated potassium channels by TRPV1-independent pathway. Cell Mol Neurobiol 2014; 34:565-76. [PMID: 24590823 DOI: 10.1007/s10571-014-0041-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/22/2014] [Indexed: 12/17/2022]
Abstract
Previously we observed that capsaicin, a transient receptor potential vanilloid 1 (TRPV1) receptor activator, inhibited transient potassium current (IA) in capsaicin-sensitive and capsaicin-insensitive trigeminal ganglion (TG) neurons from rats. It suggested that the inhibitory effects of capsaicin on IA have two different mechanisms: TRPV1-dependent and TRPV1-independent pathways. The main purpose of this study is to further investigate the TRPV1-independent effects of capsaicin on voltage-gated potassium channels (VGPCs). Whole cell patch-clamp technique was used to record IA and sustained potassium current (IK) in cultured TG neurons from trpv1 knockout (TRPV1(-/-)) mice. We found that capsaicin reversibly inhibited IA and IK in a dose-dependent manner. Capsaicin (30 μM) did not alter the activation curve of IA and IK but shifted the inactivation-voltage curve to hyperpolarizing direction, thereby increasing the number of inactivated VGPCs at the resting potential. Administrations of high concentrations capsaicin, no use-dependent block, and delay of recovery time course were found on IK and IA. Moreover, forskolin, an adenylate cyclase agonist, selectively decreased the inhibitory effects of IK by capsaicin, whereas none influenced the inhibitions of IA. These results suggest that capsaicin inhibits the VGPCs through TRPV1-independent and PKA-dependent mechanisms, which may contribute to the capsaicin-induced nociception.
Collapse
Affiliation(s)
- Rong Yang
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | |
Collapse
|
17
|
Inhibitory actions of a local neural reflex on propulsive activity of the esophageal striated muscle portion in rats. Res Vet Sci 2013; 94:331-5. [DOI: 10.1016/j.rvsc.2012.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/21/2012] [Accepted: 09/16/2012] [Indexed: 02/07/2023]
|
18
|
Role of KATP channels and TRPV1 receptors in hydrogen sulfide-enhanced gastric emptying of liquid in awake mice. Eur J Pharmacol 2012; 693:57-63. [PMID: 22884438 DOI: 10.1016/j.ejphar.2012.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
Abstract
Hydrogen sulphide (H(2)S) has shown to relax gastrointestinal muscle. Here in, we evaluated the effects of H(2)S donors on gastric emptying and in pyloric sphincter muscle relaxation, and whether these effects involved K(ATP) channels or TRPV1 receptors. Mice were treated with l-cysteine (alone or with propargylglycine-an inhibitor of H(2)S synthesis), NaHS, Lawesson's reagent (H(2)S donors) or saline. After 30 min, mice were gavaged with a liquid meal containing a nonabsorbable marker and then killed at 10, 20 or 30 min intervals to assess marker recovery from the stomach and intestine. This experiment was repeated in mice pre-treated with K(ATP) channel (glibenclamide) or TRPV1 receptor (capsazepine) antagonists. In addition, pyloric sphincter muscles were mounted in an organ bath, incubated with saline, glibenclamide or capsazepine, and NaHS dose-responses were determined. H(2)S donors and l-cysteine enhanced gastric emptying in a dose-dependent manner; propargylglycine reversed the effect of l-cysteine. Both glibenclamide and capsazepine abolished l-cysteine and H(2)S donors' augmentation of gastric emptying. Dose-dependent inductions of pyloric sphincter relaxation by NaHS were abolished by glibenclamide or capsazepine. These data suggest that H(2)S donors-induced acceleration of gastric emptying and relaxation of pyloric sphincter muscle by K(ATP) channel and TRPV1 receptor activations.
