1
|
Naghdibadi M, Momeni M, Yavari P, Gholaminejad A, Roointan A. Clear Cell Renal Cell Carcinoma: A Comprehensive in silico Study in Searching for Therapeutic Targets. Kidney Blood Press Res 2023; 48:135-150. [PMID: 36854280 PMCID: PMC10042236 DOI: 10.1159/000529861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
INTRODUCTION Clear cell renal cell carcinoma (ccRCC) is recognized as one of the leading causes of illness and death worldwide. Understanding the molecular mechanisms in ccRCC pathogenesis is crucial for discovering novel therapeutic targets and developing efficient drugs. With the application of a comprehensive in silico analysis of the ccRCC-related array sets, the main objective of this study was to discover the top molecules and pathways in the pathogenesis of this cancer. METHODS ccRCC microarray datasets were downloaded from the Gene Expression Omnibus database, and after quality checking, normalization, and analysis using the Limma algorithm, differentially expressed genes (DEGs) were identified, considering the adjusted p value <0.049. The intensity values of the identified DEGs were introduced to the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to construct co-expression modules. Functional enrichment analyses were performed using the DEGs in the disease-correlated module, and hub genes were identified among the top genes in a protein-protein interaction network and the disease most correlated module. The expression analysis of hub genes was done by utilizing GEPIA, and the GSCA server was used to compare the expression patterns of hub genes in ccRCC and other cancers. DGIdb database was utilized to identify the hub gene-related drugs. RESULTS Three datasets, including GSE11151, GSE12606, and GSE36897, were retrieved, merged, normalized, and analyzed. Using WGCNA, the DEGs were clustered into eight different modules. Translocation of ZAP-70 to immunological synapse, endosomal/vacuolar pathway, cell surface interactions at the vascular wall, and immune-related pathways were the topmost enriched terms for the ccRCC-correlated DEGs. Twelve genes including PTPRC, ITGAM, TLR2, CD86, PLEK, TYROBP, ITGB2, RAC2, CSF1R, CCR5, CCL5, and LCP2 were introduced as hub genes. All the 12 hub genes were upregulated in ccRCC samples and showed a positive correlation with the infiltration of different immune cells. According to the DGIdb database, 127 drugs, including tyrosine kinase inhibitors, glucocorticoids, and chemotaxis targeting molecules, were identified to interact with the hub genes. CONCLUSION By utilizing an integrative bioinformatics approach, this experiment shed light on the underlying pathways in the pathogenesis of ccRCC and introduced several potential therapeutic targets for repurposing or developing novel drugs for an efficient treatment of this cancer. Our next step would be to assess the gene expression profiles of the identified hubs in different cell populations in the tumor microenvironment.
Collapse
Affiliation(s)
| | - Maryam Momeni
- Department of Biotechnology, Faculty of Biological Science and Technology, The University of Isfahan, Isfahan, Iran
| | - Parvin Yavari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Characterization of the RAS/RAF/ERK Signal Cascade as a Novel Regulating Factor in Alpha-Amanitin-Induced Cytotoxicity in Huh-7 Cells. Int J Mol Sci 2022; 23:ijms232012294. [PMID: 36293151 PMCID: PMC9603094 DOI: 10.3390/ijms232012294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
The well-known hepatotoxicity mechanism resulting from alpha-amanitin (α-AMA) exposure arises from RNA polymerase II (RNAP II) inhibition. RNAP Ⅱ inhibition occurs through the dysregulation of mRNA synthesis. However, the signaling pathways in hepatocytes that arise from α-AMA have not yet been fully elucidated. Here, we identified that the RAS/RAF/ERK signaling pathway was activated through quantitative phosphoproteomic and molecular biological analyses in Huh-7 cells. Bioinformatics analysis showed that α-AMA exposure increased protein phosphorylation in a time-dependent α-AMA exposure. In addition, phosphorylation increased not only the components of the ERK signaling pathway but also U2AF65 and SPF45, known splicing factors. Therefore, we propose a novel mechanism of α-AMA as follows. The RAS/RAF/ERK signaling pathway involved in aberrant splicing events is activated by α-AMA exposure followed by aberrant splicing events leading to cell death in Huh-7 cells.
Collapse
|
3
|
Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J Cancer Res Clin Oncol 2022; 149:2095-2113. [PMID: 35876951 PMCID: PMC9310000 DOI: 10.1007/s00432-022-04187-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently prescribed drug classes with wide therapeutic applications over the centuries. Starting from the use of salicylate-containing willow leaves to the recent rise and fall of highly selective cyclooxygenase-2 (COX-2) inhibitors and the latest dual-acting anti-inflammatory molecules, they have displayed a rapid and ongoing evolution. Despite the enormous advances in the last twenty years, investigators are still in search of the design and development of more potent and safer therapy against inflammatory conditions. This challenge has been increasingly attractive as the emergence of inflammation as a common seed and unifying mechanism for most chronic diseases. Indeed, this fact put the NSAIDs in the spotlight for repurposing against inflammation-related disorders. This review attempts to present a historical perspective on the evolution of NSAIDs, regarding their COX-dependent/independent mode of actions, structural and mechanism-based classifications, and adverse effects. Additionally, a systematic review of previous studies was carried out to show the current situation in drug repurposing, particularly in cancers associated with the GI tract such as gastric and colorectal carcinoma. In the case of non-GI-related cancers, preclinical studies elucidating the effects and modes of action were collected and summarized.
Collapse
|
4
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J, Solano JD, Ibarra-Rubio ME. Redox-sensitive signaling pathways in renal cell carcinoma. Biofactors 2022; 48:342-358. [PMID: 34590744 DOI: 10.1002/biof.1784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most lethal urological cancers, highly resistant to chemo and radiotherapy. Obesity and smoking are the best-known risk factors of RCC, both related to oxidative stress presence, suggesting a significant role in RCC development and maintenance. Surgical resection is the treatment of choice for localized RCC; however, this neoplasia is hardly diagnosable at its initial stages, occurring commonly in late phases and even when metastasis is already present. Systemic therapies are the option against RCC in these more advanced stages, such as cytokine therapy or a combination of tyrosine kinase inhibitors with immunotherapies; nevertheless, these strategies are still insufficient. A field poorly analyzed in this neoplasia is the status of cell signaling pathways sensible to the redox state, which have been associated with the development and maintenance of RCC. This review focuses on alterations reported in the following redox-sensitive molecules and signaling pathways in RCC: mitogen-activated protein kinases, protein kinase B (AKT)/tuberous sclerosis complex 2/mammalian target of rapamycin C1, AKT/glycogen synthase kinase 3/β-catenin, nuclear factor κB/inhibitor of κB/epidermal growth factor receptor, and protein kinase Cζ/cut-like homeodomain protein/factor inhibiting hypoxia-inducible factor (HIF)/HIF as potential targets for redox therapy.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José D Solano
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Elena Ibarra-Rubio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
6
|
Effect of Quercetin on Injury to Indomethacin-Treated Human Embryonic Kidney 293 Cells. Life (Basel) 2021; 11:life11111134. [PMID: 34833010 PMCID: PMC8623736 DOI: 10.3390/life11111134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammation and pain and even to prevent the progression of cardiovascular disease. They have become widely used because of their effectiveness, especially among athletes performing high-intensity training. Indomethacin is used for pain management in sports medicine and is highly effective and versatile. However, several clinical studies have reported that indomethacin induces acute renal damage. In the present study, we determined that indomethacin reduced human embryonic kidney 293 (HEK293) cell viability in a concentration-dependent manner by triggering apoptosis. In addition, we demonstrated the effect of quercetin on indomethacin-treated HEK293 cells by inactivating the caspase-3 and caspase-9 signals. Furthermore, quercetin reduced ROS production and increased mitochondrial membrane potential (ΔΨm) in indomethacin-treated HEK293 cells. Our results indicate that quercetin can interrupt the activated caspase and mitochondrial pathway induced by indomethacin in HEK293 cells and affect apoptotic mRNA expression. Quercetin can protect against indomethacin-induced HEK293 cell apoptosis by regulating abnormal ΔΨm and apoptotic mRNA expression.
Collapse
|
7
|
Aboelella NS, Brandle C, Kim T, Ding ZC, Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13050986. [PMID: 33673398 PMCID: PMC7956301 DOI: 10.3390/cancers13050986] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer cells are consistently under oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. This feature has been exploited to develop therapeutic strategies that control tumor growth by modulating the oxidative stress in tumor cells. This review provides an overview of recent advances in cancer therapies targeting tumor oxidative stress, and highlights the emerging evidence implicating the effectiveness of cancer immunotherapies in intensifying tumor oxidative stress. The promises and challenges of combining ROS-inducing agents with cancer immunotherapy are also discussed. Abstract It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.
