1
|
Lim CJM, Bray J, Janhunen SK, Platt B, Riedel G. Mouse Exploratory Behaviour in the Open Field with and without NAT-1 EEG Device: Effects of MK801 and Scopolamine. Biomolecules 2024; 14:1008. [PMID: 39199395 PMCID: PMC11352671 DOI: 10.3390/biom14081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
One aspect of reproducibility in preclinical research that is frequently overlooked is the physical condition in which physiological, pharmacological, or behavioural recordings are conducted. In this study, the physical conditions of mice were altered through the attachments of wireless electrophysiological recording devices (Neural Activity Tracker-1, NAT-1). NAT-1 devices are miniaturised multichannel devices with onboard memory for direct high-resolution recording of brain activity for >48 h. Such devices may limit the mobility of animals and affect their behavioural performance due to the added weight (total weight of approximately 3.4 g). The mice were additionally treated with saline (control), N-methyl-D-aspartate (NMDA) receptor antagonist MK801 (0.85 mg/kg), or the muscarinic acetylcholine receptor blocker scopolamine (0.65 mg/kg) to allow exploration of the effect of NAT-1 attachments in pharmacologically treated mice. We found only minimal differences in behavioural outcomes with NAT-1 attachments in standard parameters of locomotor activity widely reported for the open field test between the drug treatments. Hypoactivity was globally observed as a consistent outcome in the MK801-treated mice and hyperactivity in scopolamine groups regardless of NAT-1 attachments. These data collectively confirm the reproducibility for combined behavioural, pharmacological, and physiological endpoints even in the presence of lightweight wireless data loggers. The NAT-1 therefore constitutes a pertinent tool for investigating brain activity in, e.g., drug discovery and models of neuropsychiatric and/or neurodegenerative diseases with minimal effects on pharmacological and behavioural outcomes.
Collapse
Affiliation(s)
- Charmaine J. M. Lim
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| | - Jack Bray
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| | | | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.J.M.L.); (J.B.); (B.P.)
| |
Collapse
|
2
|
You P, Sui J, Jin Z, Huang L, Wei H, Xu Q. Interaction between maternal immune activation and postpartum immune stress in neuropsychiatric phenotypes. Behav Brain Res 2024; 469:115049. [PMID: 38754789 DOI: 10.1016/j.bbr.2024.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Epidemiological evidence has shown that maternal infection is a notable risk factor for developmental psychiatric disorders. Animal models have corroborated this link and demonstrated that maternal immune activation (MIA) induces long-term behavioural deficits and neuroimmunological responses to subsequent immune stress in offspring. However, it is unclear whether MIA offspring are more sensitive or more tolerant to immunological challenges from postnatal infections. Pregnant mice were weighed and injected with a single dose of polyinosinic-polycytidylic acid (poly I:C) or saline at gestational day 9.5, and their male offspring were exposed to poly I:C or saline again during adolescence, adulthood, and middle life. After a two-week recovery from the last exposure to poly I:C, the mice underwent behavioural and neuroendophenotypic evaluations. Finally, the mice were sacrificed, and the expression levels of inflammatory factors and the activation levels of glial cells in the cerebral cortex and hippocampus were evaluated. We found MIA mice have lifelong behavioural deficits and glial activation abnormalities. Postpartum infection exposure at different ages has different consequences. Adolescent and middle life exposure prevents sensorimotor gating deficiency, but adult exposure leads to increased sensitivity to MK-801. Moreover, MIA imposed a lasting impact on the neuroimmune profile, resulting in an enhanced cytokine-associated response and diminished microglial reactivity to postnatal infection. Our results reveal an intricate interplay between prenatal and postpartum infection in neuropsychiatric phenotypes, which identify potential windows where preventive or mitigating measures could be applied.
