1
|
Jenner P, Kanda T, Mori A. How and why the adenosine A 2A receptor became a target for Parkinson's disease therapy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:73-104. [PMID: 37741697 DOI: 10.1016/bs.irn.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Dopaminergic therapy for Parkinson's disease has revolutionised the treatment of the motor symptoms of the illness. However, it does not alleviate all components of the motor deficits and has only limited effects on non-motor symptoms. For this reason, alternative non-dopaminergic approaches to treatment have been sought and the adenosine A2A receptor provided a novel target for symptomatic therapy both within the basal ganglia and elsewhere in the brain. Despite an impressive preclinical profile that would indicate a clear role for adenosine A2A antagonists in the treatment of Parkinson's disease, the road to clinical use has been long and full of difficulties. Some aspects of the drugs preclinical profile have not translated into clinical effectiveness and not all the clinical studies undertaken have had a positive outcome. The reasons for this will be explored and suggestions made for the further development of this drug class in the treatment of Parkinson's disease. However, one adenosine A2A antagonist, namely istradefylline has been introduced successfully for the treatment of late-stage Parkinson's disease in two major areas of the world and has become a commercial success through offering the first non-dopaminergic approach to the treatment of unmet need to be introduced in several decades.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, King's College London, London, United Kingdom.
| | - Tomoyuki Kanda
- Kyowa Kirin Co., Ltd., Otemachi. Chiyoda-ku, Tokyo, Japan
| | | |
Collapse
|
2
|
Prasanna CAL, Sharma A. Pharmacological exploration of triazole based therapeutics for Alzheimer disease: An overview. Curr Drug Targets 2022; 23:933-953. [DOI: 10.2174/1389450123666220328153741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Alzheimer`s disease (AD) is an irreversible progressive neurodegenerative disorder which may account for approximately 60-70% cases of dementia worldwide. AD is characterized by impaired behavioural and cognitive functions including memory, language, conception, attentiveness, judgment, and reasoning problems. The two important hallmarks of AD are the appearance of plaques and tangles of amyloid beta (Aβ) and tau proteins, respectively, in the brain based on the etiology of the disease including cholinergic impairment, metal dyshomeostasis, oxidative stress, and degradation of neurotransmitters. Currently, the used medication only provides alleviation of symptoms but not effective in curing the disease that is creating by an urge to develop new molecules to treat AD. Heterocyclic compounds have proven their ability to be developed as drugs for the treatment of various diseases. The five-membered heterocyclic compound triazole has received foremost fascination for the discovery of new drugs due to the possibility of structural variation and proved its significance in various drug categories. Therefore, this review summarizes mainly the recent advancements in the development of novel 1,2,3-triazole and 1,2,4-triazole based molecules in the drug discovery process for targeting various AD targets such as phosphodiesterase 1 (PDE1) Inhibitors, Apoptosis signal-regulating kinase 1 (ASK1) inhibitors, Somatostatin receptor subtype-4 (SSTR4) agonist, many other druggable targets, molecular modelling studies as well as various methodology for the synthesis of triazoles containing molecules such as Click reaction, Pellizzari and Einhorn-Brunner Reaction.
Collapse
Affiliation(s)
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
3
|
Jenner P, Mori A, Aradi SD, Hauser RA. Istradefylline - a first generation adenosine A 2A antagonist for the treatment of Parkinson's disease. Expert Rev Neurother 2021; 21:317-333. [PMID: 33507105 DOI: 10.1080/14737175.2021.1880896] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction It is now accepted that Parkinson's disease (PD) is not simply due to dopaminergic dysfunction, and there is interest in developing non-dopaminergic approaches to disease management. Adenosine A2A receptor antagonists represent a new way forward in the symptomatic treatment of PD.Areas covered In this narrative review, we summarize the literature supporting the utility of adenosine A2A antagonists in PD with a specific focus on istradefylline, the most studied and only adenosine A2A antagonist currently in clinical use.Expert opinion: At this time, the use of istradefylline in the treatment of PD is limited to the management of motor fluctuations as supported by the results of randomized clinical trials and evaluation by Japanese and USA regulatory authorities. The relatively complicated clinical development of istradefylline was based on classically designed studies conducted in PD patients with motor fluctuations on an optimized regimen of levodopa plus adjunctive dopaminergic medications. In animal models, there is consensus that a more robust effect of istradefylline in improving motor function is produced when combined with low or threshold doses of levodopa rather than with high doses that produce maximal dopaminergic improvement. Exploration of istradefylline as a 'levodopa sparing' strategy in earlier PD would seem warranted.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Kirin Co Ltd, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Stephen D Aradi
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Can adenosine A 2A receptor antagonists modify motor behavior and dyskinesia in experimental models of Parkinson's disease? Parkinsonism Relat Disord 2020; 80 Suppl 1:S21-S27. [PMID: 33349576 DOI: 10.1016/j.parkreldis.2020.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022]
Abstract
Current treatment of the motor symptoms of Parkinson's disease (PD) focuses on dopamine replacement therapies. While these treatments are initially highly effective, with long-term use and disease progression, the therapeutic response is often limited by the development of motor complications, dopaminergic side effects, and residual unresponsive motor and non-motor symptoms. An alternative or additive treatment approach may be to target non-dopaminergic receptors within the motor control pathways, which function to modulate basal ganglia output. Adenosine A2A receptors are one potential non-dopaminergic target as they are selectively localized to the basal ganglia and to the indirect output pathway known to modulate the striato-thalamo-cortical loops critical to the expression of the motor symptoms of PD. This paper reviews the preclinical evidence base for the ability of adenosine A2A receptor blockade to influence motor function and modulate dyskinesia expression. There is consensus that adenosine A2A receptor antagonists - administered either as a monotherapy or in combination with l-DOPA or dopamine agonists - improve motor function in both rodent and primate models of PD, and should be effective for treating the motor symptoms of PD in humans. Importantly, the improvements in motor function were seen in the absence of dyskinesia. The introduction of a non-dopaminergic approach to modifying basal ganglia function provides a useful addition to the range of available therapies for treating PD, and there is a rational basis for a drug that focuses on modifying basal ganglia output.
Collapse
|
5
|
Pardo M, Paul NE, Collins-Praino LE, Salamone JD, Correa M. The non-selective adenosine antagonist theophylline reverses the effects of dopamine antagonism on tremor, motor activity and effort-based decision-making. Pharmacol Biochem Behav 2020; 198:173035. [PMID: 32910928 DOI: 10.1016/j.pbb.2020.173035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 02/01/2023]
Abstract
Considerable evidence indicates that adenosine and dopamine systems interact in the regulation of basal ganglia function. Nonselective adenosine antagonists such as the methylxanthine caffeine as well as selective adenosine A2A antagonists have been shown to produce antiparkinsonian and antidepressant effects in animal models. The present studies were conducted to assess if another methylxantine, theophylline, can reverse motor and motivational impairments induced by dopamine antagonism in rats. RESULTS: Theophylline (3.75-30.0 mg/kg, IP) reversed tremulous jaw movements (TJMs), catalepsy, and locomotor suppression induced by the dopamine D2 antagonist pimozide. It also reversed TJMs induced by the muscarinic receptor agonist pilocarpine, which is a well-known tremorogenic agent. Parallel studies assessed the ability of theophylline (5.0-20.0 mg/kg, IP) to reverse the changes in effort-related choice behavior induced by the dopamine D1 antagonist ecopipam (0.2 mg/kg, IP) and the D2 antagonist haloperidol (0.1 mg/kg, IP). Rats were tested on two different operant choice tasks which assess the tendency to work for a preferred reinforcer by lever pressing (for palatable pellets or a high 5% sucrose solution) vs. approaching and consuming a less preferred reinforcer (freely available lab chow or a less concentrated 0.3% sucrose solution). Theophylline restored food and sucrose-reinforced lever pressing in animals treated with the D2 antagonist. However, it was unable to reverse the effects of the D1 antagonist. Overall, the effects of theophylline resembled those previously reported for adenosine A2A antagonists, and suggest that theophylline could be clinically useful for the treatment of motor and motivational symptoms in humans.