Collapse
Affiliation(s)
- Nada S. Aboelella
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
| | - Timothy Kim
- The Center for Undergraduate Research and Scholarship, Augusta University, Augusta, GA 30912, USA;
| | - Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-4472
| |
Collapse
|
8
|
Choe R, Il Yun S. Fmoc-diphenylalanine-based hydrogels as a potential carrier for drug delivery. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractSelf-assembled hydrogels from 9-fluorenylmethoxycarbonyl-modified diphenylalanine (Fmoc-FF) peptides were evaluated as potential vehicles for drug delivery. During self-assembly of Fmoc-FF, high concentrations of indomethacin (IDM) drugs were shown to be incorporated into the hydrogels. The β-sheet arrangement of peptides was found to be predominant in Fmoc-FF–IDM hydrogels regardless of the IDM content. The release mechanism for IDM displayed a biphasic profile comprising an initial hydrogel erosion-dominated stage followed by the diffusion-controlled stage. Small amounts of polyamidoamine dendrimer (PAMAM) added to the hydrogel (Fmoc-FF 0.5%–IDM 0.5%–PAMAM 0.03%) resulted in a more prolonged IDM release compared with Fmoc-FF 0.5%–IDM 0.5% hydrogel. Furthermore, these IDM-loaded hydrogels demonstrated excellent thixotropic response and injectability, which make them suitable candidates for use as injectable self-healing matrices for drug delivery.
Collapse
Affiliation(s)
- Ranjoo Choe
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea
| | - Seok Il Yun
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea
| |
Collapse
|
9
|
Costa JG, Saraiva N, Batinic-Haberle I, Castro M, Oliveira NG, Fernandes AS. The SOD Mimic MnTnHex-2-PyP 5+ Reduces the Viability and Migration of 786-O Human Renal Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8100490. [PMID: 31627290 PMCID: PMC6826590 DOI: 10.3390/antiox8100490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
Clear-cell renal carcinoma (ccRCC) is the most common type of renal cancer. The importance of oxidative stress in the context of this disease has been described, although there is only little information concerning the role of superoxide dismutase (SOD) enzymes. The importance of SOD in different pathological conditions promoted the development of SOD mimics (SODm). As such, manganese(III) porphyrins can mimic the natural SOD enzymes and scavenge different reactive oxygen species (ROS), thus modulating the cellular redox status. In this study, the exposure of 786-O human renal cancer cells to MnTnHex-2-PyP5+ (MnP), a very promising SODm, led to a concentration and time-dependent decrease in cell viability and in the cell proliferation indices, as well as to an increase in apoptosis. No relevant effects in terms of micronuclei formation were observed. Moreover, the exposure to MnP resulted in a concentration-dependent increase in intracellular ROS, presumably due to the generation of H2O2 by the inherent redox mechanisms of MnP, along with the limited ability of cancer cells to detoxify this species. Although the MnP treatment did not result in a reduction in the collective cell migration, a significant decrease in chemotactic migration was observed. Overall, these results suggest that MnP has a beneficial impact on reducing renal cancer cell viability and migration and warrant further studies regarding SODm-based therapeutic strategies against human renal cancer.
Collapse
Affiliation(s)
- João G Costa
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno Saraiva
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana S Fernandes
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| |
Collapse
|
10
|
Chang CY, Li JR, Wu CC, Wang JD, Yang CP, Chen WY, Wang WY, Chen CJ. Indomethacin induced glioma apoptosis involving ceramide signals. Exp Cell Res 2018; 365:66-77. [DOI: 10.1016/j.yexcr.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 01/31/2023]
|
11
|
Nayan M, Juurlink DN, Austin PC, Macdonald EM, Finelli A, Kulkarni GS, Hamilton RJ. Medication use and kidney cancer survival: A population-based study. Int J Cancer 2018; 142:1776-1785. [PMID: 29226327 DOI: 10.1002/ijc.31204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
Several studies demonstrate that use of commonly prescribed medications is associated with improved survival in various malignancies. Methods of classifying medication use in many of these studies, however, do not account for intermittent or cumulative use. Moreover, there are limited data in kidney cancer. Therefore, we performed a population-based cohort study utilizing healthcare databases in Ontario, Canada. We identified patients aged ≥65 with an incident diagnosis of kidney cancer between 1997 and 2013 and examined use of nine putative anti-neoplastic medications using prescription claims. Cox proportional hazard models evaluated the association of medication exposure on cancer-specific and overall survival. We conducted three separate analyses: the effect of cumulative duration of exposure to the study medications on outcomes, the effect of current exposure (in a binary nature) and the effect of exposure at diagnosis. During the 16-year study period, we studied 9,124 patients. Increasing cumulative use of angiotensin-converting enzyme inhibitors, non-steroidal anti-inflammatory drugs (NSAIDs) and selective serotonin reuptake inhibitors were associated with markedly improved cancer-specific survival; increasing use of NSAIDs was associated with markedly improved overall survival. These results were generally discordant with analyses evaluating the effect of current use and exposure at diagnosis. In conclusion, pharmacoepidemiology studies may be sensitive to the method of analysis; cumulative use analyses may be the most robust as it accounts for intermittent use and supports a dose-outcome relationship. Prospective studies are needed to confirm whether patients diagnosed with kidney cancer should be started on an angiotensin-converting enzyme inhibitor, NSAID or selective serotonin reuptake inhibitor to improve survival.
Collapse
Affiliation(s)
- Madhur Nayan
- Division of Urology, Departments of Surgery and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, Canada
| | - David N Juurlink
- Department of Internal Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Institute for Clinical Evaluative Sciences, Toronto, Canada.,Institute of Health Management, Policy and Evaluation, University of Toronto, Toronto, Canada
| | - Peter C Austin
- Institute for Clinical Evaluative Sciences, Toronto, Canada.,Institute of Health Management, Policy and Evaluation, University of Toronto, Toronto, Canada.,Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Canada
| | | | - Antonio Finelli
- Division of Urology, Departments of Surgery and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, Canada
| | - Girish S Kulkarni
- Division of Urology, Departments of Surgery and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, Canada.,Institute for Clinical Evaluative Sciences, Toronto, Canada.,Institute of Health Management, Policy and Evaluation, University of Toronto, Toronto, Canada
| | - Robert J Hamilton
- Division of Urology, Departments of Surgery and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, Canada
| | | |
Collapse
|
12
|
Cuello NI, Elías VR, Mendieta SN, Longhi M, Crivello ME, Oliva MI, Eimer GA. Drug release profiles of modified MCM-41 with superparamagnetic behavior correlated with the employed synthesis method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:674-681. [PMID: 28576037 DOI: 10.1016/j.msec.2017.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/13/2016] [Accepted: 02/06/2017] [Indexed: 01/21/2023]
Abstract
Mesoporous materials with superparamagnetic properties were successfully synthesized by two different methods: direct incorporation (DI) and wet impregnation (WI). The synthetized solids were evaluated as host of drugs for delivery systems and their physicochemical properties were characterized by XRD, ICP, N2 adsorption-desorption, spectroscopies of UV-Vis DR, FT-IR and their magnetic properties were measured. Indomethacin (IND) was incorporated into the materials and the kinetic of the release profiles was studied by applying the Pepas and Sahlin model. In this sense, materials modified by DI, particularly that with hydrothermal treatment, showed the higher adsorption capacity and slower release rate. This behavior could be associated to the synthesis method used that allowed a high percentage of silanol groups available in the solids surface, which can interact with the IND molecule. This feature coupled with the superparamagnetic behavior; make these materials very interesting for drug delivery systems.