Collapse
Affiliation(s)
- Pengsheng You
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jiaping Sui
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhongman Jin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lian Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hui Wei
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Qi Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
3
|
Leite Junior JB, de Mello Bastos JM, Dias FRC, Samuels RI, Carey RJ, Carrera MP. A partial habituation method to test for anterograde and retrograde amnestic treatment effects: Evidence that antagonism of the NMDA receptor can induce anterograde but not retrograde amnestic effects. J Neurosci Methods 2024; 404:110072. [PMID: 38307259 DOI: 10.1016/j.jneumeth.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND A progressive decrease in spontaneous locomotion with repeated exposure to a novel environment has been assessed using both within and between-session measures. While both are well-established and reliable measurements, neither are useful alone as methods to concurrently assess treatment effects on acquisition and retention of habituation. NEW METHOD We report a behavioral method that measures habituation by combining the within and between measurements of locomotion. We used a 30 min session divided into 6 five min blocks. In the first novel environment session activity was maximal in the first 5 min block but was reduced to a low level by the sixth block, indicative of within-session habituation. Using 8 daily sessions, we showed that this terminal block low level of activity progressed incrementally to the first block to achieve complete habituation. RESULTS/COMPARISON WITH EXISTING METHODS Within-session activity across sessions was used to identify different stages of between session habituation. It was then possible to assess drug treatment effects from partial to complete habituation, so that treatment effects on retention of the previously acquired partial habituation, expressed as a reversion to an earlier within session habituation pattern (retrograde amnesia assessment), as well as the effects on new learning by the failure in subsequent sessions to acquire complete between-session habituation (anterograde amnesia assessment). CONCLUSIONS The use of spontaneous motor activity to assess learning and memory effects provides the opportunity to assess direct treatment effects on behavior and motor activity in contrast to many learning and memory models.
Collapse
Affiliation(s)
- Joaquim Barbosa Leite Junior
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - João Marcos de Mello Bastos
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Flávia Regina Cruz Dias
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Richard Ian Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Robert J Carey
- Department of Psychiatry SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.
| |
Collapse
|
4
|
Huang X, Li Y, Liu H, Xu J, Tan Z, Dong H, Tian B, Wu S, Wang W. Activation of basolateral amygdala to anterior cingulate cortex circuit alleviates MK-801 induced social and cognitive deficits of schizophrenia. Front Cell Neurosci 2022; 16:1070015. [PMID: 36619672 PMCID: PMC9813383 DOI: 10.3389/fncel.2022.1070015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Schizophrenia is a severe psychiatric disorder with a high prevalence worldwide, however, its pathogenesis remains poorly understood. Methods and results In this study, we used the non-competitive NMDA receptor antagonist MK-801 to induce schizophrenia-like behaviors and confirmed that mice exhibited stereotypic rotational behavior and hyperlocomotion, social interaction defects and cognitive dysfunction, similar to the clinical symptoms in patients. Here, the anterior cingulate cortex (ACC) and basolateral amygdala (BLA) were involved in the schizophrenia-like behaviors induced by MK-801. Furthermore, we confirmed BLA sent glutamatergic projection to the ACC. Chemogenetic and optogenetic regulation of BLA-ACC projecting neurons affected social and cognitive deficits but not stereotypic rotational behavior in MK-801-treated mice. Discussion Overall, our study revealed that the BLA-ACC circuit plays a major role and may be a potential target for treating schizophrenia-related symptoms.
Collapse
|
5
|
Sokolenko E, Nithianantharajah J, Jones NC. MK-801 impairs working memory on the Trial-Unique Nonmatch-to-Location test in mice, but this is not exclusively mediated by NMDA receptors on PV+ interneurons or forebrain pyramidal cells. Neuropharmacology 2020; 171:108103. [DOI: 10.1016/j.neuropharm.2020.108103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 01/13/2023]
|
6
|
Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 2018; 23:1432-1445. [PMID: 29257131 DOI: 10.1038/mp.2017.237] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Stress-related psychopathology is highly prevalent among elderly individuals and is associated with detrimental effects on mood, appetite and cognition. Conversely, under certain circumstances repeated mild-to-moderate stressors have been shown to enhance cognitive performance in rodents and exert stress-inoculating effects in humans. As most stress-related favorable outcomes have been reported in adolescence and young-adulthood, this apparent disparity could result from fundamental differences in how aging organisms respond to stress. Furthermore, given prominent age-related alterations in sex hormones, the effect of chronic stress in aging females remains a highly relevant yet little studied issue. In the present study, female C57BL/6 mice aged 3 (young-adult) and 20-23 (old) months were subjected to 8 weeks of chronic unpredictable stress (CUS). Behavioral outcomes were measured during the last 3 weeks of the CUS protocol, followed by brain dissection for histological and molecular end points. We found that in young-adult female mice, CUS resulted in decreased anxiety-like behavior and enhanced cognitive performance, whereas in old female mice it led to weight loss, dysregulated locomotion and memory impairment. These phenotypes were paralleled by differential changes in the expression of hypothalamic insulin and melanocortin-4 receptors and were consistent with an age-dependent reduction in the dynamic range of stress-related changes in the hippocampal transcriptome. Supported by an integrated microRNA (miRNA)-mRNA expression analysis, the present study proposes that, when confronted with ongoing stress, neuroprotective mechanisms involving the upregulation of neurogenesis, Wnt signaling and miR-375 can be harnessed more effectively during young-adulthood. Conversely, we suggest that aging alters the pattern of immune activation elicited by stress. Ultimately, interventions that modulate these processes could reduce the burden of stress-related psychopathology in late life.