Collapse
Affiliation(s)
- Marta Pardo
- Dept. Psychobiology, Universitat Jaume I, 12071 Castelló, Spain
| | - Nicholas E Paul
- Dept. Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | - John D Salamone
- Dept. Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Mercè Correa
- Dept. Psychobiology, Universitat Jaume I, 12071 Castelló, Spain; Dept. Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| |
Collapse
|
6
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
7
|
Núñez F, Taura J, Camacho J, López-Cano M, Fernández-Dueñas V, Castro N, Castro J, Ciruela F. PBF509, an Adenosine A 2A Receptor Antagonist With Efficacy in Rodent Models of Movement Disorders. Front Pharmacol 2018; 9:1200. [PMID: 30405415 PMCID: PMC6202948 DOI: 10.3389/fphar.2018.01200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Adenosine A2A receptor (A2AR) antagonists have emerged as complementary non-dopaminergic drugs to alleviate Parkinson's disease (PD) symptomatology. Here, we characterize a novel non-xhantine non-furan A2AR antagonist, PBF509, as a potential pro-dopaminergic drug for PD management. First, PBF509 was shown to be a highly potent ligand at the human A2AR, since it antagonized A2AR agonist-mediated cAMP accumulation and impedance responses with KB values of 72.8 ± 17.4 and 8.2 ± 4.2 nM, respectively. Notably, these results validated our new A2AR-based label-free assay as a robust and sensitive approach to characterize A2AR ligands. Next, we evaluated the efficacy of PBF509 reversing motor impairments in several rat models of movement disorders, including catalepsy, tremor, and hemiparkinsonism. Thus, PBF509 (orally) antagonized haloperidol-mediated catalepsy, reduced pilocarpine-induced tremulous jaw movements and potentiated the number of contralateral rotations induced by L-3,4-dihydroxyphenylalanine (L-DOPA) in unilaterally 6-OHDA-lesioned rats. Moreover, PBF509 (3 mg/kg) inhibited L-DOPA-induced dyskinesia (LID), showing not only its efficacy on reversing parkinsonian motor impairments but also acting as antidyskinetic agent. Overall, here we describe a new orally selective A2AR antagonist with potential utility for PD treatment, and for some of the side effects associated to the current pharmacotherapy (i.e., dyskinesia).
Collapse
Affiliation(s)
- Fabiana Núñez
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | | | - Marc López-Cano
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | | | | | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Role of adenosine A 2A receptors in motor control: relevance to Parkinson's disease and dyskinesia. J Neural Transm (Vienna) 2018; 125:1273-1286. [PMID: 29396609 DOI: 10.1007/s00702-018-1848-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Abstract
Adenosine is an endogenous purine nucleoside that regulates several physiological functions, at the central and peripheral levels. Besides, adenosine has emerged as a major player in the regulation of motor behavior. In fact, adenosine receptors of the A2A subtype are highly enriched in the caudate-putamen, which is richly innervated by dopamine. Moreover, several studies in experimental animals have consistently demonstrated that the pharmacological antagonism of A2A receptors has a facilitatory influence on motor behavior. Taken together, these findings have envisaged A2A receptors as a promising target for symptomatic therapies aimed at ameliorating motor deficits. Accordingly, A2A receptor antagonists have been extensively studied as new agents for the treatment of Parkinson's disease (PD), the epitome of motor disorders. In this review, we provide an overview of the effects that adenosine A2A receptor antagonists elicit in rodent and primate experimental models of PD, with regard to the counteraction of motor deficits as well as to manifestation of dyskinesia and motor fluctuations. Moreover, we briefly present the results of clinical trials of A2A receptor antagonists in PD patients experiencing motor fluctuations, with particular regard to dyskinesia. Finally, we discuss the interaction between A2A receptor antagonists and serotonin receptor agonists, since combined administration of these drugs has recently emerged as a new potential therapeutic strategy in the treatment of dyskinesia.
Collapse
|
9
|
Wang WW, Zhang MM, Zhang XR, Zhang ZR, Chen J, Feng L, Xie CL. A Meta-Analysis of Adenosine A2A Receptor Antagonists on Levodopa-Induced Dyskinesia In Vivo. Front Neurol 2017; 8:702. [PMID: 29375464 PMCID: PMC5770694 DOI: 10.3389/fneur.2017.00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
Background Long-term use of levodopa (l-dopa) is inevitably complicated with highly disabling fluctuations and drug-induced dyskinesias, which pose major challenges to the existing drug therapy of Parkinson's disease. Methods In this study, we conducted a systematic review and meta-analysis to assess the efficacy of A2A receptor antagonists on reducing l-dopa-induced dyskinesias (LID). Results Nine studies with a total of 152 animals were included in this meta-analysis. Total abnormal involuntary movements (AIM) score, locomotor activity, and motor disability were reported as outcome measures in 5, 5, and 3 studies, respectively. Combined standardized mean difference (SMD) estimates were calculated using a random-effects model. We pooled the whole data and found that, when compared to l-dopa alone, A2A receptor antagonists plus l-dopa treatment showed no effect on locomotor activity (SMD -0.00, 95% confidence interval (CI): -2.52 to 2.52, p = 1.0), superiority in improvement of motor disability (SMD -5.06, 95% CI: -9.25 to -0.87, p = 0.02) and more effective in control of AIM (SMD -1.82, 95% CI: -3.38 to -0.25, p = 0.02). Conclusion To sum up, these results demonstrated that A2A receptor antagonists appear to have efficacy in animal models of LID. However, large randomized clinical trials testing the effects of A2A receptor antagonists in LID patients are always warranted.
Collapse
Affiliation(s)
- Wen-Wen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Man-Man Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing-Ru Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng-Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Feng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Nazario LR, da Silva RS, Bonan CD. Targeting Adenosine Signaling in Parkinson's Disease: From Pharmacological to Non-pharmacological Approaches. Front Neurosci 2017; 11:658. [PMID: 29217998 PMCID: PMC5703841 DOI: 10.3389/fnins.2017.00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disease displaying negative impacts on both the health and social ability of patients and considerable economical costs. The classical anti-parkinsonian drugs based in dopaminergic replacement are the standard treatment, but several motor side effects emerge during long-term use. This mini-review presents the rationale to several efforts from pre-clinical and clinical studies using adenosine receptor antagonists as a non-dopaminergic therapy. As several studies have indicated that the monotherapy with adenosine receptor antagonists reaches limited efficacy, the usage as a co-adjuvant appeared to be a promising strategy. The formulation of multi-targeted drugs, using adenosine receptor antagonists and other neurotransmitter systems than the dopaminergic one as targets, have been receiving attention since Parkinson's disease presents a complex biological impact. While pharmacological approaches to cure or ameliorate the conditions of PD are the leading strategy in this area, emerging positive aspects have arisen from non-pharmacological approaches and adenosine function inhibition appears to improve both strategies.