Collapse
Affiliation(s)
- Natalia I Cuello
- Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba, Maestro López y Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba, Argentina
| | - Verónica R Elías
- Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba, Maestro López y Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba, Argentina
| | - Silvia N Mendieta
- Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba, Maestro López y Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba, Argentina
| | - Marcela Longhi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA CONICET-UNC, Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mónica E Crivello
- Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba, Maestro López y Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba, Argentina
| | - Marcos I Oliva
- Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba - IFEG, CONICET. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Griselda A Eimer
- Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba, Maestro López y Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba, Argentina.
| |
Collapse
|
13
|
Thakre-Nighot M, Blikslager AT. Indomethacin induces increase in gastric epithelial tight junction permeability via redistribution of occludin and activation of p38 MAPK in MKN-28 Cells. Tissue Barriers 2016; 4:e1187325. [PMID: 27583191 DOI: 10.1080/21688370.2016.1187325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022] Open
Abstract
Tight Junctions (TJ) create a paracellular barrier that is compromised when nonsteriodal anti-inflammatory drugs (NSAIDs) injure the gastric epithelium, leading to increased permeability. However, the mechanism of NSAID-induced gastric injury is unclear. Here, we examined the effect of indomethacin on barrier function and TJ in gastric MKN-28 cells. In concentration response studies, 500 µm indomethacin induced a significant decrease in transepithelial resistance (TER; 380 vs. 220 Ω·cm(2) for control and indomethacin-treated cells respectively, p < 0.05), and increased dextran permeability by 0.2 vs 1.2 g/l (p < 0.05). These changes in barrier function were completely ameliorated by the p38 MAPK inhibitor (SB-203580) but not by JNK inhibitor (SP-600125) or MEK/ERK inhibitor (PD-98059). SiRNA knock down of p38 MAPK prevented the loss of barrier function caused by indomethacin in MKN-28 cells. Western analyses of TJ proteins revealed that expression of occludin was reduced by indomethacin, whereas there was no change in other TJ proteins. The loss of occludin expression induced by indomethacin was prevented by inhibition of p38 MAPK but not JNK or ERK and also by siRNA of p38 MAPK. Immunofluorescence revealed disruption of occludin localization at the site of the tight junction in indomethacin-treated cells, and this was attenuated by inhibition of p38 MAPK. NSAID injury to murine gastric mucosa on Ussing chambers revealed that indomethacin caused a significant drop in TER and increased paracellular permeability. Pretreatment with the p38 MAPK inhibitor significantly attenuated the disruption of barrier function, but JNK and MEK/ERK inhibition had no effect. Western blot analysis on gastric mucosa reveled loss of TJ protein occludin by indomethacin, which was prevented by inhibition of p38 MAPK. This data suggests that indomethacin compromises the gastric epithelial barrier via p38 MAPK inducing occludin alterations in the TJs.
Collapse
Affiliation(s)
- Meghali Thakre-Nighot
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, NC, USA
| | - Anthony T Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, NC, USA
| |
Collapse
|
14
|
Yang H, Deng J, Jiang Y, Chen J, Zeng X, He Z, Jiang X, Li Z, Jiang C. Emulsified isoflurane treatment inhibits the cell cycle and respiration of human bronchial epithelial 16HBE cells in a p53-independent manner. Mol Med Rep 2016; 14:349-54. [PMID: 27176636 DOI: 10.3892/mmr.2016.5257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 04/14/2016] [Indexed: 02/05/2023] Open
Abstract
Emulsified isoflurane (EIso), as a result of its rapid anesthetic induction, recovery and convenience, is widely used as a novel intravenous general anesthetic. Treatment with EIso can reduce injuries caused by ischemia/reperfusion (I/R) to organs, including the heart, lung and liver, without knowing understanding the molecular mechanism. The present study hypothesized that treatment with EIso can affect the physiological processes of human lung bronchial epithelial cells (16HBE) prior to I/R. To test this hypothesis, the present study first constructed stable p53 knockdown and synthesis of cytochrome c oxidase (SCO)2 knockdown 16HBE cells. The above cells were subsequently treated with EIso at a concentration of 0.1 and 0.2% for 24 h. The relevant concentration of fat emulsion was used as a negative control. The expression levels of p53, p21, SCO1, SCO2 and Tp53‑induced glycolysis and apoptosis regulator (TIGAR) were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting. Subsequently, the cell proliferation, respiration and glycolysis were investigated. The results revealed that EIso treatment significantly decreased the transcription of TIGAR, SCO1 and SCO2, and increased the transcription of p21, which are all p53 target genes, in a p53-independent manner. The cell cycle was inhibited by arresting cells at the G0/G1 phase. Respiration was reduced, which caused a decrease in oxygen consumption and the accumulation of lactate and reactive oxygen species. Taken together, EIso treatment inhibited the proliferation and respiration, and promoted glycolysis in 16HBE cells. This regulatory pathway may represent a protective mechanism of EIso treatment by inhibiting cell growth and decreasing the oxygen consumption from I/R.
Collapse
Affiliation(s)
- Hui Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jia Deng
- Department of Anesthesiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yingying Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiao Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xianzheng Zeng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhiyang He
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojuan Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhuoning Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chunling Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Sawada R, Iwata H, Mizutani S, Yamanishi Y. Target-Based Drug Repositioning Using Large-Scale Chemical-Protein Interactome Data. J Chem Inf Model 2015; 55:2717-30. [PMID: 26580494 DOI: 10.1021/acs.jcim.5b00330] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug repositioning, or the identification of new indications for known drugs, is a useful strategy for drug discovery. In this study, we developed novel computational methods to predict potential drug targets and new drug indications for systematic drug repositioning using large-scale chemical-protein interactome data. We explored the target space of drugs (including primary targets and off-targets) based on chemical structure similarity and phenotypic effect similarity by making optimal use of millions of compound-protein interactions. On the basis of the target profiles of drugs, we constructed statistical models to predict new drug indications for a wide range of diseases with various molecular features. The proposed method outperformed previous methods in terms of interpretability, applicability, and accuracy. Finally, we conducted a comprehensive prediction of the drug-target-disease association network for 8270 drugs and 1401 diseases and showed biologically meaningful examples of newly predicted drug targets and drug indications. The predictive model is useful to understand the mechanisms of the predicted drug indications.
Collapse
Affiliation(s)
- Ryusuke Sawada
- Division of System Cohort, Multi-scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroaki Iwata
- Division of System Cohort, Multi-scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sayaka Mizutani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yoshihiro Yamanishi
- Division of System Cohort, Multi-scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Institute for Advanced Study, Kyushu University , 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
16
|
Nagappan AS, Varghese J, James JV, Jacob M. Indomethacin induces endoplasmic reticulum stress, but not apoptosis, in the rat kidney. Eur J Pharmacol 2015; 761:199-205. [DOI: 10.1016/j.ejphar.2015.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
|
17
|
Wang L, Wang YM, Xu S, Wang WG, Chen Y, Mao JY, Tian BL. MicroRNA-215 is upregulated by treatment with Adriamycin and leads to the chemoresistance of hepatocellular carcinoma cells and tissues. Mol Med Rep 2015; 12:5274-80. [PMID: 26135967 DOI: 10.3892/mmr.2015.4012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/05/2015] [Indexed: 02/05/2023] Open
Abstract
Non-coding microRNAs (miRNAs), involved in post-transcriptional control, are widely involved in the mechanism of cellular resistance to antitumor chemotherapy. Ectopic expression of one of these miRNAs, miRNA‑215 (miR‑215), leads to chemoresistance by directly targeting dihydrofolate reductase (DHFR) and thymidylate synthase (TS), which are two of the most important targets of chemotherapeutic agents. This indicates the possible upregulation of endogenous miR‑215 in the process of chemoresistance by interfering with important transcripts. In the present study, the upregulation of miR‑215 was examined in hepatocellular carcinoma (HCC) subcell lines, Adriamycin (ADM)‑resistant HepG2 (HepG2/AR), Hep3B (Hep3B/AR) cell lines, and in ADM‑treated patients with HCC. Upregulated miR‑215 directly targeted DHFR and TS mRNA and reduced their protein expression levels, without altering mRNA levels. The ectopic expression of miR‑215 anti‑sense oligo‑nucleotides in HepG2/AR and Hep3B/AR cells enhanced chemosensitivity, whereas the expression of the miR‑215 mimics led to chemoresistance. Notably, the upregulation of miR‑215 indirectly increased the protein levels of P53 and P21 levels in the HepG2 cells, which contain functional P53, which is expected to result in the inhibition of proliferation and colony formation. Taken together, the present study demonstrated that the upregulation of miR‑215 resulting from ADM treatment in HCC cells leads to the development of insensitivity to ADM and worsens the prognosis of patients with HCC exhibiting mutated P53.
