1
|
Terpstra ML, Li J, Mensinga A, de Ruijter M, van Rijen MHP, Androulidakis C, Galiotis C, Papantoniou I, Matsusaki M, Malda J, Levato R. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication 2022; 14. [PMID: 35354130 DOI: 10.1088/1758-5090/ac6282] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Microvasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology. Multi-material 3D bioprinting can potentially resolve anisotropic tissue features, although building complex constructs comprising stable vascularized and non-vascularized regions remains a major challenge. Here, we developed endothelial cell(EC)-laden pro- and anti-angiogenic bioinks, supplemented with bioactive matrix-derived microfibers (MFs) that were created from type I collagen sponges (col-1) and cartilage decellularized extracellular matrix (CdECM). EC-driven capillary network formation started two days after bioprinting. Supplementing cartilage-derived MFs to endothelial-cell laden bioinks reduced the total length of neo-microvessels by 29% after 14 days, compared to col-1 MFs-laden bioinks. As a proof of concept, the bioinks were bioprinted into an anatomical meniscus shape with a biomimetic vascularized outer and non-vascularized inner region, using a microgel suspension bath. The constructs were cultured up to 14 days, with in the outer zone the HUVEC-, mural cell-, and col-1 MF-laden pro-angiogenic bioink, and in the inner zone a meniscus progenitor cell (MPC)- and CdECM MF-laden anti-angiogenic bioink, revealing successful spatial confinement of the nascent vascular network only in the outer zone. Further, to co-facilitate both microvessel formation and MPC-derived matrix formation, we formulated cell culture medium conditions with a temporal switch. Overall, this study provides a new strategy that could be applied to develop zonal biomimetic meniscal constructs. Moreover, the use of ECM-derived MFs to promote or inhibit capillary networks opens new possibilities for the biofabrication of tissues with anisotropic microvascular distribution. These have potential for many applications including in vitro models, cancer progression, and testing anti-angiogenic therapies.
Collapse
Affiliation(s)
- Margo Luchiena Terpstra
- University Medical Centre Utrecht Department of Orthopedics, Heidelberglaan 100, Utrecht, 3584 CX, NETHERLANDS
| | - Jinyu Li
- Department of Applied Chemistry, Osaka University, Faculty of Engineering, Suita, Osaka 565-0871, Suita, Osaka, 565-0871, JAPAN
| | - Anneloes Mensinga
- Utrecht University Faculty of Veterinary Medicine, Heidelberglaan 8, Utrecht, Utrecht, 3584 CS, NETHERLANDS
| | - Mylène de Ruijter
- University Medical Centre Utrecht Department of Orthopedics, Heidelberglaan 100, Utrecht, Utrecht, 3584 CX, NETHERLANDS
| | - Mattie H P van Rijen
- Department of Orthopedics, Universitair Medisch Centrum Utrecht, Heidelberglaan 100, Utrecht, Utrecht, 3584 CX, NETHERLANDS
| | - Charalampos Androulidakis
- Department of Chemical Engineering, University of Patras, Stadiou Street, Platani, Patras, Periféria Dhitikís Elládh, 26504, GREECE
| | - Costas Galiotis
- Department Chemical EngineeringScience, University of Patras, Panepistimioupoli, Rio, GR-26504 Patras, Patra, Periféria Dhitikís Elládh, 26504, GREECE
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1, +10, Herestraat 49, box 813, Leuven, 3000, BELGIUM
| | - Michiya Matsusaki
- Department of Applied Chemistry, Osaka University, Faculty of Engineering, Suita, Osaka 565-0871, Suita, Osaka, 565-0871, JAPAN
| | - Jos Malda
- Orthopaedics, University Medical Centre Utrecht Department of Orthopedics, The Netherlands, Utrecht, 3508 GA, NETHERLANDS
| | - Riccardo Levato
- Utrecht University Faculty of Veterinary Medicine, Heidelberglaan 8, Utrecht, 3584 CS, NETHERLANDS
| |
Collapse
|
2
|
Qian X, Zhang Y, Tao J, Niu R, Song S, Wang C, Peng X, Chen F. Acidosis induces synovial fibroblasts to release vascular endothelial growth factor via acid-sensitive ion channel 1a. J Transl Med 2021; 101:280-291. [PMID: 32826932 DOI: 10.1038/s41374-020-0423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