Collapse
Affiliation(s)
- Luiza R Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane S da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Podurgiel SJ, Spencer T, Kovner R, Baqi Y, Müller CE, Correa M, Salamone JD. Induction of oral tremor in mice by the acetylcholinesterase inhibitor galantamine: Reversal with adenosine A2A antagonism. Pharmacol Biochem Behav 2016; 140:62-7. [DOI: 10.1016/j.pbb.2015.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023]
|
12
|
Podurgiel SJ, Milligan MN, Yohn SE, Purcell LJ, Contreras-Mora HM, Correa M, Salamone JD. Fluoxetine Administration Exacerbates Oral Tremor and Striatal Dopamine Depletion in a Rodent Pharmacological Model of Parkinsonism. Neuropsychopharmacology 2015; 40:2240-7. [PMID: 25759301 PMCID: PMC4613615 DOI: 10.1038/npp.2015.69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/15/2015] [Accepted: 01/31/2015] [Indexed: 02/06/2023]
Abstract
The cardinal motor symptoms of Parkinson's disease (PD) include resting tremor, akinesia, bradykinesia, and rigidity, and these motor abnormalities can be modeled in rodents by administration of the VMAT-2 (type-2 vesicular monoamine transporter) inhibitor tetrabenazine (9,10-dimethoxy-3-(2-methylpropyl)-1,3,4,6,7, 11b hexahydrobenzo[a]quinolizin-2-one; TBZ). Depression is also commonly associated with PD, and clinical data indicate that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine ((±)-N-methyl-γ-[4-(trifluoromethyl)phenoxy]benzenepropanamine hydrochloride; FLX) are frequently used to treat depression in PD patients. The aim of the present study was to characterize the effect of FLX on the motor dysfunctions induced by a low dose of TBZ (0.75 mg/kg), and investigate the neural mechanisms involved. This low dose of TBZ was selected based on studies with rat models of depressive symptoms. In rats, coadministration of FLX (2.5, 5.0, and 10.0 mg/kg) increased TBZ-induced oral tremor (tremulous jaw movements), and decreased locomotor activity compared with administration of TBZ alone. Coadministration of the serotonin 5-HT2A/2C antagonist mianserin (2.5 and 5.0 mg/kg) attenuated the increase in oral tremor induced by coadministration of TBZ (0.75 mg/kg) with FLX (5.0 mg/kg). Consistent with these behavioral data, coadministration of TBZ and FLX decreased DA tissue levels in the rat ventrolateral neostriatum compared with TBZ alone, and coadministration of mianserin with TBZ and FLX attenuated this effect, increasing DA tissue levels compared with the TBZ/FLX condition. These data suggest that SSRI administration in PD patients may result in worsening of motor symptoms, at least in part, by exacerbating existing DA depletions through 5-HT2A/2C-mediated modulation of DA neurotransmission.
Collapse
Affiliation(s)
| | | | - Samantha E Yohn
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Laura J Purcell
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | | | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
13
|
Pourcher E, Huot P. Adenosine 2A Receptor Antagonists for the Treatment of Motor Symptoms in Parkinson's Disease. Mov Disord Clin Pract 2015; 2:331-340. [PMID: 30363540 DOI: 10.1002/mdc3.12187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
Background Treatment of motor fluctuations in Parkinson's disease (PD) remains an unmet challenge. Adenosine 2A (A2A) receptors are located along the indirect pathway and represent a potential target to enhance l-3,4-dihydroxyphenylalanine (l-DOPA) antiparkinsonian action. Methods This article summarizes the preclinical and clinical literature on A2A antagonists in PD, with a specific focus on their effect on off time, on time, and dyskinesia. Findings Several A2A receptor antagonists have been tested in preclinical studies and clinical trials. In preclinical studies, A2A antagonists enhanced l-DOPA antiparkinsonian action without exacerbating dyskinesia, but A2A antagonists were generally administered in combination with a subthreshold dose of l-DOPA, which is different to the paradigms used in clinical trials, where A2A antagonists were usually added to an optimal antiparkinsonian regimen. In clinical settings, A2A antagonists generally reduced duration of off time, by as much as 25% in some studies. The effect of on time duration is less clear, and in a few studies an exacerbation of dyskinesia was reported. Two A2A antagonists have been tested in phase III settings: istradefylline and preladenant. Istradefylline was effective in two phase III trials, but ineffective in another; the drug has been commercially available in Japan since 2013. In contrast, preladenant was ineffective in a phase III trial and the drug was discontinued. A phase III study with tozadenant will begin in 2015; the drug was effective at reducing off time in a phase IIb study. Other A2A antagonists are in development at the preclinical and early clinical levels.
Collapse
Affiliation(s)
- Emmanuelle Pourcher
- Clinique Sainte-Anne Mémoire et Mouvement Faculty of Medicine Laval University Quebec City Quebec Canada.,Centre Thématique de Recherche en Neuroscience Laval University Quebec City Quebec Canada
| | - Philippe Huot
- Department of Pharmacology Faculty of Medicine University of Montreal Montreal Quebec Canada.,Division of Neurology Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| |
Collapse
|
14
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
15
|
Pace S, Brogin G, Stasi MA, Riccioni T, Borsini F, Capocasa F, Manera F, Tallarico C, Grossi P, Vacondio F, Bassi M, Bartoccini F, Lucarini S, Piersanti G, Tarzia G, Cabri W, Minetti P. Potent, Metabolically Stable 2-Alkyl-8-(2H-1,2,3-triazol-2-yl)-9H-adenines as Adenosine A2AReceptor Ligands. ChemMedChem 2015; 10:1149-52. [DOI: 10.1002/cmdc.201500113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 11/06/2022]
|
16
|
Stasi MA, Minetti P, Lombardo K, Riccioni T, Caprioli A, Vertechy M, Di Serio S, Pace S, Borsini F. Animal models of Parkinson׳s disease: Effects of two adenosine A2A receptor antagonists ST4206 and ST3932, metabolites of 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine (ST1535). Eur J Pharmacol 2015; 761:353-61. [PMID: 25936513 DOI: 10.1016/j.ejphar.2015.03.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/10/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
Antagonism of the adenosine A2A receptor represents a promising strategy for non-dopaminergic treatment of Parkinson׳s disease (PD). Previously, the adenosine A2A receptor antagonist ST1535 was shown to possess potential beneficial effects in animal models of PD. Two metabolites of ST1535, namely ST3932 and ST4206, were tested in vitro to assess their affinity and activity on cloned human A2A adenosine receptors, and their metabolic profile. Additionally, ST3932 and ST4206 were investigated in vivo in animal models of PD following oral/intraperitoneal administration of 10, 20 and 40mg/kg using ST1535 as a reference compound. ST3932 and ST4206 displayed high affinity and antagonist behaviour for cloned human adenosine A2A receptors. The Ki values for ST1535, ST3932 and ST4206 were 8, 8 and 12nM, respectively, and their IC50 values on cyclic AMP were 427, 450 and 990nM, respectively. ST1535, ST3932 and ST4206 antagonized (orally) haloperidol-induced catalepsy in mice, potentiated (intraperitoneally) the number of contralateral rotations induced by l-3,4-dihydroxyphenylalanine (l-DOPA) (3mg/kg) plus benserazide (6mg/kg) in 6-Hydroxydopamine hydrobromide (6-OHDA)-lesioned rats, and increased mouse motor activity by oral route. Thus, ST3932 and ST4206, two ST1535 metabolites, show a pharmacological activity similar to ST1535, both in vitro and in vivo, and may be regarded as an interesting pharmacological alternative to ST1535.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Silvia Pace
- Research & Development Area, Sigma-tau, Italy
| | | |
Collapse
|
17
|
Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 2015; 35:790-848. [PMID: 25821194 DOI: 10.1002/med.21344] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.