Collapse
Affiliation(s)
- Li Wang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan Ming Wang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Song Xu
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wei Guo Wang
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Chen
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing Yu Mao
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bo Le Tian
- Department of Hepatobiliopancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
18
|
Aguilar-Alonso FA, Solano JD, Vargas-Olvera CY, Pacheco-Bernal I, Pariente-Pérez TO, Ibarra-Rubio ME. MAPKs’ status at early stages of renal carcinogenesis and tumors induced by ferric nitrilotriacetate. Mol Cell Biochem 2015; 404:161-70. [PMID: 25724684 DOI: 10.1007/s11010-015-2375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
|
19
|
Díaz-González F, Sánchez-Madrid F. NSAIDs: learning new tricks from old drugs. Eur J Immunol 2015; 45:679-86. [PMID: 25523026 DOI: 10.1002/eji.201445222] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/07/2014] [Accepted: 12/16/2014] [Indexed: 01/04/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) comprise a heterogeneous group of pharmacological agents used for the symptomatic treatment of fever, pain, and inflammation. Although the main mechanism of action of NSAIDs consists of inhibiting prostaglandin synthesis by blocking the enzyme cyclooxygenase (COX), clinical, and experimental data strongly indicate the existence of additional mechanisms. Some of the COX-independent effects are related to the ability of NSAIDs to penetrate biological membranes and disrupt important molecular interactions necessary for a wide array of cellular functions, including cell adhesion. These effects, in particular those that interfere with L-selectin function in neutrophils during the inflammatory response, may contribute to the anti-inflammatory properties that NSAIDs exert in vivo. Recent contributions in this field have shown that the anti-L-selectin effect of NSAIDs is related to the NADPH-oxidase-dependent generation of superoxide anion at the plasma membrane. These findings might represent a novel approach for developing new and effective anti-inflammatory compounds with a better safety profile than the currently available NSAIDs.
Collapse
Affiliation(s)
- Federico Díaz-González
- Department of Internal Medicine, Universidad de La Laguna, Rheumatology Service, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
20
|
Zeng L, Chen J, Ji S, Chan L, Zheng W, Chen T. Construction of a cancer-targeted nanosystem as a payload of iron complexes to reverse cancer multidrug resistance. J Mater Chem B 2015; 3:4345-4354. [DOI: 10.1039/c4tb02010c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study demonstrates the construction of a cancer-targeted nanosystem as payload of iron complexes to reverse cancer multidrug resistance.
Collapse
Affiliation(s)
- Lilan Zeng
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jingjing Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Shengbin Ji
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Leung Chan
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Wenjie Zheng
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
21
|
Matrix metalloproteinase-9 is up-regulated by CCL19/CCR7 interaction via PI3K/Akt pathway and is involved in CCL19-driven BMSCs migration. Biochem Biophys Res Commun 2014; 451:222-8. [DOI: 10.1016/j.bbrc.2014.07.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 07/23/2014] [Indexed: 01/08/2023]
|
22
|
Crystal structure, infrared and EPR spectra and anticancer activity in vitro of the novel manganese(II) complexes of indolecarboxylic acids. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Yuan J, Huang G, Xiao Z, Lin L, Han T. Overexpression of β-NGF promotes differentiation of bone marrow mesenchymal stem cells into neurons through regulation of AKT and MAPK pathway. Mol Cell Biochem 2013; 383:201-11. [PMID: 23934089 DOI: 10.1007/s11010-013-1768-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/02/2013] [Indexed: 02/03/2023]
Abstract
Bone marrow stromal stem cells (BMSCs) are fibroblastic in shape and capable of self-renewal and have the potential for multi-directional differentiation. Nerve growth factor (NGF), a homodimeric polypeptide, plays an important role in the nervous system by supporting the survival and growth of neural cells, regulating cell growth, promoting differentiation into neuron, and neuron migration. Adenoviral vectors are DNA viruses that contain 36 kb of double-stranded DNA allowing for transmission of the genes to the host nucleus but not inserting them into the host chromosome. The present study aimed to investigate the induction efficiency and differentiation of neural cells from BMSCs by β-NGF gene transfection with recombinant adenoviral vector (Ad-β-NGF) in vitro. The results of immunochemical assay confirmed the induced cells as neuron cells. Moreover, flow cytometric analysis, Annexin-V-FITC/PI, and BrdU assay revealed that chemical inducer β-mercaptoethanol (β-met) triggered apoptosis of BMSCs, as evidenced by inhibition of DNA fragmentation, nuclear condensation, translocation of phospholipid phosphatidylserine, and activation of caspase-3. Furthermore, the results of western blotting showed that β-met suppressed AKT signaling pathway and regulated the MAPKs during differentiation of BMSCs. In contrast, Ad-β-NGF effectively induced the differentiation of BMSCs without causing any cytopathic phenomenon and apoptotic cell death. Moreover, Ad-β-NGF recovered the expression level of phosphorylated AKT and MAPKs in cells exposed to chemical reagents. Taken together, these results suggest that β-NGF gene transfection promotes the differentiation of BMSCs into neurons through regulation of AKT and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Jun Yuan
- Department of Neurovascular Surgery, First Hospital Affiliated to Shantou University, 57# Changping Road, Jinping District, Shantou, 515041, China
| | | | | | | | | |
Collapse
|
24
|
Cho HW, Park SK, Heo KW, Hur DY. Methotrexate induces apoptosis in nasal polyps via caspase cascades and both mitochondria-mediated and p38 mitogen-activated protein kinases/Jun N-terminal kinase pathways. Am J Rhinol Allergy 2013; 27:e26-31. [PMID: 23406595 DOI: 10.2500/ajra.2013.27.3849] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Methotrexate (MTX) is a very effective treatment for chronic inflammatory diseases that induces apoptosis in nasal polyps (NPs). However, the precise apoptotic pathway in NPs remains unclear. The aim of this study was to identify the apoptotic signaling pathways activated by MTX in NPs. METHODS NP tissues were organ cultured using an air-liquid interface method. Cultures were maintained in the presence or absence of MTX (10 or 100 μM) for 24 hours. To investigate apoptotic signaling in NPs, we performed reverse transcription-polymerase chain reaction and Western blotting. RESULTS MTX-treated NPs contained significantly increased amounts of the active forms of caspase 8, caspase 9, and caspase 3 and displayed increased cleavage of poly(ADP-ribose) polymerase. Expression of the proapoptotic molecules Bax and Bad at the mRNA and protein levels and of the activated molecules p-Bad and tBid was significantly higher in MTX-treated NPs than in nontreated NPs. In contrast, expression of the antiapoptotic molecule Bcl-2 at the mRNA and protein levels was significantly lower in MTX-treated NPs than in nontreated NPs. Expression of the phosphorylated forms of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) was significantly higher in MTX-treated NPs than in nontreated NPs. In contrast, expression of the phosphorylated form of Akt was significantly lower in MTX-treated NPs than in nontreated NPs. CONCLUSION MTX induces apoptosis in NPs via caspase cascades and both mitochondria-mediated and p38 MAPK/JNK pathways. We suggest that MTX can be used to treat NPs.
Collapse
Affiliation(s)
- Hong Wook Cho
- Departments of Otorhinolaryngology-Head and Neck Surgery, Inje University, College of Medicine, Pusan Paik Hospital, Busan, Korea
| | | | | | | |
Collapse
|
25
|
Induction of apoptosis by luteolin involving akt inactivation in human 786-o renal cell carcinoma cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:109105. [PMID: 23476679 PMCID: PMC3576787 DOI: 10.1155/2013/109105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/23/2012] [Accepted: 01/02/2013] [Indexed: 12/02/2022]
Abstract
There is a growing interest in the health-promoting effects of natural substances obtained from plants. Although luteolin has been identified as a potential therapeutic and preventive agent for cancer because of its potent cancer cell-killing activity, the molecular mechanisms have not been well elucidated. This study provides evidence of an alternative target for luteolin and sheds light on the mechanism of its physiological benefits. Treatment of 786-O renal cell carcinoma (RCC) cells (as well as A498 and ACHN) with luteolin caused cell apoptosis and death. This cytotoxicity was caused by the downregulation of Akt and resultant upregulation of apoptosis signal-regulating kinase-1 (Ask1), p38, and c-Jun N-terminal kinase (JNK) activities, probably via protein phosphatase 2A (PP2A) activation. In addition to being a concurrent substrate of caspases and event of cell death, heat shock protein-90 (HSP90) cleavage might also play a role in driving further cellular alterations and cell death, at least in part, involving an Akt-related mechanism. Due to the high expression of HSP90 and Akt-related molecules in RCC and other cancer cells, our findings suggest that PP2A activation might work in concert with HSP90 cleavage to inactivate Akt and lead to a vicious caspase-dependent apoptotic cycle in luteolin-treated 786-O cells.