Collapse
|
19
|
Shiina T, Shima T, Suzuki Y, Wörl J, Shimizu Y. Neural regulation of esophageal striated muscle in the house musk shrew (Suncus murinus). Auton Neurosci 2012; 168:25-31. [PMID: 22285704 DOI: 10.1016/j.autneu.2012.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/05/2012] [Accepted: 01/08/2012] [Indexed: 12/21/2022]
Abstract
In the present study, we characterized the neural regulation of esophageal striated muscle in Suncus murinus (a house musk shrew; "suncus" used as a laboratory name), which was compared with that in the rat. The tunica muscularis consists of striated muscle in the suncus esophagus. An isolated segment of the suncus esophagus was placed in an organ bath and the contractile responses were recorded using a force transducer. Electrical stimulations to vagus nerves induced contractile responses in the esophageal segment. Treatment with α-bungarotoxin, a blocker of nicotinic acetylcholine receptors, blocked the vagally mediated contractions of the suncus esophagus. D-tubocurarine and succinylcholine, typical antagonists of nicotinic acetylcholine receptors, also inhibited the suncus esophageal contractions, while higher concentrations of the agents were required rather than concentrations for producing an equivalent block in the rat. We used capsaicin, a stimulator of small-caliber afferent neurons, for activating the peripheral neural network. The reagent inhibited the vagally mediated twitch contractions of striated muscle in the suncus esophagus, which was reversed by pretreatment with a nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester. Application of a nitric oxide donor, diethylamine NONOate diethylammonium salt, mimicked capsaicin-induced inhibition. The results suggest that motility of the suncus esophagus, which consists of striated muscles, is regulated by vagal cholinergic neurons. The local neural network including capsaicin-sensitive neurons and intrinsic nitrergic neurons can modify the vagally mediated motility in the suncus esophagus. In addition, nicotinic acetylcholine receptors of the suncus esophagus might be pharmacologically distinct from those of rodent esophagi.
Collapse
Affiliation(s)
- Takahiko Shiina
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Japan.
| | | | | | | | | |
Collapse
|
20
|
Holzer P. TRP channels in the digestive system. Curr Pharm Biotechnol 2011; 12:24-34. [PMID: 20932260 DOI: 10.2174/138920111793937862] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/09/2010] [Indexed: 12/26/2022]
Abstract
Several of the 28 mammalian transient receptor potential (TRP) channel subunits are expressed throughout the alimentary canal where they play important roles in taste, chemo- and mechanosensation, thermoregulation, pain and hyperalgesia, mucosal function and homeostasis, control of motility by neurons, interstitial cells of Cajal and muscle cells, and vascular function. While the implications of some TRP channels, notably TRPA1, TRPC4, TRPM5, TRPM6, TRPM7, TRPV1, TRPV4, and TRPV6, have been investigated in much detail, the understanding of other TRP channels in their relevance to digestive function lags behind. The polymodal chemo- and mechanosensory function of TRPA1, TRPM5, TRPV1 and TRPV4 is particularly relevant to the alimentary canal whose digestive and absorptive function depends on the surveillance and integration of many chemical and physical stimuli. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 appear to be essential for the absorption of Ca(2+) and Mg(2+), respectively, while TRPM7 appears to contribute to the pacemaker activity of the interstitial cells of Cajal, and TRPC4 transduces smooth muscle contraction evoked by muscarinic acetylcholine receptor activation. The implication of some TRP channels in pathological processes has raised enormous interest in exploiting them as a therapeutic target. This is particularly true for TRPV1, TRPV4 and TRPA1, which may be targeted for the treatment of several conditions of chronic abdominal pain. Consequently, blockers of these TRP channels have been developed, and their clinical usefulness has yet to be established.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitátsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
21
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
22
|
Hibino Y, Morise M, Ito Y, Mizutani T, Matsuno T, Ito S, Hashimoto N, Sato M, Kondo M, Imaizumi K, Hasegawa Y. Capsaicinoids regulate airway anion transporters through Rho kinase- and cyclic AMP-dependent mechanisms. Am J Respir Cell Mol Biol 2011; 45:684-91. [PMID: 21474433 DOI: 10.1165/rcmb.2010-0332oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To investigate the effects of capsaicinoids on airway anion transporters, we recorded and analyzed transepithelial currents in human airway epithelial Calu-3 cells. Application of capsaicin (100 μM) attenuated vectorial anion transport, estimated as short-circuit currents (I(SC)), before and after stimulation by forskolin (10 μM) with concomitant reduction of cytosolic cyclic AMP (cAMP) levels. The capsaicin-induced inhibition of I(SC) was also observed in the response to 8-bromo-cAMP (1 mM, a cell-permeable cAMP analog) and 3-isobutyl-1-methylxanthine (1 mM, an inhibitor of phosphodiesterases). The capsaicin-induced inhibition of I(SC) was attributed to suppression of bumetanide (an inhibitor of the basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1)- and 4,4'-dinitrostilbene-2,2'-disulfonic acid (an inhibitor of basolateral HCO(3)(-)-dependent anion transporters)-sensitive components, which reflect anion uptake via basolateral cAMP-dependent anion transporters. In contrast, capsaicin potentiated apical Cl(-) conductance, which reflects conductivity through the cystic fibrosis transmembrane conductance regulator, a cAMP-regulated Cl(-) channel. All these paradoxical effects of capsaicin were mimicked by capsazepine. Forskolin application also increased phosphorylated myosin phosphatase target subunit 1, and the phosphorylation was prevented by capsaicin and capsazepine, suggesting that these capsaicinoids assume aspects of Rho kinase inhibitors. We also found that the increments in apical Cl(-) conductance were caused by conventional Rho kinase inhibitors, Y-27632 (20 μM) and HA-1077 (20 μM), with selective inhibition of basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1. Collectively, capsaicinoids inhibit cAMP-mediated anion transport through down-regulation of basolateral anion uptake, paradoxically accompanied by up-regulation of apical cystic fibrosis transmembrane conductance regulator-mediated anion conductance. The latter is mediated by inhibition of Rho-kinase, which is believed to interact with actin cytoskeleton.