Collapse
Affiliation(s)
- Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
18
|
Salamone JD, Podurgiel S, Collins-Praino LE, Correa M. Physiological and Behavioral Assessment of Tremor in Rodents. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00038-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Michel A, Downey P, Nicolas JM, Scheller D. Unprecedented therapeutic potential with a combination of A2A/NR2B receptor antagonists as observed in the 6-OHDA lesioned rat model of Parkinson's disease. PLoS One 2014; 9:e114086. [PMID: 25513815 PMCID: PMC4267740 DOI: 10.1371/journal.pone.0114086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/04/2014] [Indexed: 12/12/2022] Open
Abstract
In Parkinson's disease, the long-term use of dopamine replacing agents is associated with the development of motor complications; therefore, there is a need for non-dopaminergic drugs. This study evaluated the potential therapeutic impact of six different NR2B and A2A receptor antagonists given either alone or in combination in unilateral 6-OHDA-lesioned rats without (monotherapy) or with (add-on therapy) the co-administration of L-Dopa: Sch-58261+ Merck 22; Sch-58261+Co-101244; Preladenant + Merck 22; Preladenant + Radiprodil; Tozadenant + Radiprodil; Istradefylline + Co-101244. Animals given monotherapy were assessed on distance traveled and rearing, whereas those given add-on therapy were assessed on contralateral rotations. Three-way mixed ANOVA were conducted to assess the main effect of each drug separately and to determine whether any interaction between two drugs was additive or synergistic. Additional post hoc analyses were conducted to compare the effect of the combination with the effect of the drugs alone. Motor activity improved significantly and was sustained for longer when the drugs were given in combination than when administered separately at the same dose. Similarly, when tested as add-on treatment to L-Dopa, the combinations resulted in higher levels of contralateral rotation in comparison to the single drugs. Of special interest, the activity observed with some combinations could not be described by a simplistic additive effect and involved more subtle synergistic pharmacological interactions. The combined administration of A2A/NR2B-receptor antagonists improved motor behaviour in 6-OHDA rats. Given the proven translatability of this model such a combination may be expected to be effective in improving motor symptoms in patients.
Collapse
Affiliation(s)
- Anne Michel
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine l'Alleud, Belgium
| | - Patrick Downey
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine l'Alleud, Belgium
| | | | - Dieter Scheller
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine l'Alleud, Belgium
| |
Collapse
|
20
|
Dube A, Chaudhary S, Mengawade T, Upasani CD. Therapeutic potential of metabotropic glutamate receptor 4-positive allosteric modulator TAS-4 in rodent models of movement disorders. J Neurol Sci 2014:S0022-510X(14)00452-3. [PMID: 25073574 DOI: 10.1016/j.jns.2014.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Parkinson's disease (PD) is a very serious neurological disorder, and current methods of treatment fail to achieve long-term control. Previous studies suggest that stimulation of the metabotropic glutamate receptor 4 (mGluR4) represents a promising new approach to the symptomatic treatment of Parkinson's disease (PD). Preclinical models using both agonists and positive allosteric modulators of mGluR4 have demonstrated the potential for this receptor for the treatment of PD. In the present study, we describe the pharmacological characterization of an mGluR4 PAM, N-(2, 4-dichlorophenyl) pyridine-2-carboxamide (TAS-4), in several rodent PD models. TAS-4 is a potent and selective mGluR4 PAM of the human mGluR4 receptor (EC50- 287.8nM). TAS-4 showed efficacy alone or when administered in combination with l-DOPA. When administered alone, TAS-4 exhibited efficacy in reversing haloperidol-induced catalepsy. In addition, acute TAS-4 dose-dependently potentiated contralateral turning behavior induced by a threshold dose of l-3,4-dihydroxyphenylalanine (l-DOPA, 4mg/kg i.p.), a classical test for antiparkinson drug screening. Subchronic (28days, twice a day) TAS-4 (10mg/kg i.p.)+l-DOPA (4mg/kg i.p.) did not induce sensitization to turning behavior or abnormal involuntary movements during the course of treatment. Moreover, subchronic administration of a fully effective dose of l-DOPA (8mg/kg i.p.) significantly induces sensitization to turning behavior or abnormal involuntary movements. Results showed that TAS-4, in association with a low dose of l-DOPA, displayed antiparkinsonian activity similar to that produced by a full dose of l-DOPA without exacerbating abnormal motor side effects.
Collapse
Affiliation(s)
- Aakanksha Dube
- Department of Pharmacology, Faculty of Pharmacy, SNJB's Shriman Sureshdada Jain College of Pharmacy, Jain Gurukul, Chandwad, Nashik, India
| | - Sumit Chaudhary
- Department of Pharmacology, Faculty of Pharmacy, SNJB's Shriman Sureshdada Jain College of Pharmacy, Jain Gurukul, Chandwad, Nashik, India
| | - Tanaji Mengawade
- Department of Pharmacology, Faculty of Pharmacy, SNJB's Shriman Sureshdada Jain College of Pharmacy, Jain Gurukul, Chandwad, Nashik, India
| | - Chandrashekhar Devidas Upasani
- Department of Pharmacology, Faculty of Pharmacy, SNJB's Shriman Sureshdada Jain College of Pharmacy, Jain Gurukul, Chandwad, Nashik, India.
| |
Collapse
|
21
|
Adenosine A2A receptor antagonists in Parkinson's disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 2014; 28:455-74. [PMID: 24687255 DOI: 10.1007/s40263-014-0161-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurotransmitters other than dopamine, such as norepinephrine, 5-hydroxytryptamine, glutamate, adenosine and acetylcholine, are involved in Parkinson's disease (PD) and contribute to its symptomatology. Thus, the progress of non-dopaminergic therapies for PD has attracted much interest in recent years. Among new classes of drugs, adenosine A2A antagonists have emerged as promising candidates. The development of new highly selective adenosine A2A receptor antagonists, and their encouraging anti-parkinsonian responses in animal models of PD, has provided a rationale for clinical trials to evaluate the therapeutic potential and the safety of these agents in patients with PD. To date, the clinical research regarding A2A antagonists and their potential utilization in PD therapy continues to evolve between drugs just or previously discontinued (preladenant and vipadenant), new derivatives in development (tozadenant, PBF-509, ST1535, ST4206 and V81444) and the relatively old drug istradefylline, which has finally been licensed as an anti-parkinsonian drug in Japan. All these compounds have been shown to have a good safety profile and be well tolerated. Moreover, results from phase II and III trials also demonstrate that A2A antagonists are effective in reducing off-time, without worsening troublesome dyskinesia, and in increasing on-time with a mild increase of non-troublesome dyskinesia, in patients at an advanced stage of PD treated with L-DOPA. In addition, early findings suggest that A2A antagonists might also be efficacious as monotherapy in patients at an early stage of PD. This review summarizes pharmacological and clinical data available on istradefylline, tozadenant, PBF-509, ST1535, ST4206, V81444, preladenant and vipadenant.