Collapse
|
7
|
Williams J, Randle H. Is the expression of stereotypic behavior a performance-limiting factor in animals? J Vet Behav 2017. [DOI: 10.1016/j.jveb.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Nasehi M, Tabatabaie M, Khakpai F, Zarrindast MR. The effects of CA1 5HT4 receptors in MK801-induced amnesia and hyperlocomotion. Neurosci Lett 2015; 587:73-8. [DOI: 10.1016/j.neulet.2014.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
|
9
|
Parnaudeau S, Dongelmans ML, Turiault M, Ambroggi F, Delbes AS, Cansell C, Luquet S, Piazza PV, Tronche F, Barik J. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine. Front Behav Neurosci 2014; 8:35. [PMID: 24574986 PMCID: PMC3921555 DOI: 10.3389/fnbeh.2014.00035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.
Collapse
Affiliation(s)
- Sébastien Parnaudeau
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Department of Psychiatry, Columbia University New York, NY, USA
| | - Marie-Louise Dongelmans
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France
| | - Marc Turiault
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France
| | - Frédéric Ambroggi
- Pathophysiology of Addiction, Institut National de la Santé et de la Recherche Médicale, U862, NeuroCentre Magendie Bordeaux Cedex, France ; Department of Neurology, Center for Integrative Neuroscience and the Ernest Gallo Clinic and Research Center, University of California at San Francisco San Francisco, CA, USA
| | - Anne-Sophie Delbes
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, UMR 8251 CNRS, Université Paris Diderot Paris, France
| | - Céline Cansell
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, UMR 8251 CNRS, Université Paris Diderot Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, UMR 8251 CNRS, Université Paris Diderot Paris, France
| | - Pier-Vincenzo Piazza
- Pathophysiology of Addiction, Institut National de la Santé et de la Recherche Médicale, U862, NeuroCentre Magendie Bordeaux Cedex, France
| | - François Tronche
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France
| | - Jacques Barik
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 Valbonne, France
| |
Collapse
|
10
|
Li C, Xiao L, Liu X, Yang W, Shen W, Hu C, Yang G, He C. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 2013; 61:732-49. [PMID: 23440860 DOI: 10.1002/glia.22469] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/27/2012] [Indexed: 11/12/2022]
Abstract
Differentiation of oligodendrocyte precursor cells (OPCs) is the most important event for the myelination of central nervous system (CNS) axons during development and remyelination in demyelinating diseases, while the underlying molecular mechanisms remain largely unknown. Here we show that NMDA receptor (NMDAR) is a functional regulator of OPCs differentiation and remyelination. First, GluN1, GluN2A, and GluN2B subunits are expressed in oligodendrocyte lineage cells (OLs) in vitro and in vivo by immunostaining and Western blot analysis. Second, in a purified rat OPC culture system, NMDARs specially mediate OPCs differentiation by enhancing myelin proteins expression and the processes branching at the immature to mature oligodendrocyte transition analyzed by a serial of developmental stage-specific antigens. Moreover, pharmacological NMDAR antagonists or specific knockdown of GluN1 by RNA interference in OPCs prevents the differentiation induced by NMDA. NMDA can activate the mammalian target of rapamycin (mTOR) signal in OPCs and the pro-differentiation effect of NMDA is obstructed by the mTOR inhibitor rapamycin, suggesting NMDAR exerts its effect through mTOR-dependent mechanism. Furthermore, NMDA increases numbers of myelin segments in DRG-OPC cocultures. Finally, NMDAR specific antagonist MK801 delays remyelination in the cuprizone model examined by LFB-PAS, immunofluorescence and electron microscopy. This effect appears to result from inhibiting OPCs differentiation as more NG2(+) OPCs but less GST-π(+) mature oligodendrocytes are observed. Together, these results indicate that NMDAR plays a critical role in the regulation of OPCs differentiation in vitro and remyelination in cuprizone model which may provide potential target for the treatment of demyelination disease.