Collapse
|
26
|
Li Y, Li X, Zheng W, Fan C, Zhang Y, Chen T. Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathways. J Mater Chem B 2013; 1:6365-6372. [DOI: 10.1039/c3tb21168a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Božić BDJ, Rogan JR, Poleti DD, Trišović NP, Božić BDJ, Ušćumlić GS. Synthesis, characterization and antiproliferative activity of transition metal complexes with 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanoic acid (oxaprozin). Chem Pharm Bull (Tokyo) 2012; 60:865-9. [PMID: 22790819 DOI: 10.1248/cpb.c12-00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with oxaprozin (Hoxa), a non-steroidal anti-inflammatory drug, has been synthesized. The drug and complexes have been characterized by elemental and thermogravimetric (TG) analysis, Fourier transform (FT)-IR, 1H-NMR, 13C-NMR, UV-Vis spectroscopy and magnetic susceptibility measurements. The (pseudo)octahedral geometry has been proposed for all complexes based on electronic spectra and magnetic moments. With exception of the Cu(II) complex, where bridging bidentate mode of COO groups has been found, FT-IR spectra confirmed chelately coordinated COO groups in the other complexes. The general formula of the complexes is [M(H2O)2(oxa)2 ·χH2O, with χ=2 for M=Mn, Co and Ni and χ=1.5 for Zn. The binuclear Cu(II) complex, [Cu2(H2O)2(OH)(oxa)3]·2H2O, has strong Cu-Cu interactions of antiferromagnetic type. The complexes and Hoxa did not exhibit the cytotoxic effect to peritoneal macrophages. For the first time these complexes have been tested for their in vitro antiproliferative activity against human colon and breast cancer cell lines, HCT-116 and MDA-231, respectively. For all investigated compounds significant antiproliferative effects have been observed. Ni(II) complex has been shown to be a promising antiproliferative agent exerting excellent activity against HCT-116 even in nanomolar concentrations.
Collapse
Affiliation(s)
- Bojan D J Božić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
28
|
Chiow KH, Tan Y, Chua RY, Huang D, Ng MLM, Torta F, Wenk MR, Wong SH. SNX3-dependent regulation of epidermal growth factor receptor (EGFR) trafficking and degradation by aspirin in epidermoid carcinoma (A-431) cells. Cell Mol Life Sci 2012; 69:1505-21. [PMID: 22159558 PMCID: PMC11114925 DOI: 10.1007/s00018-011-0887-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/21/2022]
Abstract
Since being introduced globally as aspirin in 1899, acetylsalicylic acid has been widely used as an analgesic, anti-inflammation, anti-pyretic, and anti-thrombotic drug for years. Aspirin had been reported to down-regulate surface expression of CD40, CD80, CD86, and MHCII in myeloid dendritic cells (DC), which played essential roles in regulating the immune system. We hypothesized that the down-regulation of these surface membrane proteins is partly due to the ability of aspirin in regulating trafficking/sorting of endocytosed surface membrane proteins. By using an established epidermoid carcinoma cell line (A-431), which overexpresses the epidermal growth factor receptor (EGFR) and transferrin receptor (TfnR), we show that aspirin (1) reduces cell surface expression of EGFR and (2) accumulates endocytosed-EGFR and -TfnR in the early/sorting endosome (ESE). Further elucidation of the mechanism suggests that aspirin enhances recruitment of SNX3 and SNX5 to membranes and consistently, both SNX3 and SNX5 play essential roles in the aspirin-mediated accumulation of endocytosed-TfnR at the ESE. This study sheds light on how aspirin may down-regulate surface expression of EGFR by inhibiting/delaying the exit of endocytosed-EGFR from the ESE and recycling of endocytosed-EGFR back to the cell surface.
Collapse
Affiliation(s)
- Kher Hsin Chiow
- Laboratory of Membrane Trafficking and Immunoregulation, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Luo Y, Li X, Chen T, Wang Y, Zheng W. Synthesis of a novel thiophene derivative that induces cancer cell apoptosis through modulation of AKT and MAPK pathways. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20041d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Xi J, Zhou L, Fei Y. Preparation of chondroitin sulfate nanocapsules for use as carries by the interfacial polymerization method. Int J Biol Macromol 2011; 50:157-63. [PMID: 22033115 DOI: 10.1016/j.ijbiomac.2011.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/18/2022]
Abstract
In this paper, the method of interfacial polymerization in emulsion was employed to fabricate chondroitin sulfate-methacrylate (ChSMA) nanocapsules, in which poor water-soluble drug of indomethacin (IND) could be effectively encapsulated. The morphology and the size distribution of synthesized nanocapsules were characterized by field emission scanning electron microscopy (FESEM) and dynamic light scattering (DLS) techniques. The quantitative drug loading was investigated. The IND/ChSMA noodle-like self-assemblies were observed with the increase of IND feed concentration, and the interactions between IND and ChSMA were illuminated by FT-IR and XRD measurements. The in vitro drug release of IND-loaded nanocapsules and IND/ChSMA self-assemblies were also carried out in simulated body fluid pH 7.4 at 37°C.
Collapse
Affiliation(s)
- Juqun Xi
- Department of Pharmacology, Medical School of Yangzhou University, Yangzhou, People's Republic of China.
| | | | | |
Collapse
|
31
|
Debrassi A, Bürger C, Rodrigues CA, Nedelko N, Ślawska-Waniewska A, Dłużewski P, Sobczak K, Greneche JM. Synthesis, characterization and in vitro drug release of magnetic N-benzyl-O-carboxymethylchitosan nanoparticles loaded with indomethacin. Acta Biomater 2011; 7:3078-85. [PMID: 21601660 DOI: 10.1016/j.actbio.2011.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/20/2011] [Accepted: 05/04/2011] [Indexed: 01/10/2023]
Abstract
Magnetic N-benzyl-O-carboxymethylchitosan nanoparticles were synthesized through incorporation and in situ methods and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and magnetization measurements. Indomethacin was incorporated into the nanoparticles via the solvent evaporation method. The indomethacin-loaded magnetic nanoparticles were characterized by the same techniques, and also by transmission electron microscopy. The nanoparticles containing the polymer showed a drug loading efficiency of between 60.8% and 74.8%, and the magnetic properties were not significantly affected by incorporation of the drug. The in vitro drug release study was carried out in simulated body fluid, pH 7.4 at 37°C. The profiles showed an initial fast release, which became slower as time progressed. The percentage of drug released after 5 h was between 60% and 90%, and the best fitting mathematical model for drug release was the Korsmeyer-Peppas model, indicating a Fickian diffusion mechanism.
Collapse
Affiliation(s)
- Aline Debrassi
- NIQFAR CCS, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pountos I, Giannoudis PV, Jones E, English A, Churchman S, Field S, Ponchel F, Bird H, Emery P, McGonagle D. NSAIDS inhibit in vitro MSC chondrogenesis but not osteogenesis: implications for mechanism of bone formation inhibition in man. J Cell Mol Med 2011; 15:525-34. [PMID: 20070439 PMCID: PMC3922374 DOI: 10.1111/j.1582-4934.2010.01006.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for analgesia but may inhibit bone formation. We investigated whether the reported NSAID effect on bone is related to inhibition of bone marrow mesenchymal stem cell (MSC) proliferation and osteogenic and chondrogenic differentiation and evaluated both cyclooxygenase (COX)-1 and COX-2 specific drugs. The effects of seven COX-1 and COX-2 inhibitors on MSC proliferation and osteogenic and chondrogenic differentiation were tested using Vybrant, sodium 3'-[1-(phenylaminocarbonyl)- 3,4-tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate (XTT), functional and quantitative assays of MSC differentiation. The MSC expression of COX-1 and COX-2 and prostaglandin E2 (PGE-2) levels were evaluated serially during lineage differentiation by quantitative PCR and ELISA. None of the NSAIDs at broad range of concentration (range 10(-3) to 100 μg/ml) significantly affected MSC proliferation. Surprisingly, MSC osteogenic differentiation inhibition was not evident. However, NSAIDs affected chondrogenic potential with a reduction in sulphated glycosaminoglycans (sGAG) content by 45% and 55% with diclofenac and ketorolac, respectively (P < 0.05 compared to controls). Parecoxib and meloxicam, more COX-2 specific reagents inhibited sGAG to a lesser degree, 22% and 27% respectively (P < 0.05 compared to controls). Cartilage pellet immunohistochemistry confirmed the above results. Pellet chondrogenesis was associated with increased COX-1 expression levels but not COX-2, and COX-1 specific drugs suppressed MSC PGE-2 more than COX-2 specific inhibitors. These findings suggest that NSAIDs may inhibit bone formation via blockage of MSC chondrogenic differentiation which is an important intermediate phase in normal endochondral bone formation.