Collapse
|
22
|
Development of a practical and sustainable strategy for the synthesis of ST1535 by an iron-catalyzed Kumada cross-coupling reaction. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Smith KM, Browne SE, Jayaraman S, Bleickardt CJ, Hodge LM, Lis E, Yao L, Rittle SL, Innocent N, Mullins DE, Boykow G, Reynolds IJ, Hill D, Parker EM, Hodgson RA. Effects of the selective adenosine A2A receptor antagonist, SCH 412348, on the parkinsonian phenotype of MitoPark mice. Eur J Pharmacol 2014; 728:31-8. [PMID: 24486705 DOI: 10.1016/j.ejphar.2014.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/24/2022]
Abstract
Adenosine A2A receptors are predominantly localized on striatopallidal gamma-aminobutyric acid (GABA) neurons, where they are colocalized with dopamine D2 receptors and are involved in the regulation of movement. Adenosine A2A receptor antagonists have been evaluated as a novel treatment for Parkinson's disease and have demonstrated efficacy in a broad spectrum of pharmacological and toxicological rodent and primate models. Fewer studies have been performed to evaluate the efficacy of adenosine A2A receptor antagonists in genetic models of hypodopaminergic states. SCH 412348 is a potent and selective adenosine A2A receptor antagonist that shows efficacy in rodent and primate models of movement disorders. Here we evaluated the effects of SCH 412348 in the MitoPark mouse, a genetic model that displays a progressive loss of dopamine neurons. The dopamine cell loss is associated with a profound akinetic phenotype that is sensitive to levodopa (l-dopa). SCH 412348 (0.3-10mg/kg administered orally) dose dependently increased locomotor activity in the mice. Moreover, SCH 412348 retained its efficacy in the mice as motor impairment progressed (12-22 weeks of age), demonstrating that the compound was efficacious in mild to severe Parkinson's disease-like impairment in the mice. Additionally, SCH 412348 fully restored lost functionality in a measure of hind limb bradykinesia and partially restored functionality in a rotarod test. These findings provide further evidence of the anti-Parkinsonian effects of selective adenosine A2A receptor antagonists and predict that they will retain their efficacy in both mild and severe forms of motor impairment.
Collapse
Affiliation(s)
- Karen M Smith
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Susan E Browne
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Srinivasan Jayaraman
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Carina J Bleickardt
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Lisa M Hodge
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Edward Lis
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Leon Yao
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Sunday L Rittle
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Nathalie Innocent
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Deborra E Mullins
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - George Boykow
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Ian J Reynolds
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - David Hill
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Eric M Parker
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Robert A Hodgson
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
| |
Collapse
|
24
|
Pinna A, Bonaventura J, Farré D, Sánchez M, Simola N, Mallol J, Lluís C, Costa G, Baqi Y, Müller CE, Cortés A, McCormick P, Canela EI, Martínez-Pinilla E, Lanciego JL, Casadó V, Armentero MT, Franco R. L-DOPA disrupts adenosine A(2A)-cannabinoid CB(1)-dopamine D(2) receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies. Exp Neurol 2014; 253:180-91. [PMID: 24412491 DOI: 10.1016/j.expneurol.2013.12.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/28/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
Long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA), still the most effective treatment in Parkinson's disease (PD), is associated with severe motor complications such as dyskinesia. Experimental and clinical data have indicated that adenosine A2A receptor antagonists can provide symptomatic improvement by potentiating L-DOPA efficacy and minimizing its side effects. It is known that the G-protein-coupled adenosine A2A, cannabinoid CB1 and dopamine D2 receptors may interact and form functional A2A-CB1-D2 receptor heteromers in co-transfected cells as well as in rat striatum. These data suggest that treatment with a combination of drugs or a single compound selectively acting on A2A-CB1-D2 heteromers may represent an alternative therapeutic treatment of PD. We investigated the expression of A2A-CB1-D2 receptor heteromers in the striatum of both naïve and hemiparkinsonian rats (HPD-rats) bearing a unilateral 6-hydroxydopamine (6-OHDA) lesion, and assessed how receptor heteromer expression and biochemical properties were affected by L-DOPA treatment. Radioligand binding data showed that A2A-CB1-D2 receptor heteromers are present in the striatum of both naïve and HPD-rats. However, behavioral results indicated that the combined administration of A2A (MSX-3 or SCH58261) and CB1 (rimonabant) receptor antagonists, in the presence of L-DOPA does not produce a response different from administration of the A2A receptor antagonist alone. These behavioral results prompted identification of heteromers in L-DOPA-treated animals. Interestingly, the radioligand binding results in samples from lesioned animals suggest that the heteromer is lost following acute or chronic treatment with L-DOPA.
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy (CNR), Institute of Neuroscience-Cagliari, 09124 Cagliari, Italy.
| | - Jordi Bonaventura
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Daniel Farré
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Marta Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Josefa Mallol
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Carme Lluís
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Younis Baqi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Germany
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Peter McCormick
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Enric I Canela
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Eva Martínez-Pinilla
- Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - José L Lanciego
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain; Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Marie-Therese Armentero
- Laboratory of Functional Neurochemistry, C. Mondino National Neurological Institute, via Mondino 2, Pavia, Italy
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
25
|
Jenner P. An Overview of Adenosine A2A Receptor Antagonists in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:71-86. [DOI: 10.1016/b978-0-12-801022-8.00003-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Kanda T, Uchida SI. Clinical/Pharmacological Aspect of Adenosine A2A Receptor Antagonist for Dyskinesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:127-50. [DOI: 10.1016/b978-0-12-801022-8.00006-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
A Critical Evaluation of Behavioral Rodent Models of Motor Impairment Used for Screening of Antiparkinsonian Activity: The Case of Adenosine A2A Receptor Antagonists. Neurotox Res 2013; 25:392-401. [DOI: 10.1007/s12640-013-9446-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/21/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
28
|
Jones N, Bleickardt C, Mullins D, Parker E, Hodgson R. A2A receptor antagonists do not induce dyskinesias in drug-naive or L-dopa sensitized rats. Brain Res Bull 2013; 98:163-9. [PMID: 23838432 DOI: 10.1016/j.brainresbull.2013.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/26/2022]
Abstract
L-dopa, the precursor to dopamine, is currently the gold standard treatment for Parkinson's disease (PD). However, chronic exposure is associated with L-dopa-induced dyskinesias (LIDs), a serious side effect characterized by involuntary movements. Adenosine A2A receptor antagonists have been studied as a novel non-dopaminergic PD treatment. Because A2A receptor antagonists do not act on dopamine receptors, it has been hypothesized that they will not induce dyskinesias characteristic of L-dopa. To test this hypothesis in a rodent model, the A2A receptor antagonists SCH 412348 (3 mg/kg), vipadenant (10 mg/kg), caffeine (30 mg/kg), or istradefylline (3 mg/kg) were chronically (19-22 days) administered to Sprague Dawley rats, and dyskinetic behaviors were scored across this chronic dosing paradigm. Unlike L-dopa, there was no evidence of dyskinetic activity resulting from any of the four A2A receptor antagonists tested. When delivered to animals previously sensitized with L-dopa (6 mg/kg), SCH 412348, vipadenant, caffeine or istradefylline treatment produced no dyskinesias. When administered in combination with L-dopa (6 mg/kg), SCH 412348 (3 mg/kg) neither exacerbated nor prevented the induction of LIDs over the course of 19 days of treatment. Collectively, our data indicate that A2A receptor antagonists are likely to have a reduced dyskinetic liability relative to L-dopa but do not block dyskinesias when coadministered with L-dopa. Clinical studies are required to fully understand the dyskinesia profiles of A2A receptor antagonists.
Collapse
Affiliation(s)
- N Jones
- Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | | | | | | | | |
Collapse
|
29
|
Piersanti G, Bartoccini F, Lucarini S, Cabri W, Stasi MA, Riccioni T, Borsini F, Tarzia G, Minetti P. Synthesis and biological evaluation of metabolites of 2-n-butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine (ST1535), a potent antagonist of the A2A adenosine receptor for the treatment of Parkinson's disease. J Med Chem 2013; 56:5456-63. [PMID: 23789814 DOI: 10.1021/jm400491x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis and preliminary in vitro evaluation of five metabolites of the A2A antagonist ST1535 (1) are reported. The metabolites, originating in vivo from enzymatic oxidation of the 2-butyl group of the parent compound, were synthesized from 6-chloro-2-iodo-9-methyl-9H-purine (2) by selective C-C bond formation via halogen/magnesium exchange reaction and/or palladium-catalyzed reactions. The metabolites behaved in vitro as antagonist ligands of cloned human A2A receptor with affinities (Ki 7.5-53 nM) comparable to that of compound 1 (Ki 10.7 nM), thus showing that the long duration of action of 1 could be in part due to its metabolites. General behavior after oral administration in mice was also analyzed.