Collapse
Affiliation(s)
- Yoshitaka Hibino
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Orlando RC. The integrity of the esophageal mucosa. Balance between offensive and defensive mechanisms. Best Pract Res Clin Gastroenterol 2010; 24:873-82. [PMID: 21126700 PMCID: PMC2995989 DOI: 10.1016/j.bpg.2010.08.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 01/31/2023]
Abstract
Heartburn is the most common and characteristic symptom of gastroesophageal reflux disease. It ultimately results from contact of refluxed gastric acid with nociceptors within the esophageal mucosa and transmission of this peripheral signal to the central nervous system for cognition. Healthy esophageal epithelium provides an effective barrier between refluxed gastric acid and esophageal nociceptors; but this barrier is vulnerable to attack and damage, particularly by acidic gastric contents. How gastric acid is countered by defensive elements within the esophageal mucosa is a major focus of this discussion. When the defense is successful, the subject is asymptomatic and when unsuccessful, the subject experiences heartburn. Those with heartburn commonly fall into one of three endoscopic types: nonerosive reflux disease, erosive esophagitis and Barrett's esophagus. Although what determines endoscopic type remains unknown; it is proposed herein that inflammation plays a key, modulating role.
Collapse
Affiliation(s)
- Roy C. Orlando
- Mary Kay & Eugene Bozymski and Linda & William Heizer Distinguished Professor of Gastroenterology; and Adjunct Professor of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Division of Gastroenterology & Hepatology, 103 Mason Farm Road, Molecular Biomedical Research Building, CB#7032, Chapel Hill, N.C.,27599, USA, Tel: 919-843-4583, Fax # 919-843-6899
| |
Collapse
|
24
|
Contractile properties of esophageal striated muscle: comparison with cardiac and skeletal muscles in rats. J Biomed Biotechnol 2010; 2010:459789. [PMID: 20379364 PMCID: PMC2850148 DOI: 10.1155/2010/459789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/01/2010] [Indexed: 12/02/2022] Open
Abstract
The external muscle layer of the mammalian esophagus consists of striated muscles. We investigated the contractile properties of esophageal striated muscle by comparison with those of skeletal and cardiac muscles. Electrical field stimulation with single pulses evoked twitch-like contractile responses in esophageal muscle, similar to those in skeletal muscle in duration and similar to those in cardiac muscle in amplitude. The contractions of esophageal muscle were not affected by an inhibitor of gap junctions. Contractile responses induced by high potassium or caffeine in esophageal muscle were analogous to those in skeletal muscle. High-frequency stimulation induced a transient summation of contractions followed by sustained contractions with amplitudes similar to those of twitch-like contractions, although a large summation was observed in skeletal muscle. The results demonstrate that esophageal muscle has properties similar but not identical to those of skeletal muscle and that some specific properties may be beneficial for esophageal peristalsis.
Collapse
|
25
|
Enteric co-innervation of esophageal striated muscle fibers: a phylogenetic study. Auton Neurosci 2009; 151:135-41. [PMID: 19748835 DOI: 10.1016/j.autneu.2009.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/09/2009] [Accepted: 08/11/2009] [Indexed: 12/11/2022]
Abstract
Enteric co-innervation of striated muscle fibers in the esophagus occurs in several mammalian species including humans. However, the functional significance is still unknown. Phylogenetic data may be instrumental in gaining further insight. We examined the bat Glossophaga soricina and the shrew Suncus murinus as representatives for phylogenetically old mammals. As ruminants the antelope Tragelaphus imberbis, the he-goat Capra falconeri and the sheep Ovis aries were selected. As non-mammals the clawed frog Xenopus laevis as representative for the taxon amphibian and the rainbow trout Oncorhynchus mykiss as representative for the taxon fish were included. Histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase and acetylcholinesterase as well as immunofluorescence for vasoactive intestinal peptide and alpha-bungarotoxin were used to demonstrate enteric nerve fibers and motor endplates, respectively. Motor endplates were associated with enteric nerve fibers in all species investigated, although the rates of co-innervation varied from approximately 10 to 20% in shrew, antelope, he-goat, frog and fish, approximately 40% in bat to nearly 90% in sheep. These results demonstrate that enteric co-innervation, in spite of varying co-innervation rates, is conserved through vertebrate evolution, and underline the significance of this newly discovered innervation component.