Collapse
|
33
|
Woldemichael GM, Turbyville TJ, Linehan WM, McMahon JB. Carminomycin I is an apoptosis inducer that targets the Golgi complex in clear cell renal carcinoma cells. Cancer Res 2011; 71:134-42. [PMID: 21199801 DOI: 10.1158/0008-5472.can-10-0757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (CCRCC) evolves due to mutations in the Von Hippel-Lindau (VHL) tumor suppressor gene. Although the loss of VHL enables survival and proliferation of CCRCC cells, it is also expected to introduce vulnerabilities that may be exploited for therapeutics discovery. To this end, we developed a high-throughput screen to identify small molecules derived from plants, microorganisms, and marine organisms to which CCRCC cells are sensitive. Screening over 8,000 compounds using this approach, we report here the identification of the microbially derived compound carminomycin I (CA) as an effective inhibitor of VHL-defective (VHL(-/-)) CCRCC cell proliferation. CA also induced apoptosis in CCRCC cells by a mechanism independent of p53 or hypoxia-inducible factor 2. We found that P-glycoprotein (P-gp) sequestered CA within the Golgi complex. Interestingly, Golgi sequestration was critical for the antiproliferative effects of CA and P-gp inhibitors abrogated this activity. Furthermore, CA induced cleavage of the Golgi protein p115 and the translocation of its C-terminal fragment to the nucleus. Finally, examination of the activity of the VHL-interacting Golgi protein, endoplasmic reticulum-Golgi intermediate compartment, ERGIC-53 showed that VHL could mediate protection from CA in CCRCC cells. Our natural product-based screening approach has revealed the P-gp-mediated localization of anticancer compounds within the Golgi in CCRCC cells as a potential strategy of targeting VHL-deficient CCRCC cells.
Collapse
Affiliation(s)
- Girma M Woldemichael
- Molecular Targets Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|
34
|
Hyun MS, Hur JM, Mun YJ, Kim D, Woo WH. BBR induces apoptosis in HepG2 cell through an Akt-ASK1-ROS-p38MAPKs-linked cascade. J Cell Biochem 2010; 109:329-38. [PMID: 19950206 DOI: 10.1002/jcb.22384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Berberine (BBR) has indicated significant antimicrobial activity against a variety of organisms including bacteria, viruses, and fungi. The mechanism by which BBR initiates apoptosis remains poorly understood. In the present study, we demonstrated that BBR exhibited significant cytotoxicity in human hepatoma HepG2 cells. Herein, we investigated cytotoxicity mechanism of BBR in HepG2 cells. The results showed that the induction of apoptosis in HepG2 cells by BBR was characterized by DNA fragmentation, an increased percentage of annexin V, and the activation of caspase-3. The expressions of Bcl-2 protein and pro-caspase-3 were reduced by BBR in HepG2 cells. However, Bax protein was increased in the cells. BBR-induced apoptosis was preceded by increased generation of reactive oxygen species (ROS). NAC treatment, a scavenger of ROS, reversed BBR-induced apoptosis effects via inhibition of Bax activation and Bcl-2 inactivation. BBR-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of MAP Kinases (JNK and p38 MAPK), ASK1, Akt, and p53. Furthermore, SB203580, p38 inhibitor, reduced the apoptotic effect of BBR, and blocks the generation of ROS and NO as well as activation of Bax. We found that the treatment of HepG2 cells with BBR triggers generation of ROS through Akt phosphorylation, resulting in dissociation of the ASK1-mediated activation of JNK and p38 pathways.
Collapse
Affiliation(s)
- Mee-Sun Hyun
- Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan 570-749, South Korea
| | | | | | | | | |
Collapse
|
35
|
Melkko S, Mannocci L, Dumelin C, Villa A, Sommavilla R, Zhang Y, Grütter M, Keller N, Jermutus L, Jackson R, Scheuermann J, Neri D. Isolation of a Small-Molecule Inhibitor of the Antiapoptotic Protein Bcl-xL from a DNA-Encoded Chemical Library. ChemMedChem 2010; 5:584-90. [DOI: 10.1002/cmdc.200900520] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
CAO QJ, TIAN ZH, SUN S, YANG N, WANG F, HUANG LY, PENG A, LIU HT, ZHANG W. Determination of Norcantharidin-associated Proteins by Comparative Proteomic Analysis in BGC-823 Cells*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Réti A, Barna G, Pap E, Adleff V, L Komlósi V, Jeney A, Kralovánszky J, Budai B. Enhancement of 5-fluorouracil efficacy on high COX-2 expressing HCA-7 cells by low dose indomethacin and NS-398 but not on low COX-2 expressing HT-29 cells. Pathol Oncol Res 2010; 15:335-44. [PMID: 19048402 DOI: 10.1007/s12253-008-9126-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 11/05/2008] [Indexed: 01/31/2023]
Abstract
The antiproliferative effect of 5-fluorouracil (5-FU) in the presence of low dose non-steroidal anti-inflammatory drugs (NSAIDs) on high cyclooxygenase-2 (COX-2)-expressing HCA-7 and low COX-2-expressing HT-29 colon carcinoma cell lines was investigated. Pharmacogenetic parameters were studied to characterize the 5-FU sensitivity of the two cell lines. Thymidylate synthase (TS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms were determined by PCR analysis. Cell proliferation was measured by SRB assay, cell cycle distribution and apoptosis by FACS analysis. Cyclooxygenase expression was detected by Western blot and also by fluorescence microscopy. Prostaglandin E(2) (PGE(2)) levels were investigated with ELISA kit. The HT-29 cell line was found to be homozygous for TS 2R and 1494ins6 and T homozygous for MTHFR 677 polymorphisms predicting high 5-FU sensitivity (IC(50): 10 microM). TS 3R homozygosity, TS 1496del6 and MTHFR 677CT heterozygosity may explain the modest 5-FU sensitivity (IC(50): 1.1 mM) of the HCA-7 cell line. Indomethacin and NS-398 (10 microM and 1.77 microM, respectively) reduced the PGE(2) level in HCA-7 cells (>90%). Low concentrations of NSAIDs without antiproliferative potency increased the S-phase arrest and enhanced the cytotoxic action of 5-FU only in HCA-7 cells after 48-hours treatment. The presented data suggested that the enhancement of 5-FU cytotoxicity by indomethacin or NS-398 applied in low dose is related to the potency of NSAIDs to modulate the cell-cycle distribution and the apoptosis; however, it seems that this effect might be dependent on cell phenotype, namely on the COX-2 expression.
Collapse
Affiliation(s)
- Andrea Réti
- National Institute of Oncology, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wagner KD, Wagner N. Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Ther 2009; 125:423-35. [PMID: 20026355 DOI: 10.1016/j.pharmthera.2009.12.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors. They function as ligand activated transcription factors. They exist in three isoforms, PPARalpha, PPARbeta (formerly PPARdelta), and PPARgamma. For all PPARs lipids are endogenous ligands, linking them directly to metabolism. PPARs form heterodimers with retinoic X receptors, and, upon ligand binding, modulate gene expression of downstream target genes dependent on the presence of co-repressors or co-activators. This results in cell-type specific complex regulations of proliferation, differentiation and cell survival. Specific synthetic agonists for all PPARs are available. PPARalpha and PPARgamma agonists are already in clinical use for the treatment of hyperlipidemia and type 2 diabetes, respectively. More recently, PPARbeta activation came into focus as an interesting novel approach for the treatment of metabolic syndrome and associated cardiovascular diseases. Although the initial notion was that PPARbeta is expressed ubiquitously, more recently extensive investigations have been performed demonstrating high PPARbeta expression in a variety of tissues, e.g. skin, skeletal muscle, adipose tissue, inflammatory cells, heart, and various types of cancer. In addition, in vitro and in vivo studies using specific PPARbeta agonists, tissue-specific over-expression or knockout mouse models have demonstrated a variety of functions of PPARbeta in adipose tissue, muscle, skin, inflammation, and cancer. We will focus here on functions of PPARbeta in adipose tissue, skeletal muscle, heart, angiogenesis and cancer related to modifications in metabolism and the identified underlying molecular mechanisms.