Collapse
Affiliation(s)
- Giovanni Piersanti
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino , Piazza Rinascimento 6, I-61029 Urbino (PU), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jörg M, Shonberg J, Mak FS, Miller ND, Yuriev E, Scammells PJ, Capuano B. Novel adenosine A2A receptor ligands: A synthetic, functional and computational investigation of selected literature adenosine A2A receptor antagonists for extending into extracellular space. Bioorg Med Chem Lett 2013; 23:3427-33. [DOI: 10.1016/j.bmcl.2013.03.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 11/16/2022]
|
31
|
Collins-Praino LE, Paul NE, Ledgard F, Podurgiel SJ, Kovner R, Baqi Y, Müller CE, Senatus PB, Salamone JD. Deep brain stimulation of the subthalamic nucleus reverses oral tremor in pharmacological models of parkinsonism: interaction with the effects of adenosine A2Aantagonism. Eur J Neurosci 2013; 38:2183-91. [DOI: 10.1111/ejn.12212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Lyndsey E. Collins-Praino
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Nicholas E. Paul
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Felicia Ledgard
- Division of Neurosurgery; Department of Surgery; University of Connecticut Health Center; Farmington; CT; USA
| | - Samantha J. Podurgiel
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Rotem Kovner
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Younis Baqi
- Pharma-Zentrum Bonn; Pharmazeutisches Institut, Pharmazeutische Chemie; Universität Bonn; Bonn; Germany
| | - Christa E. Müller
- Pharma-Zentrum Bonn; Pharmazeutisches Institut, Pharmazeutische Chemie; Universität Bonn; Bonn; Germany
| | - Patrick B. Senatus
- Division of Neurosurgery; Department of Surgery; University of Connecticut Health Center; Farmington; CT; USA
| | - John D. Salamone
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| |
Collapse
|
32
|
Podurgiel S, Collins-Praino LE, Yohn S, Randall PA, Roach A, Lobianco C, Salamone JD. Tremorolytic effects of safinamide in animal models of drug-induced parkinsonian tremor. Pharmacol Biochem Behav 2013; 105:105-11. [DOI: 10.1016/j.pbb.2013.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 01/02/2023]
|
33
|
Rivara S, Piersanti G, Bartoccini F, Diamantini G, Pala D, Riccioni T, Stasi MA, Cabri W, Borsini F, Mor M, Tarzia G, Minetti P. Synthesis of (E)-8-(3-Chlorostyryl)caffeine Analogues Leading to 9-Deazaxanthine Derivatives as Dual A2A Antagonists/MAO-B Inhibitors. J Med Chem 2013; 56:1247-61. [DOI: 10.1021/jm301686s] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Silvia Rivara
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Giuseppe Diamantini
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Daniele Pala
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Teresa Riccioni
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Maria Antonietta Stasi
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Walter Cabri
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Franco Borsini
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| | - Marco Mor
- Dipartimento
di Farmacia, Università
degli Studi di Parma, Viale G.P. Usberti 27 A, I-43124 Parma, Italy
| | - Giorgio Tarzia
- Department of Biomolecular Sciences,
University of Urbino, Piazza Rinascimento 6, I-61029 Urbino (PU),
Italy
| | - Patrizia Minetti
- Sigma-Tau Industrie Farmaceutiche
Riunite
S.p.A., Via Pontina Km 30,400, I-00040 Pomezia, Italy
| |
Collapse
|
34
|
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, affecting up to 10 million people worldwide. Current treatment primarily involves symptom management with dopaminergic replacement therapy. Levodopa remains the most effective oral treatment, although long-term use is associated with complications such as wearing off, dyskinesias, and on-off fluctuations. Non-dopaminergic medications that improve PD symptoms and motor fluctuations are in demand. Adenosine A2A receptors are abundantly expressed within the basal ganglia and offer a unique target to modify abnormal striatal signaling associated with PD. Preclinical animal models have shown the ability of adenosine A2A receptor antagonists to improve PD motor symptoms, reduce motor fluctuations and dyskinesia, as well as protect against toxin-induced neuronal degeneration. Both istradefylline and preladenant have demonstrated moderate efficacy in reducing off time in PD patients with motor fluctuations. The safety and efficacy of this class of compounds continues to be defined and future studies should focus on non-motor symptoms, dyskinesias, and neuroprotection.
Collapse
Affiliation(s)
- Patrick Hickey
- Duke University Medical Center, DUMC Box 3333, Durham, NC 27205, USA.
| | | |
Collapse
|
35
|
Collins-Praino LE, Podurgiel SJ, Kovner R, Randall PA, Salamone JD. Extracellular GABA in globus pallidus increases during the induction of oral tremor by haloperidol but not by muscarinic receptor stimulation. Behav Brain Res 2012; 234:129-35. [DOI: 10.1016/j.bbr.2012.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/07/2012] [Accepted: 06/12/2012] [Indexed: 11/28/2022]
|
36
|
Morelli M, Blandini F, Simola N, Hauser RA. A(2A) Receptor Antagonism and Dyskinesia in Parkinson's Disease. PARKINSON'S DISEASE 2012; 2012:489853. [PMID: 22754707 PMCID: PMC3382949 DOI: 10.1155/2012/489853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/26/2012] [Indexed: 01/13/2023]
Abstract
Dyskinesia, a major complication of treatment of Parkinson's disease (PD), involves two phases: induction, which is responsible for dyskinesia onset, and expression, which underlies its clinical manifestation. The unique cellular and regional distribution of adenosine A(2A) receptors in basal ganglia areas that are richly innervated by dopamine, and their antagonistic role towards dopamine receptor stimulation, have positioned A(2A) receptor antagonists as an attractive nondopaminergic target to improve the motor deficits that characterize PD. In this paper, we describe the biochemical characteristics of A(2A) receptors and the effects of adenosine A(2A) antagonists in rodent and primate models of PD on L-DOPA-induced dyskinesia, together with relevant biomarker studies. We also review clinical trials of A(2A) antagonists as adjuncts to L-DOPA in PD patients with motor fluctuations. These studies have generally demonstrated that the addition of an A(2A) antagonist to a stable L-DOPA regimen reduces OFF time and mildly increases dyskinesia. However, limited clinical data suggest that the addition of an A(2A) antagonist along with a reduction of L-DOPA might maintain anti-Parkinsonian benefit and reduce dyskinesia. Whether A(2A) antagonists might reduce the development of dyskinesia has not yet been tested clinically.