Acid-sensitive ion channel 1a (ASIC1a) is a member of the extracellular H+ activated cation channel family. Studies have shown that tissue acidification contributes to the formation of microvessels in rheumatoid arthritis (RA) synovial tissue, but its underlying mechanisms remain unclear. The purpose of this study was to investigate the role of tissue acidification in microvascular formation of arthritic synovial tissue and the effect of ASIC1a on vascular endothelial growth factor (VEGF) release from arthritic synovial tissue. Our results indicate that ASIC1a expression, VEGF expression, and microvessel density (MVD) are elevated in RA synovial tissue and adjuvant arthritis (AA) rat synovial tissue. When AA rats were treated with ASIC1a-specific blocker psalmotoxin-1 (PcTx-1), the expression of ASIC1a, VEGF expression, and MVD were all reduced. Acidification of RA synovial fibroblasts (RASF) can promote the release of VEGF. PcTx-1 and ASIC1a-short hairpin RNA can inhibit acid-induced release of VEGF. In addition, the ASIC1a overexpression vector can promote acid-induced VEGF release. This indicates that extracellular acidification induces the release of VEGF by RASF via ASIC1a. These findings suggest that blocking ASIC1a mediates the release of VEGF from synoviocytes may provide a potential therapeutic strategy for RA therapy.
Collapse
Affiliation(s)
- Xuewen Qian
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yihao Zhang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Jingjing Tao
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Ruowen Niu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Sujing Song
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Cong Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Xiaoqing Peng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Feihu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
3
|
You S, Koh JH, Leng L, Kim WU, Bucala R. The Tumor-Like Phenotype of Rheumatoid Synovium: Molecular Profiling and Prospects for Precision Medicine. Arthritis Rheumatol 2018; 70:637-652. [PMID: 29287304 PMCID: PMC5920713 DOI: 10.1002/art.40406] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by destructive hyperplasia of the synovium. Fibroblast-like synoviocytes (FLS) are a major component of synovial pannus and actively participate in the pathologic progression of RA. How rheumatoid FLS acquire and sustain such a uniquely aggressive phenotype remains poorly understood. We describe the current state of knowledge of the molecular alterations in rheumatoid FLS at the genomic, epigenomic, transcriptomic, proteomic, and metabolomic levels, which offers a means to reconstruct the pathways leading to rheumatoid pannus. Such data provide new pathologic insight and suggest means to more sensitively assess disease activity and response to therapy, as well as support new avenues for therapeutic development.
Collapse
Affiliation(s)
- Sungyong You
- Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jung Hee Koh
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Lin Leng
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Richard Bucala
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
4
|
Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev 2017; 16:594-601. [PMID: 28414154 DOI: 10.1016/j.autrev.2017.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
In Rheumatoid arthritis (RA), neoangiogenesis is an early and crucial event to promote the development of the hyperplasic proliferative pathologic synovium. Endothelial cells are critical for the formation of new blood vessels since they highly contribute to angiogenesis and vasculogenesis. Current therapies in RA target the inflammatory consequences of autoimmune activation and despite major improvements these last years still refractory patients or incomplete responders may be seen raising the point of the need to identify complementary additive and innovative therapies. This review resumes the mechanisms of synovial neoangiogenesis in RA, including recent insights on the implication of vasculogenesis, and the regulation of synovial neoangiogenesis by angiogenic and inflammatory mediators. In line with the recent development of vascular-targeted therapies used in cancer and beyond, we also discuss possible therapeutic implications in RA, in particular the combination of targeted immunotherapies with anti-angiogenic molecules.