Collapse
|
39
|
Yeh CT, Chiu HF, Yen GC. Protective effect of sulforaphane on indomethacin-induced cytotoxicity via
heme oxygenase-1 expression in human intestinal Int 407 cells. Mol Nutr Food Res 2009; 53:1166-76. [DOI: 10.1002/mnfr.200800558] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Peters JM, Gonzalez FJ. Sorting out the functional role(s) of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) in cell proliferation and cancer. Biochim Biophys Acta Rev Cancer 2009; 1796:230-41. [PMID: 19505534 DOI: 10.1016/j.bbcan.2009.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 12/19/2022]
Abstract
Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) has many beneficial physiological functions ranging from enhancing fatty acid catabolism, improving insulin sensitivity, inhibiting inflammation and increasing oxidative myofibers allowing for improved athletic performance. Thus, given the potential for targeting PPARbeta/delta for the prevention and/or treatment of diseases including diabetes, dyslipidemias, metabolic syndrome and cancer, it is critical to clarify the functional role of PPARbeta/delta in cell proliferation and associated disorders such as cancer. However, there is considerable controversy whether PPARbeta/delta stimulates or inhibits cell proliferation. This review summarizes the literature describing the influence of PPARbeta/delta on cell proliferation, with an emphasis toward dissecting the data that give rise to opposing hypotheses. Suggestions are offered to standardize measurements associated with these studies so that interlaboratory comparisons can be accurately assessed.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
41
|
Lincová E, Hampl A, Pernicová Z, Starsíchová A, Krcmár P, Machala M, Kozubík A, Soucek K. Multiple defects in negative regulation of the PKB/Akt pathway sensitise human cancer cells to the antiproliferative effect of non-steroidal anti-inflammatory drugs. Biochem Pharmacol 2009; 78:561-72. [PMID: 19433066 DOI: 10.1016/j.bcp.2009.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 12/21/2022]
Abstract
Antitumorigenic effects of non-steroidal anti-inflammatory drugs (NSAIDs) are well established in several types of cancer disease. However, the mechanisms driving these processes are not understood in all details. In our study, we observed significant differences in sensitivity of cancer epithelial cell lines to COX-independent antiproliferative effects of NSAIDs. The prostate cancer cell line LNCaP, lacking both critical enzymes in the negative control of PKB/Akt activation, PTEN and SHIP2, was the most sensitive to these effects, as assessed by analysing the cell cycle profile and expression of cell cycle regulating proteins. We found that p53 protein and its signalling pathway is not involved in early antiproliferative action of the selected NSAID-indomethacin. RNAi provided evidence for the involvement of p21(Cip1/Waf1), but not GDF-15, in antiproliferative effects of indomethacin in LNCaP cells. Interestingly, we also found that indomethacin activated PKB/Akt and induced nuclear localisation of p21(Cip1/Waf1) and Akt2 isoform. Our results are in agreement with other studies and suggest that maintaining of the p21(Cip1/Waf1) level and its intracellular localisation might be influenced by Akt2. Knock-down of SHIP2 by RNAi in PTEN negative prostate and colon cancer cell lines resulted in higher sensitivity to antiproliferative effects of indomethacin. Our data suggest novel mechanisms of NSAIDs antiproliferative action in cancer epithelial cells, which depends on the status of negative regulation of the PKB/Akt pathway and the isoform-specific action of Akt2. Thus, unexpectedly, multiple defects in negative regulation of the PKB/Akt pathway may contribute to increased sensitivity to chemopreventive effects of these widely used drugs.
Collapse
Affiliation(s)
- Eva Lincová
- Department of Cytokinetics, Institute of Biophysics, AS CR, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Oliveira BL, Cavalcanti CM, Azevedo APS, Tomiyoshi MY, Bergami-Santos PC, Barbuto JAM. Human monocytes but not dendritic cells are killed by blocking of autocrine cyclooxygenase activity. Cell Immunol 2009; 258:107-14. [PMID: 19394592 DOI: 10.1016/j.cellimm.2009.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 03/26/2009] [Accepted: 03/30/2009] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs), in peripheral tissues, derive mostly from blood precursors that differentiate into DCs under the influence of the local microenvironment. Monocytes constitute the main known DC precursors in blood and their infiltration into tissues is up-regulated during inflammation. During this process, the local production of mediators, like prostaglandins (PGs), influence significantly DC differentiation and function. In the present paper we show that treatment of blood adherent mononuclear cells with 10microM indomethacin, a dose achieved in human therapeutic settings, causes monocytes' progressive death but does not affect DCs viability or cell surface phenotype. This resistance of DCs was observed both for cells differentiated in vitro from blood monocytes and for a population with DCs characteristics already present in blood. This phenomenon could affect the local balance of antigen-presenting cells, influence the induction and pattern of immune responses developed under the treatment with non-steroidal anti-inflammatory drugs and, therefore, deserves further investigation.
Collapse
Affiliation(s)
- Bruno L Oliveira
- Laboratory of Tumor Immunology, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Grau MV, Sandler RS, McKeown-Eyssen G, Bresalier RS, Haile RW, Barry EL, Ahnen DJ, Gui J, Summers RW, Baron JA. Nonsteroidal anti-inflammatory drug use after 3 years of aspirin use and colorectal adenoma risk: observational follow-up of a randomized study. J Natl Cancer Inst 2009; 101:267-76. [PMID: 19211442 DOI: 10.1093/jnci/djn484] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Frequent use of nonsteroidal anti-inflammatory drugs (NSAIDs) has been shown to reduce the risk of colorectal adenomas in randomized trials. We examined the persistence of the protective effect after the cessation of randomized aspirin treatment and whether it is affected by the duration and frequency of subsequent NSAID use. METHODS We used data from the Aspirin/Folate Polyp Prevention Study (AFPPS), in which 1121 subjects were randomly assigned to receive placebo or aspirin (81 or 325 mg/d) for 3 years. After the end of treatment and a follow-up colonoscopy, AFPPS participants were invited to remain under follow-up until their next surveillance colonoscopies, scheduled 3-5 years later. Information regarding use of NSAIDs during posttreatment follow-up was gathered periodically via questionnaires. Average weekly NSAID use was classified as sporadic (<2 days per week), moderate (2 to <4 days per week), or frequent (>or=4 days per week). The analysis was stratified according to randomized aspirin groups and posttreatment NSAID use; placebo subjects who later were sporadic NSAID users formed the reference group. The primary outcomes were all adenomas and advanced lesions. Adjusted relative risks and 95% confidence intervals were computed with generalized linear models. All statistical tests were two-sided. RESULTS A total of 850 subjects underwent a posttreatment colonoscopy, on average 4 years after the end of study treatment. The protective effect of 81 mg of aspirin for colorectal adenomas persisted with continued posttreatment NSAID use. The risk of any adenoma among frequent NSAID users was 26.8% vs 39.9% among placebo subjects who later used NSAIDs sporadically (adjusted relative risk = 0.62, 95% confidence interval [CI] = 0.39 to 0.98; P(trend) with NSAID use frequency = .03). The unadjusted absolute risk reduction was 13.1 percentage points (95% CI = -0.3 to 26.5 percentage points) (P = .07). Results for 325 mg of aspirin were similar, although not statistically significant. For advanced lesions, small numbers of endpoints limited the analysis, but findings among subjects randomly assigned to 81 mg of aspirin suggested a protective association regardless of posttreatment NSAID use. CONCLUSION Long-term and frequent use of NSAIDs may enhance the chemopreventive effect of aspirin against colorectal neoplasia.
Collapse
Affiliation(s)
- Maria V Grau
- Departments of Community and Family Medicine, Dartmouth Medical School, Hanover, NH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ou YC, Yang CR, Cheng CL, Li JR, Raung SL, Hung YY, Chen CJ. Indomethacin causes renal epithelial cell injury involving Mcl-1 down-regulation. Biochem Biophys Res Commun 2009; 380:531-6. [PMID: 19250643 DOI: 10.1016/j.bbrc.2009.01.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 01/18/2009] [Indexed: 11/30/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) exert anti-tumor action in a variety of cancer cells. However, several treatment side effects such as gastrointestinal injury, cardiovascular toxicity, and acute renal failure limit their clinical use. We found that indomethacin caused renal epithelial cell injury independently of cyclooxygenase inhibition. Indomethacin treatment was associated with the disruption of mitochondrial transmembrane potential, release of cytochrome c, down-regulation of Bcl-2 and Mcl-1, upregulation of Bax, and elevation of caspases activity. Enhanced Mcl-1 but not Bcl-2 expression alleviated indomethacin-increased caspase-3 activity. Down-regulation of Akt-related and signal transducer and activator of transcription (STAT-3)-related pathways was found in indomethacin-treated cells. Pharmacological and genetic studies revealed a potential mechanistic link between Akt/Mcl-1 and STAT-3/Mcl-1 signaling pathways and indomethacin-induced cytotoxicity. Mcl-1 is a determinant molecule for the induction of epithelial cell injury caused by indomethacin. Therefore, the maintenance of Mcl-1 levels is important for prevention of renal epithelial cell injury and apoptosis.