Collapse
Affiliation(s)
- Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
- CNR Institute of Neuroscience, 09042 Cagliari, Italy
| | - Fabio Blandini
- Interdepartmental Research Center for Parkinson's Disease, National Neurological Institute C. Mondino, 27100 Pavia, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Robert A. Hauser
- Department of Neurology, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
37
|
The novel adenosine A(2A) antagonist prodrug MSX-4 is effective in animal models related to motivational and motor functions. Pharmacol Biochem Behav 2012; 102:477-87. [PMID: 22705392 DOI: 10.1016/j.pbb.2012.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/06/2012] [Accepted: 06/09/2012] [Indexed: 11/21/2022]
Abstract
Adenosine A(2A) and dopamine D2 receptors interact to regulate diverse aspects of ventral and dorsal striatal functions related to motivational and motor processes, and it has been suggested that adenosine A(2A) antagonists could be useful for the treatment of depression, parkinsonism and other disorders. The present experiments were performed to characterize the effects of MSX-4, which is an amino acid ester prodrug of the potent and selective adenosine A(2A) receptor antagonist MSX-2, by assessing its ability to reverse pharmacologically induced motivational and motor impairments. In the first group of studies, MSX-4 reversed the effects of the D2 antagonist eticlopride on a concurrent lever pressing/chow feeding task that is used as a measure of effort-related choice behavior. MSX-4 was less potent after intraperitoneal administration than the comparison compound, MSX-3, though both were equally efficacious. With this task, MSX-4 was orally active in the same dose range as MSX-3. MSX-4 also reversed the locomotor suppression induced by eticlopride in the open field, but did not induce anxiogenic effects as measured by the relative amount of interior activity. Behaviorally active doses of MSX-4 also attenuated the increase in c-Fos and pDARPP-32(Thr34) expression in nucleus accumbens core that was induced by injections of eticlopride. In addition, MSX-4 suppressed the oral tremor induced by the anticholinesterase galantamine, which is consistent with an antiparkinsonian profile. These actions of MSX-4 indicate that this compound could have potential utility as a treatment for parkinsonism, as well as some of the motivational symptoms of depression and other disorders.
Collapse
|
38
|
Neurotoxin-based models of Parkinson's disease. Neuroscience 2012; 211:51-76. [DOI: 10.1016/j.neuroscience.2011.10.057] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
|
39
|
Collins LE, Sager TN, Sams AG, Pennarola A, Port RG, Shahriari M, Salamone JD. The novel adenosine A2A antagonist Lu AA47070 reverses the motor and motivational effects produced by dopamine D2 receptor blockade. Pharmacol Biochem Behav 2012; 100:498-505. [DOI: 10.1016/j.pbb.2011.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/03/2011] [Accepted: 10/14/2011] [Indexed: 11/25/2022]
|
40
|
Koszytkowska-Stawińska M, Mironiuk-Puchalska E, Rowicki T. Synthesis of 1,2,3-triazolo-nucleosides via the post-triazole N-alkylation. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
41
|
Shook BC, Jackson PF. Adenosine A(2A) Receptor Antagonists and Parkinson's Disease. ACS Chem Neurosci 2011; 2:555-67. [PMID: 22860156 DOI: 10.1021/cn2000537] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022] Open
Abstract
This Review summarizes and updates the work on adenosine A(2A) receptor antagonists for Parkinson's disease from 2006 to the present. There have been numerous publications, patent applications, and press releases within this time frame that highlight new medicinal chemistry approaches to this attractive and promising target to treat Parkinson's disease. The Review is broken down by scaffold type and will discuss the efforts to optimize particular scaffolds for activity, pharmacokinetics, and other drug discovery parameters. The majority of approaches focus on preparing selective A(2A) antagonists, but a few approaches to dual A(2A)/A(1) antagonists will also be highlighted. The in vivo profiles of compounds will be highlighted and discussed to compare activities across different chemical series. A clinical report and update will be given on compounds that have entered clinical trials.
Collapse
Affiliation(s)
- Brian C. Shook
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Paul F. Jackson
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
42
|
Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacol Ther 2011; 132:280-99. [PMID: 21810444 DOI: 10.1016/j.pharmthera.2011.07.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.
Collapse
Affiliation(s)
- Marie Therese Armentero
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson's Disease, IRCCS National Institute of Neurology "C. Mondino", Pavia, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Collins-Praino LE, Paul NE, Rychalsky KL, Hinman JR, Chrobak JJ, Senatus PB, Salamone JD. Pharmacological and physiological characterization of the tremulous jaw movement model of parkinsonian tremor: potential insights into the pathophysiology of tremor. Front Syst Neurosci 2011; 5:49. [PMID: 21772815 PMCID: PMC3131529 DOI: 10.3389/fnsys.2011.00049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/03/2011] [Indexed: 11/13/2022] Open
Abstract
Tremor is a cardinal symptom of parkinsonism, occurring early on in the disease course and affecting more than 70% of patients. Parkinsonian resting tremor occurs in a frequency range of 3-7 Hz and can be resistant to available pharmacotherapy. Despite its prevalence, and the significant decrease in quality of life associated with it, the pathophysiology of parkinsonian tremor is poorly understood. The tremulous jaw movement (TJM) model is an extensively validated rodent model of tremor. TJMs are induced by conditions that also lead to parkinsonism in humans (i.e., striatal DA depletion, DA antagonism, and cholinomimetic activity) and reversed by several antiparkinsonian drugs (i.e., DA precursors, DA agonists, anticholinergics, and adenosine A(2A) antagonists). TJMs occur in the same 3-7 Hz frequency range seen in parkinsonian resting tremor, a range distinct from that of dyskinesia (1-2 Hz), and postural tremor (8-14 Hz). Overall, these drug-induced TJMs share many characteristics with human parkinsonian tremor, but do not closely resemble tardive dyskinesia. The current review discusses recent advances in the validation of the TJM model, and illustrates how this model is being used to develop novel therapeutic strategies, both surgical and pharmacological, for the treatment of parkinsonian resting tremor.
Collapse
Affiliation(s)
- Lyndsey E Collins-Praino
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Collins LE, Paul NE, Abbas SF, Leser CE, Podurgiel SJ, Galtieri DJ, Chrobak JJ, Baqi Y, Müller CE, Salamone JD. Oral tremor induced by galantamine in rats: a model of the parkinsonian side effects of cholinomimetics used to treat Alzheimer's disease. Pharmacol Biochem Behav 2011; 99:414-22. [PMID: 21640750 DOI: 10.1016/j.pbb.2011.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/17/2011] [Accepted: 05/22/2011] [Indexed: 01/17/2023]
Abstract
Anticholinesterases are the most common treatment for Alzheimer's disease, and, in recent years, a new group of cholinesterase inhibitors (i.e. rivastigmine, galantamine, and donepezil) has become available. Although these drugs improve cognitive symptoms, they also can induce or exacerbate parkinsonian symptoms, including tremor. The present studies were conducted to determine if galantamine induces tremulous jaw movements, a rodent model of parkinsonian tremor, and to investigate whether these oral motor impairments can be reversed by co-administration of adenosine A(2A) antagonists. The first experiment demonstrated that systemic injections of galantamine (0.75-6.0 mg/kg I.P.) induced a dose-related increase in tremulous jaw movements in rats. In a second study, co-administration of the muscarinic antagonist scopolamine (0.0156-0.25 mg/kg I.P.) produced a dose dependent suppression of tremulous jaw movements induced by a 3.0 mg/kg dose of galantamine, indicating that galantamine induces these tremulous oral movements through actions on muscarinic acetylcholine receptors. In two additional studies, analyses of freeze-frame video and electromyographic activity recorded from the lateral temporalis muscle indicated that the local frequency of these galantamine-induced jaw movements occurs in the 3-7 Hz frequency range that is characteristic of parkinsonian tremor. In the final experiment, the adenosine A(2A) antagonist MSX-3 significantly attenuated the tremulous jaw movements induced by the 3.0mg/kg dose of galantamine, which is consistent with the hypothesis that co-administration of adenosine A(2A) antagonists may be beneficial in reducing parkinsonian motor impairments induced by anticholinesterase treatment.