Collapse
|
26
|
Shiina T, Shima T, Wörl J, Neuhuber WL, Shimizu Y. The neural regulation of the mammalian esophageal motility and its implication for esophageal diseases. ACTA ACUST UNITED AC 2009; 17:129-33. [PMID: 19497713 DOI: 10.1016/j.pathophys.2009.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/16/2009] [Accepted: 03/20/2009] [Indexed: 10/24/2022]
Abstract
In contrast to the tunica muscularis of the stomach, small intestine and large intestine, the external muscle layer of the mammalian esophagus contains not only smooth muscle but also striated muscle fibers. Although the swallowing pattern generator initiates the peristaltic movement via vagal preganglionic neurons that project to the myenteric ganglia in the smooth muscle esophagus, the progressing front of contraction is organized by a local reflex circuit composed by intrinsic neurons similarly to other gastrointestinal tracts. On the other hand, the peristalsis of the striated muscle esophagus is both initiated and organized by the swallowing pattern generator via vagal motor neurons that directly innervate the muscle fibers. The presence of a distinct ganglionated myenteric plexus in the striated muscle portion of the esophagus had been enigmatic and neglected in terms of peristaltic control for a long time. Recently, the regulatory roles of intrinsic neurons in the esophageal striated muscle have been clarified. It was reported that esophageal striated muscle receives dual innervation from both vagal motor fibers originating in the brainstem and varicose intrinsic nerve fibers originating in the myenteric plexus, which is called 'enteric co-innervation' of esophageal motor endplates. Moreover, a putative local neural reflex pathway that can control the motility of the striated muscle was identified in the rodent esophagus. This reflex circuit consists of primary afferent neurons and myenteric neurons, which can modulate the release of neurotransmitters from vagal motor neurons in the striated muscle esophagus. The pathogenesis of some esophageal disorders such as achalasia and gastroesophageal reflux disease might be involved in dysfunction of the neural networks including alterations of the myenteric neurons. These evidences indicate the physiological and pathological significance of intrinsic nervous system in the regulation of the esophageal motility. In addition, it is assumed that the components of intrinsic neurons might be therapeutic targets for several esophageal diseases.
Collapse
Affiliation(s)
- Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | | | | | | | | |
Collapse
|
27
|
Boudaka A, Wörl J, Shiina T, Shimizu Y, Takewaki T, Neuhuber WL. Galanin modulates vagally induced contractions in the mouse oesophagus. Neurogastroenterol Motil 2009; 21:180-8. [PMID: 19077146 DOI: 10.1111/j.1365-2982.2008.01224.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitrergic myenteric neurons co-innervating motor endplates were previously shown to inhibit vagally induced contractions of striated muscle in the rodent oesophagus. Immunohistochemical demonstration of putative co-transmitters, e.g. galanin, in enteric neurons prompted us to study a possible role of galanin in modulating vagally mediated contractions in an in vitro vagus nerve-oesophagus preparation of the mouse. Galanin (1-16) (1-100 nmol L(-1)), in the presence of the peptidase inhibitor, phenanthroline monohydrate, inhibited vagally induced contractions in a concentration-dependent manner (control: 100%; galanin 1 nmol L(-1): 95.6 +/- 1.6%; galanin 10 nmol L(-1): 57.3 +/- 6.5%; galanin 100 nmol L(-1): 31.2 +/- 8.1%, n = 5). The non-selective galanin receptor antagonist, galantide (100 nmol L(-1)), blocked the inhibitory effect of galanin (10 nmol L(-1)) while the selective non-galanin receptor 1 and galanin receptor 3 antagonists, M871 (1 micromol L(-1)) and SNAP37889 (100 nmol L(-1)), respectively, and the nitric oxide synthase inhibitor, NG-nitro-l-arginine methyl ester (L-NAME) (200 micromol L(-1)), failed to affect this galanin-induced response. Simultaneous application of galantide (100 nmol L(-1)) and L-NAME (200 micromol L(-1)) significantly reduced the inhibitory effect of capsaicin (30 mumol L(-1)) on vagally induced contractions when compared with its effect in the presence of L-NAME alone or in combination with the selective galanin receptor 2 or 3 antagonists. An inhibitory effect of piperine on vagally induced contractions was reduced neither by galantide nor by L-NAME. Immunohistochemistry revealed galanin immunoreactive myenteric neurons and nerve fibres intermingling with cholinergic vagal terminals at motor endplates. These data suggest that galanin from co-innervating enteric neurons co-operates with nitric oxide in modulating vagally induced contractions in the mouse oesophagus.