Collapse
Affiliation(s)
- Agathe Leblond
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France.
| |
Collapse
|
5
|
Gao QF, Zhang XH, Yuan FL, Zhao MD, Li X. Recombinant human endostatin inhibits TNF-alpha-induced receptor activator of NF-κB ligand expression in fibroblast-like synoviocytes in mice with adjuvant arthritis. Cell Biol Int 2016; 40:1340-1348. [PMID: 27730697 DOI: 10.1002/cbin.10689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/05/2016] [Indexed: 01/06/2023]
Abstract
Bone loss is a critical pathology responsible for the functional disability in patients with rheumatoid arthritis (RA). It is well known that receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) plays a crucial role in bone loss in RA. The purpose of this study was to determine whether recombinant human endostatin (rh-endostatin) mediates bone erosion in RA by regulation of RANKL expression in an experimental model of RA, consisting of mice with adjuvant-induced arthritis (AA). Cultured AA fibroblast-like synoviocytes (FLSs) obtained from these mice were induced by tumor necrosis factor-α (TNF-α) combined with or without rh-endostatin. The levels of RANKL and osteoprotegerin (OPG) mRNA, soluble and membrane-bound proteins were assessed by real-time PCR, ELISA, and Western blotting. Western blotting and the luciferase reporter assay were used to study related signaling pathways. Rh-endostatin inhibited RANKL mRNA expression, soluble and membrane-bound protein expression in AA FLSs but not in CD4+ T cells. However, OPG expression and secretion was not affected by rh-endostatin in AA FLSs. Molecular analysis demonstrated that rh-endostatin significantly inhibited TNF-α-induced MAPK and AP-1 signaling pathways. Moreover, rh-endostatin attenuated TNF-α-induced NF-κB signaling by suppressing the phosphorylation level of inhibitor kappaBα (IκBα) and nuclear translocation of NF-κB p65 in FLSs from mice with AA. These results provide the first evidence that rh-endostatin inhibits TNF-α-induced RANKL expression in AA FLSs.
Collapse
Affiliation(s)
- Qiu-Fang Gao
- Department of Pharmacy, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - Xiu-Hong Zhang
- Department of Pharmacy, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214041, China
| | - Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - Ming-Dong Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xia Li
- Department of Pharmacy, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| |
Collapse
|
6
|
Chen N, Gao RF, Yuan FL, Zhao MD. Recombinant Human Endostatin Suppresses Mouse Osteoclast Formation by Inhibiting the NF-κB and MAPKs Signaling Pathways. Front Pharmacol 2016; 7:145. [PMID: 27313530 PMCID: PMC4887464 DOI: 10.3389/fphar.2016.00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/17/2016] [Indexed: 11/14/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by synovial hyperplasia and progressive joint destruction. As reported previously, recombinant human endostatin (rhEndostatin) is associated with inhibition of joint bone destruction present in rat adjuvant-induced arthritis; however, the effect of rhEndostatin on bone destruction is not known. This study was designed to assess the inhibitory effect and mechanisms of rhEndostatin on formation and function of osteoclasts in vitro, and to gain insight into the mechanism underlying the inhibitory effect of bone destruction. Bone marrow-derived macrophages isolated from BALB/c mice were stimulated with receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor to establish osteoclast formation. Osteoclast formation was determined by TRAP staining. Cell viability of BMMs affected by rhEndostatin was determined using a MTT assay. Bone resorption was examined with a bone resorption pits assay. The expression of osteoclast-specific markers was analyzed using quantitative real-time PCR. The related signaling pathways were examined using a Luciferase reporter assay and western blot analysis. Indeed, rhEndostatin showed a significant reduction in the number of osteoclast-like cells and early-stage bone resorption. Moreover, molecular analysis demonstrated that rhEndostatin attenuated RANKL-induced NF-κB signaling by inhibiting the phosphorylation of IκBα and NF-κB p65 nuclear translocation. Furthermore, rhEndostatin significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases, such as ERK1/2, JNK, and p38. Hence, we demonstrated for the first time that preventing the formation and function of osteoclasts is an important anti-bone destruction mechanism of rhEndostatin, which might be useful in the prevention and treatment of bone destruction in RA.