Collapse
Affiliation(s)
- Yen-Chuan Ou
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Kong L, Chen GD, Zhou X, McGinnis JF, Li F, Cao W. Molecular mechanisms underlying cochlear degeneration in the tubby mouse and the therapeutic effect of sulforaphane. Neurochem Int 2008; 54:172-9. [PMID: 19114066 DOI: 10.1016/j.neuint.2008.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/13/2008] [Accepted: 08/30/2008] [Indexed: 02/06/2023]
Abstract
As with Usher syndrome observed in humans, the two main phenotypes of the tubby mouse are progressive hearing loss and retinal degeneration. Yet, the mechanism underlying the tub-related cochlear degeneration is still unclear. The reduction/oxidation (redox) imbalance in the cell is related to many kinds of diseases. This study examined expressions of thioredoxin (Trx) and Trx reductase (TrxR), an important redox system in the cell, and the related upstream and downstream proteins of the Trx/TrxR in the tubby mouse cochlea. This report also examined the therapeutic effect of sulforaphane (SF) on the cochlear degeneration, which showed a protective effect on the tub-related retinal degeneration in our previous report. The results showed that the tub-mutation resulted in a significant suppression of Trx and TrxR expressions. Expression level of Nrf2 (NFE2 related factor 2), a transcription factor that regulates expression of Trx and TrxR and others, was also suppressed in the tubby mouse cochlea. Furthermore, a lowered level of activated extracellular signal-regulated kinase (p-ERK) was observed in the tubby mouse cochlea. In contrast, caspase-3 expression and activity were enhanced in the tubby mouse, suggesting apoptotic cell death. The tub-related molecular alterations in the cochlea were prevented by chronic treatment with SF. As a result, the SF-treatment significantly delayed the tub-related cochlear degeneration. Other unknown proteins may contribute to tubby-related degeneration because Nrf2 regulates many other antioxidants besides Trx/TrxR and sulforaphane did not prevent cochlear degeneration completely although it completely prevented alterations of Nrf2 and Trx/TrxR.
Collapse
Affiliation(s)
- Li Kong
- Department of Ophthalmology and Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | | | | | | |
Collapse
|
46
|
Goel A, Prasad AK, Parmar VS, Ghosh B, Saini N. Apoptogenic effect of 7,8-diacetoxy-4-methylcoumarin and 7,8-diacetoxy-4-methylthiocoumarin in human lung adenocarcinoma cell line: role of NF-kappaB, Akt, ROS and MAP kinase pathway. Chem Biol Interact 2008; 179:363-74. [PMID: 19061872 DOI: 10.1016/j.cbi.2008.10.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
Coumarin (1,2-benzopyrone) is a naturally occurring fragrant compound found in a variety of plants and spices. Coumarins have attracted intense interest in recent years because of their diverse pharmacological activities. This study examines the antioxidant coumarin 7,8-diacetoxy-4-methylcoumarin (DAMC) and its thiocoumarin derivative 7,8-diacetoxy-4-methylthiocoumarin (DAMTC) for their effect on human non-small cell lung cancer A549 cells. Here we show that both DAMC and DAMTC not only inhibited cell proliferation, but also induced apoptosis with an IC(50) of 160 microg/ml as confirmed by morphological examination, annexin-V assay and flow cytometric analysis. Interestingly, it was observed that these two coumarin compounds exhibited little cytotoxicity towards peripheral blood mononuclear cells but induced apoptosis in malignant cells. DAMC/DAMTC treatment also resulted in pronounced release of apoptogenic cytochrome c from mitochondria to cytosol, alteration of mitochondrial membrane potential (DeltaPsi(m)), and activation of caspase-9 and caspase-3. Although an increase in the levels of reactive oxygen species (ROS) was observed, pre-treatment with antioxidant showed no protective effect against DAMC/DAMTC-induced apoptosis. Results of present study suggest that downregulation of Bcl-xl, Cox-2 and mitogen activated protein kinase pathway and upregulation of p53, Akt and NF-kappaB pathway are involved in the underlying molecular mechanism of apoptosis induction by DAMC and DAMTC in A549 cells.
Collapse
Affiliation(s)
- Anita Goel
- Molecular Immunogenetics Laboratory, Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | | | | | | | | |
Collapse
|
47
|
Role of peroxisome-proliferator-activated receptor beta/delta (PPARbeta/delta) in gastrointestinal tract function and disease. Clin Sci (Lond) 2008; 115:107-27. [PMID: 18616431 DOI: 10.1042/cs20080022] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PPARbeta/delta (peroxisome-proliferator-activated receptor beta/delta) is one of three PPARs in the nuclear hormone receptor superfamily that are collectively involved in the control of lipid homoeostasis among other functions. PPARbeta/delta not only acts as a ligand-activated transcription factor, but also affects signal transduction by interacting with other transcription factors such as NF-kappaB (nuclear factor kappaB). Constitutive expression of PPARbeta/delta in the gastrointestinal tract is very high compared with other tissues and its potential physiological roles in this tissue include homoeostatic regulation of intestinal cell proliferation/differentiation and modulation of inflammation associated with inflammatory bowel disease and colon cancer. Analysis of mouse epithelial cells in the intestine and colon has clearly demonstrated that ligand activation of PPARbeta/delta induces terminal differentiation. The PPARbeta/delta target genes mediating this effect are currently unknown. Emerging evidence suggests that PPARbeta/delta can suppress inflammatory bowel disease through PPARbeta/delta-dependent and ligand-independent down-regulation of inflammatory signalling. However, the role of PPARbeta/delta in colon carcinogenesis remains controversial, as conflicting evidence suggests that ligand activation of PPARbeta/delta can either potentiate or attenuate this disease. In the present review, we summarize the role of PPARbeta/delta in gastrointestinal physiology and disease with an emphasis on findings in experimental models using both high-affinity ligands and null-mouse models.
Collapse
|
48
|
Taylor III JA, Pilbeam C, Nisbet A. Role of the prostaglandin pathway and the use of NSAIDs in genitourinary malignancies. Expert Rev Anticancer Ther 2008; 8:1125-34. [DOI: 10.1586/14737140.8.7.1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Shan W, Nicol CJ, Ito S, Bility MT, Kennett MJ, Ward JM, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-beta/delta protects against chemically induced liver toxicity in mice. Hepatology 2008; 47:225-35. [PMID: 18038451 DOI: 10.1002/hep.21925] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Potential functional roles for the peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) in skeletal muscle fatty acid catabolism and epithelial carcinogenesis have recently been described. Whereas PPARbeta/delta is expressed in liver, its function in this tissue is less clear. To determine the role of PPARbeta/delta in chemically induced liver toxicity, wild-type and PPARbeta/delta-null mice were treated with azoxymethane (AOM) and markers of liver toxicity examined. Bile duct hyperplasia, regenerative hyperplasia, and increased serum alanine aminotransferase (ALT) were found in AOM-treated PPARbeta/delta-null mice, and these effects were not observed in similarly treated wild-type mice. Exacerbated carbon tetrachloride (CCl(4)) hepatoxicity was also observed in PPARbeta/delta-null as compared with wild-type mice. No differences in messenger RNAs (mRNAs) encoding cytochrome2E1 required for the metabolic activation of AOM and CCl(4) were observed between wild-type or PPARbeta/delta-null mice in response to CCl(4). Significant differences in the expression of genes reflecting enhanced nuclear factor kappa B (NF-kappaB) activity were noted in PPARbeta/delta-null mice. CONCLUSION Results from these studies show that PPARbeta/delta is protective against liver toxicity induced by AOM and CCl(4), suggesting that this receptor is hepatoprotective against environmental chemicals that are metabolized in this tissue.
Collapse
Affiliation(s)
- Weiwei Shan
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Girroir EE, Hollingshead HE, Billin AN, Willson TM, Robertson GP, Sharma AK, Amin S, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines. Toxicology 2007; 243:236-43. [PMID: 18054822 DOI: 10.1016/j.tox.2007.10.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/10/2007] [Accepted: 10/30/2007] [Indexed: 12/19/2022]
Abstract
The development of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARbeta/delta promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARbeta/delta ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARbeta/delta on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARbeta/delta ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARbeta/delta target gene angiopoietin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARbeta/delta inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARbeta/delta ligands are not mitogenic in human cancer cell lines.
Collapse
Affiliation(s)
- Elizabeth E Girroir
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|