Collapse
Affiliation(s)
- A Boudaka
- Institute of Anatomy, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
28
|
KHAN N, SINGH N, JAGGI AS. Possible Role of Spleen Derived Factors, Vanilloid Receptors and Calcitonin Gene-related Peptide in Diabetes Induced Hyperalgesia in Mice. YAKUGAKU ZASSHI 2008; 128:1699-705. [DOI: 10.1248/yakushi.128.1699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nadeem KHAN
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University
| | - Nirmal SINGH
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University
| | | |
Collapse
|
29
|
Kallmünzer B, Sörensen B, Neuhuber WL, Wörl J. Enteric co-innervation of striated muscle fibres in human oesophagus. Neurogastroenterol Motil 2008; 20:597-610. [PMID: 18221249 DOI: 10.1111/j.1365-2982.2007.01075.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oesophageal striated muscle of several mammalian species receives dual innervation from both vagal motor fibres originating in the brain stem and enteric nerve fibres originating in myenteric ganglia. The aim of this study was to investigate this so-called enteric co-innervation in the human oesophagus. Histochemical and immunohistochemical methods combined with confocal laser scanning microscopy were utilized to study innervation of 14 oesophagi obtained from body donors (age range 47-95 years). In addition, the distribution of striated and smooth muscle in longitudinal and circular layers of the tunica muscularis was studied semiquantitatively. The upper half of the oesophagus was built up of both muscle types with a predominance (>50-60%) of striated muscle, whereas the lower half consisted of smooth muscle only. The majority of motor endplates was compact and ovoid. Enteric nerve fibres on approximately 17% of motor endplates stained for neuronal nitric oxide synthase, vasoactive intestinal polypeptide, galanin and neuropeptide Y and were completely separated from vagal cholinergic nerve terminals. There was remarkable variability of co-innervation rates between striated muscle bundles with some reaching almost 50%. Myenteric neurons representing the putative source of enteric co-innervating nerve fibres, stained for all these markers, which were almost completely colocalized with NADPH-diaphorase. Our study provides evidence for enteric co-innervation of striated muscle in human oesophagus. From these and recent functional results in various rodent species, we suggest that this innervation component represents an integral part of an intramural reflex mechanism for local most likely inhibitory modulation of oesophageal motility.
Collapse
Affiliation(s)
- B Kallmünzer
- Institute of Anatomy, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | |
Collapse
|
30
|
Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M, Malli R, Graier WF. Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 2008; 121:1704-1717. [PMID: 18445684 PMCID: PMC4067516 DOI: 10.1242/jcs.020958] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although the endocannabinoid anandamide is frequently described to act predominantly in the cardiovascular system, the molecular mechanisms of its signaling remained unclear. In human endothelial cells, two receptors for anandamide were found, which were characterized as cannabinoid 1 receptor (CB1R; CNR1) and G-protein-coupled receptor 55 (GPR55). Both receptors trigger distinct signaling pathways. It crucially depends on the activation status of integrins which signaling cascade becomes promoted upon anandamide stimulation. Under conditions of inactive integrins, anandamide initiates CB1R-derived signaling, including Gi-protein-mediated activation of spleen tyrosine kinase (Syk), resulting in NFkappaB translocation. Furthermore, Syk inhibits phosphoinositide 3-kinase (PI3K) that represents a key protein in the transduction of GPR55-originated signaling. However, once integrins are clustered, CB1R splits from integrins and, thus, Syk cannot further inhibit GPR55-triggered signaling resulting in intracellular Ca2+ mobilization from the endoplasmic reticulum (ER) via a PI3K-Bmx-phospholipase C (PLC) pathway and activation of nuclear factor of activated T-cells. Altogether, these data demonstrate that the physiological effects of anandamide on endothelial cells depend on the status of integrin clustering.
Collapse
Affiliation(s)
| | - Cristina Zoratti
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Karin Osibow
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Nariman Balenga
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, A8010, Austria
| | - Edith Goessnitzer
- Institute of Pharmaceutical Chemistry, University Graz, Graz Austria
| | - Maria Waldhoer
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, A8010, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| |
Collapse
|