Collapse
Affiliation(s)
- Nong Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Qingpu Branch, Fudan University Shanghai, China
| | - Ru-Feng Gao
- Department of Orthopaedic Surgery, Zhongshan Hospital, Qingpu Branch, Fudan University Shanghai, China
| | - Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University Wuxi, China
| | - Ming-Dong Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
7
|
Hamilton JL, Nagao M, Levine BR, Chen D, Olsen BR, Im HJ. Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. J Bone Miner Res 2016; 31:911-24. [PMID: 27163679 PMCID: PMC4863467 DOI: 10.1002/jbmr.2828] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 01/15/2023]
Abstract
Increased vascular endothelial growth factor (VEGF) levels are associated with osteoarthritis (OA) progression. Indeed, VEGF appears to be involved in OA-specific pathologies including cartilage degeneration, osteophyte formation, subchondral bone cysts and sclerosis, synovitis, and pain. Moreover, a wide range of studies suggest that inhibition of VEGF signaling reduces OA progression. This review highlights both the potential significance of VEGF in OA pathology and pain, as well as potential benefits of inhibition of VEGF and its receptors as an OA treatment. With the emergence of the clinical use of anti-VEGF therapy outside of OA, both as high-dose systemic treatments and low-dose local treatments, these particular therapies are now more widely understood. Currently, there is no established disease-modifying drug available for patients with OA, which warrants continued study of the inhibition of VEGF signaling in OA, as stand-alone or adjuvant therapy. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John L. Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Masashi Nagao
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Brett R. Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Internal Medicine Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs, Chicago, IL 60612, USA
| |
Collapse
|
8
|
|
9
|
Azizi G, Boghozian R, Mirshafiey A. The potential role of angiogenic factors in rheumatoid arthritis. Int J Rheum Dis 2014; 17:369-83. [PMID: 24467605 DOI: 10.1111/1756-185x.12280] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Angiogenesis is an important phenomenon in the pathogenesis of some diseases, such as numerous types of tumors and autoimmunity, and also a number of soluble and cell-bound factors may stimulate neovascularization in inflammatory reaction processes. Here, by highlighting the significance of angiogenesis reaction in rheumatoid arthritis (RA), we will mainly focus on the role of various growth factors, cytokines, enzymes, cells, hypoxic conditions and transcription factors in the angiogenic process and we will then explain some therapeutic strategies based on blockage of angiogenesis and modification of the vascular pathology in RA.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | | | | |
Collapse
|
10
|
Zinc supplementation protects human endostatin Fc fusion against proteolytic degradation during cell culture. Protein Expr Purif 2014; 93:18-22. [DOI: 10.1016/j.pep.2013.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/07/2013] [Accepted: 10/13/2013] [Indexed: 11/21/2022]
|
11
|
Huang XY, Zhang XM, Chen FH, Zhou LL, Deng XF, Liu YJ, Li XJ. Anti-proliferative effect of recombinant human endostatin on synovial fibroblasts in rats with adjuvant arthritis. Eur J Pharmacol 2014; 723:7-14. [DOI: 10.1016/j.ejphar.2013.10.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/02/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
|
12
|
Maruotti N, Cantatore FP, Ribatti D. Putative effects of potentially anti-angiogenic drugs in rheumatic diseases. Eur J Clin Pharmacol 2013; 70:135-40. [PMID: 24196651 DOI: 10.1007/s00228-013-1605-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/15/2013] [Indexed: 11/27/2022]
Abstract
A role for angiogenesis has been described in several rheumatic diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, systemic sclerosis, systemic lupus erythematosus, vasculitides, and osteoarthritis, leading to the possibility that angiogenesis inhibition may be an additional useful therapeutic arm. While the role of anti-angiogenic therapy in rheumatoid arthritis has received attention, it is conceivable that the inhibition of pathological angiogenesis may also be a useful therapeutical approach in other rheumatic diseases. Numerous compounds, such as, for example, various interleukins, antibodies directed against angiogenic factors, peptides, estrogen metabolites, disease-modifying anti-rheumatic drugs, have been found to have anti-angiogenic properties. However, additional research is needed to obtain a clear understanding of the pathogenic mechanism of angiogenesis and the potential applications of anti-angiogenic therapy in rheumatic diseases.