Collapse
Affiliation(s)
- Lyndsey E Collins
- Dept. of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Szabó N, Kincses ZT, Vécsei L. Novel therapy in Parkinson's disease: adenosine A2Areceptor antagonists. Expert Opin Drug Metab Toxicol 2011; 7:441-55. [DOI: 10.1517/17425255.2011.557066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Chen JF, Chern Y. Impacts of methylxanthines and adenosine receptors on neurodegeneration: human and experimental studies. Handb Exp Pharmacol 2011:267-310. [PMID: 20859800 DOI: 10.1007/978-3-642-13443-2_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Neurodegenerative disorders are some of the most feared illnesses in modern society, with no effective treatments to slow or halt this neurodegeneration. Several decades after the earliest attempt to treat Parkinson's disease using caffeine, tremendous amounts of information regarding the potential beneficial effect of caffeine as well as adenosine drugs on major neurodegenerative disorders have accumulated. In the first part of this review, we provide general background on the adenosine receptor signaling systems by which caffeine and methylxanthine modulate brain activity and their role in relationship to the development and treatment of neurodegenerative disorders. The demonstration of close interaction between adenosine receptor and other G protein coupled receptors and accessory proteins might offer distinct pharmacological properties from adenosine receptor monomers. This is followed by an outline of the major mechanism underlying neuroprotection against neurodegeneration offered by caffeine and adenosine receptor agents. In the second part, we discuss the current understanding of caffeine/methylxantheine and its major target adenosine receptors in development of individual neurodegenerative disorders, including stroke, traumatic brain injury Alzheimer's disease, Parkinson's disease, Huntington's disease and multiple sclerosis. The exciting findings to date include the specific in vivo functions of adenosine receptors revealed by genetic mouse models, the demonstration of a broad spectrum of neuroprotection by chronic treatment of caffeine and adenosine receptor ligands in animal models of neurodegenerative disorders, the encouraging development of several A(2A) receptor selective antagonists which are now in advanced clinical phase III trials for Parkinson's disease. Importantly, increasing body of the human and experimental studies reveals encouraging evidence that regular human consumption of caffeine in fact may have several beneficial effects on neurodegenerative disorders, from motor stimulation to cognitive enhancement to potential neuroprotection. Thus, with regard to neurodegenerative disorders, these potential benefits of methylxanthines, caffeine in particular, strongly argue against the common practice by clinicians to discourage regular human consumption of caffeine in aging populations.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
47
|
CSC counteracts l-DOPA-induced overactivity of the corticostriatal synaptic ultrastructure and function in 6-OHDA-lesioned rats. Brain Res 2010; 1376:113-21. [PMID: 21195062 DOI: 10.1016/j.brainres.2010.12.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/19/2010] [Accepted: 12/21/2010] [Indexed: 11/22/2022]
Abstract
l-DOPA remains the gold-standard treatment for Parkinson's disease (PD). However, the emergence of l-DOPA-induced dyskinesia (LID) and motor fluctuations represents a major clinical problem in PD. The selective localization of adenosine A(2A) receptors to the basal ganglia and specifically to the indirect output pathway appear to be crucial both in the pathogenesis of PD and in the development of LID. In this study, we investigated the effects of a 3-week treatment with l-DOPA (50mg/kg/day+benserazide 12.5mg/kg/day, twice daily, i.p.) alone or combined with adenosine A(2A) receptor antagonist 8-(3-Chlorostyryl)caffeine (CSC) (5mg/kg/day, twice daily), on the rotational motor response duration, abnormal involuntary movements (AIM) and the associated striatal expression of adenosine A(2A) receptor in rats with a nigrostriatal lesion. CSC treatment ameliorated the shortening of the rotational motor response duration, partly attenuated dyskinesia and reduced striatal expression of adenosine A(2A) receptor induced by l-DOPA. Electron microscopy technique results showed that the postsynapse density depth was much thicker, synapse cleft width was narrower and the ratio of perforated synapses significantly increased in the l-DOPA-treated rats, while systemic coadministration of CSC with l-DOPA attenuated the overactivity of corticostriatal synaptic ultrastructure and function induced by l-DOPA. In conclusion, CSC by means of its dual action as A(2A) receptor antagonist and MAO-B inhibitor ameliorated the changed behavior, expression of adenosine A(2A) receptor and postsynaptic effects, observed in the 6-OHDA-lesioned rats, pointing out to its potential benefit for the treatment of LID.
Collapse
|
48
|
Frau L, Borsini F, Wardas J, Khairnar AS, Schintu N, Morelli M. Neuroprotective and anti-inflammatory effects of the adenosine A2A receptor antagonist ST1535 in a MPTP mouse model of Parkinson's disease. Synapse 2010; 65:181-8. [DOI: 10.1002/syn.20833] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Hodgson RA, Bedard PJ, Varty GB, Kazdoba TM, Di Paolo T, Grzelak ME, Pond AJ, Hadjtahar A, Belanger N, Gregoire L, Dare A, Neustadt BR, Stamford AW, Hunter JC. Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Exp Neurol 2010; 225:384-90. [PMID: 20655910 DOI: 10.1016/j.expneurol.2010.07.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/26/2022]
Abstract
Parkinson's Disease (PD) and Extrapyramidal Syndrome (EPS) are movement disorders that result from degeneration of the dopaminergic input to the striatum and chronic inhibition of striatal dopamine D(2) receptors by antipsychotics, respectively. Adenosine A(2A) receptors are selectively localized in the basal ganglia, primarily in the striatopallidal ("indirect") pathway, where they appear to operate in concert with D(2) receptors and have been suggested to drive striatopallidal output balance. In cases of dopaminergic hypofunction, A(2A) receptor activation contributes to the overdrive of the indirect pathway. A(2A) receptor antagonists, therefore, have the potential to restore this inhibitor imbalance. Consequently, A(2A) receptor antagonists have therapeutic potential in diseases of dopaminergic hypofunction such as PD and EPS. Targeting the A(2A) receptor may also be a way to avoid the issues associated with direct dopamine agonists. Recently, preladenant was identified as a potent and highly selective A(2A) receptor antagonist, and has produced a significant improvement in motor function in rodent models of PD. Here we investigate the effects of preladenant in two primate movement disorder models. In MPTP-treated cynomolgus monkeys, preladenant (1 or 3 mg/kg; PO) improved motor ability and did not evoke any dopaminergic-mediated dyskinetic or motor complications. In Cebus apella monkeys with a history of chronic haloperidol treatment, preladenant (0.3-3.0 mg/kg; PO) delayed the onset of EPS symptoms evoked by an acute haloperidol challenge. Collectively, these data support the use of preladenant for the treatment of PD and antipsychotic-induced movement disorders.
Collapse
Affiliation(s)
- Robert A Hodgson
- Department of Neurobiology, Merck and Co. Inc., Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bartoccini F, Cabri W, Celona D, Minetti P, Piersanti G, Tarzia G. Direct B-Alkyl Suzuki−Miyaura Cross-Coupling of 2-Halopurines. Practical Synthesis of ST1535, a Potent Adenosine A2A Receptor Antagonist. J Org Chem 2010; 75:5398-401. [DOI: 10.1021/jo101027h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Francesca Bartoccini
- Department of Drug and Health Sciences, University of Urbino “Carlo Bo”, P.zza Rinascimento 6, 61029 Urbino (PU), Italy
| | - Walter Cabri
- Chemistry & Analytical Development Department, Sigma-Tau, Via Pontina Km 30,400, 00040 Pomezia, Roma, Italy
| | - Diana Celona
- Chemistry & Analytical Development Department, Sigma-Tau, Via Pontina Km 30,400, 00040 Pomezia, Roma, Italy
| | - Patrizia Minetti
- Chemistry & Analytical Development Department, Sigma-Tau, Via Pontina Km 30,400, 00040 Pomezia, Roma, Italy
| | - Giovanni Piersanti
- Department of Drug and Health Sciences, University of Urbino “Carlo Bo”, P.zza Rinascimento 6, 61029 Urbino (PU), Italy
| | - Giorgio Tarzia
- Department of Drug and Health Sciences, University of Urbino “Carlo Bo”, P.zza Rinascimento 6, 61029 Urbino (PU), Italy
| |
Collapse
|