Collapse
Affiliation(s)
- Nicola Maruotti
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, Foggia, Italy
| | | | | |
Collapse
|
13
|
McMahon MS. Role of endostatin in orthopedics. Orthopedics 2012; 35:736-8. [PMID: 22955381 DOI: 10.3928/01477447-20120901-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Semerano L, Clavel G, Assier E, Denys A, Boissier MC. Blood vessels, a potential therapeutic target in rheumatoid arthritis? Joint Bone Spine 2010; 78:118-23. [PMID: 20851025 DOI: 10.1016/j.jbspin.2010.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 06/23/2010] [Indexed: 01/01/2023]
Abstract
New micro-vessels formation within synovium and macro-vessels endothelial damage with atheroma are two major features of rheumatoid arthritis, the former related to the articular involvement of the disease, the latter to its main systemic complication. The similarities between pannus development and solid tumors growth, and the efficacy of anti-angiogenic treatments in oncology, opened the perspective of directly targeting angiogenesis in arthritis. Nevertheless, despite the success of different anti-angiogenic therapeutic strategies in many arthritis experimental models, the application in human disease is still lacking. Recent data suggest that synovial neoangiogenesis and macro-vessels endothelial damage might be two linked phenomena. While synovial angiogenesis seems to be detrimental to endothelial damage repair, even anti-angiogenic treatments might paradoxically aggravate macro-vascular disease, especially in the context of uncontrolled inflammation. These elements induce to further explore the interconnections between inflammation and angiogenesis on one side and between micro- and macro-vascular diseases on the other, in order to establish the proper way to therapeutically target blood vessels in rheumatoid arthritis.
Collapse
Affiliation(s)
- Luca Semerano
- Department of Rheumatology, Avicenne Hospital, AP-HP, Bobigny, France.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
Angiogenesis is the formation of new capillaries from pre-existing vessels. A number of soluble and cell-bound factors may stimulate neovascularization. The perpetuation of angiogenesis involving numerous soluble and cell surface-bound mediators has been associated with rheumatoid arthritis (RA). These angiogenic mediators, among others, include growth factors, primarily vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIFs), as well as pro-inflammatory cytokines, various chemokines, matrix components, cell adhesion molecules, proteases and others. Among the several potential angiogenesis inhibitors, targeting of VEGF, HIF-1, angiogenic chemokines, tumor necrosis factor-alpha and the alpha(V)beta(3) integrin may attenuate the action of angiogenic mediators and thus synovial angiogenesis. In addition, some naturally produced or synthetic compounds including angiostatin, endostatin, paclitaxel, fumagillin analogues, 2-methoxyestradiol and thalidomide may be included in the management of RA.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Sciences Center, Debrecen, H-4032, Hungary.
| | | | | | | |
Collapse
|
17
|
Szekanecz Z, Koch AE. Angiogenesis and its targeting in rheumatoid arthritis. Vascul Pharmacol 2009; 51:1-7. [PMID: 19217946 PMCID: PMC2917972 DOI: 10.1016/j.vph.2009.02.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 02/02/2009] [Indexed: 12/25/2022]
Abstract
Angiogenesis, the development of new capillaries, is involved in leukocyte ingress into the synovium during the development and progression of rheumatoid arthritis. Several soluble and cell surface-bound mediators including growth factors, cytokines, chemokines, proteolytic matrix-degrading enzymes, cell adhesion molecules and others may promote synovial neovascularization. On the other hand, endogenous angiostatic factors, such as angiostatin, endostatin, interleukin-4 (IL-4), IL-13, interferons and some angiostatic chemokines are also produced within the rheumatoid synovium, however, their effects are insufficient to control synovial angiogenesis and inflammation. Several specific and non-specific strategies have been developed to block the action of angiogenic mediators. The first line of angiostatic agents include vascular endothelial growth factor (VEGF), angiopoietin, alpha(V)beta(3) integrin antagonist, as well as non-specific angiogenesis inhibitors including traditional disease-modifying agents (DMARDs), anti-tumor necrosis factor biologics, angiostatin, endostatin, fumagillin analogues or thalidomide. Potentially any angiostatic compound could be introduced to studies using animal models of arthritis or even to human rheumatoid arthritis trials.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Sciences Center, Debrecen, H-4012 Hungary.
| | | |
Collapse
|
18
|
Huang XY, Chen FH, Li J, Xia LJ, Liu YJ, Zhang XM, Yuan FL. Mechanism of Fibroblast-Like Synoviocyte Apoptosis Induced by Recombinant Human Endostatin in Rats with Adjuvant Arthritis. Anat Rec (Hoboken) 2008; 291:1029-37. [DOI: 10.1002/ar.20722] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Khong TL, Larsen H, Raatz Y, Paleolog E. Angiogenesis as a therapeutic target in arthritis: learning the lessons of the colorectal cancer experience. Angiogenesis 2007; 10:243-58. [PMID: 17805984 DOI: 10.1007/s10456-007-9081-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/13/2007] [Indexed: 01/13/2023]
Abstract
The idea of a therapeutic modality aimed at 'starving' a tissue of blood vessels, and consequentially of oxygen and nutrients, was born from the concept that blood vessel formation (angiogenesis) is central to the progression and maintenance of diseases which involve tissue expansion/invasion. In the first instance, solid malignancies were the target for anti-angiogenic treatments, with colorectal cancer being the first disease for which an angiogenesis inhibitor--anti-vascular endothelial growth factor antibody bevacizumab--was approved in 2004. Our understanding of the pathogenesis of rheumatoid arthritis (RA) has lead to many parallels being drawn between this chronic inflammatory disease and solid tumours, in that both involve tissue expansion, invasion, expression of cytokines and growth factors and areas of hypoxia/hypoperfusion. As a result, angiogenesis blockade has been touted as a possible treatment for RA. The lessons learnt during the progression of eventually successful therapies such as bevacizumab should undoubtedly guide us in the future development of comparable treatments for RA.
Collapse
Affiliation(s)
- Tak Loon Khong
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, Arthritis Research Campaign Building, 1 Aspenlea Road, London W6 8LH, UK
| | | | | | | |
Collapse
|
20
|
Takeuchi K, Tanaka A, Kato S, Aihara E, Amagase K. Effect of (S)-4-(1-(5-chloro-2-(4-fluorophenyoxy)benzamido)ethyl) benzoic acid (CJ-42794), a selective antagonist of prostaglandin E receptor subtype 4, on ulcerogenic and healing responses in rat gastrointestinal mucosa. J Pharmacol Exp Ther 2007; 322:903-12. [PMID: 17578900 DOI: 10.1124/jpet.107.122978] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent research showed the involvement of prostaglandin E receptor subtype 4 (EP4) in hypersensitivity to inflammatory pain and suggested that the EP4 receptor is a potential target for the pharmacological treatment of inflammatory pain. We examined the effects of (S)-4-(1-(5-chloro-2-(4-fluorophenyoxy) benzamido)ethyl) benzoic acid (CJ-42794), a selective EP4 antagonist, on gastrointestinal ulcerogenic and healing responses in rats, in comparison with those of various cyclooxygenase (COX) inhibitors. CJ-42794 alone, given p.o., did not produce any damage in the gastrointestinal mucosa, similar to 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560) (COX-1 inhibitor) or rofecoxib (COX-2 inhibitor), whereas indomethacin (nonselective COX inhibitor) caused gross lesions. Rofecoxib but not CJ-42794, however, damaged these tissues when coadministered with SC-560 and aggravated gastric lesions produced by aspirin. Indomethacin and SC-560 worsened the gastric ulcerogenic response to cold-restraint stress, yet neither CJ-42794 nor rofecoxib had any effect. Furthermore, indomethacin and SC-560 at lower doses damaged the stomach and small intestine of adjuvant arthritic rats. In arthritic rats, rofecoxib but not CJ-42794 provoked gastric ulceration, whereas CJ-42794 produced little damage in the small intestine. The repeated administration of CJ-42794 and rofecoxib as well as indomethacin impaired the healing of chronic gastric ulcers with a down-regulation of vascular endothelial growth factor expression in the ulcerated mucosa. These results suggest that CJ-42794 does not cause any damage in the normal rat gastrointestinal mucosa and in the arthritic rat stomach and does not worsen the gastric ulcerogenic response to stress or aspirin in normal rats, although this agent slightly damages the small intestine of arthritic rats and impairs the healing of gastric ulcers.
Collapse
Affiliation(s)
- Koji Takeuchi
- Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, Japan.
| | | | | | | | | |
Collapse
|