Collapse
Affiliation(s)
- Cui Li
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Joo J, Lee S, Nah SS, Kim YO, Kim DS, Shim SH, Hwangbo Y, Kim HK, Kwon JT, Kim JW, Song HY, Kim HJ. Lasp1 is down-regulated in NMDA receptor antagonist-treated mice and implicated in human schizophrenia susceptibility. J Psychiatr Res 2013; 47:105-12. [PMID: 23040864 DOI: 10.1016/j.jpsychires.2012.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/29/2022]
Abstract
Mice treated with MK-801, a non-competitive antagonist of the N-methyl-d-aspartic (NMDA) acid receptor, are important animal models for schizophrenia studies. In the present study, we compared protein expression levels in the hippocampus of mice treated with MK-801 (0.6 mg/kg) or saline once daily for 7 days. Changes in the proteome were detected by two-dimensional electrophoresis, and the six proteins exhibiting differential expression were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Down-regulation of one of these proteins, Lasp1 (LIM and SH3 protein 1), in MK-801-treated mice was confirmed by western blotting and immunohistochemical analyses. Lasp1 is a multidomain protein that may recruit signaling molecules to the actin-based cytoskeleton and is known to concentrate in synaptic sites of hippocampal neurons. We next investigated whether polymorphisms in the human LASP1 gene were associated with schizophrenia in the Korean population. A single-nucleotide polymorphism in the LASP1 gene promoter region was associated with schizophrenia susceptibility. Our results suggest that LASP1 might be associated with NMDA receptor antagonism and schizophrenia susceptibility and, thus, might be involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jaesoon Joo
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 330-090, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Voikar V, Kulesskaya N, Laakso T, Lauren J, Strittmatter SM, Airaksinen MS. LRRTM1-deficient mice show a rare phenotype of avoiding small enclosures--a tentative mouse model for claustrophobia-like behaviour. Behav Brain Res 2012; 238:69-78. [PMID: 23089646 DOI: 10.1016/j.bbr.2012.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 02/03/2023]
Abstract
The LRRTM family proteins have been shown to act as synaptogenic cell adhesion molecules via interaction with presynaptic neurexins and are associated with neuropsychiatric disorders. LRRTM1-knockout mice have subtle morphological deficits in excitatory hippocampal synapses and were suggested to have impaired cognitive function. Here we report that LRRTM1-knockout mice exhibit an extraordinary phenotype of avoiding small enclosures. In the light-dark box, the knockout mice escape to dark through a standard opening as quickly as wild-type littermates but avoid escaping through a small doorway. While all wild-type mice spontaneously enter a small tube, most knockout mice do not. This apparent aversion to enter narrow space may explain other abnormalities such as increased time in open arms in the elevated plus maze and less visits through a tunnel in the IntelliCage. Moreover, LRRTM1-knockout mice show increased social interaction, reduced nest building and MK801-induced locomotion, and slower swim speed but normal water maze learning. Since LRRTM1 is predominantly expressed in thalamus, hippocampus and limbic cortex, specific synaptic defects in those areas presumably cause these behavioural abnormalities.
Collapse
Affiliation(s)
- V Voikar
- Neuroscience Center, University of Helsinki, Finland.,Department of Biosciences, University of Helsinki, Finland
| | - N Kulesskaya
- Neuroscience Center, University of Helsinki, Finland.,Department of Biosciences, University of Helsinki, Finland
| | - T Laakso
- Neuroscience Center, University of Helsinki, Finland
| | - J Lauren
- Cellular Neuroscience, Neurodegeneration, and Repair Program, and Departments of Neurology and Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - S M Strittmatter
- Cellular Neuroscience, Neurodegeneration, and Repair Program, and Departments of Neurology and Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - M S Airaksinen
- Neuroscience Center, University of Helsinki, Finland.,Institute of Biomedicine, University of Helsinki, Finland
| |
Collapse
|
13
|
Abstract
Our elderly population is growing and declines in cognitive abilities, such as memory, can be costly, because it can interfere with a person's ability to live independently. The NMDA receptor is very important for many different forms of memory and this receptor is negatively affected by aging. This review examines the progress that has been made recently in characterizing selective vulnerabilities of different subunits and splice variants of the NMDA receptor to normal aging in C57BL/6 mice. Evidence is also presented for changes in the relationships of NMDA receptors to plasticity across aging. Recent interventions show that enhancing NMDA receptors in aged individuals is associated with improvements in memory, but mouse models of neurodegenerative diseases suggest that finding the right balance between too little and too much NMDA receptor activity will be the key to enhancing memory without inducing pathology.
Collapse
Affiliation(s)
- Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Healthy Aging Program, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA ■ Tel.: +1 541 737 6923 ■ ■
| |
Collapse
|
14
|
Ennaceur A, Michalikova S, van Rensburg R, Chazot PL. MK-801 increases the baseline level of anxiety in mice introduced to a spatial memory task without prior habituation. Neuropharmacology 2011; 61:981-91. [PMID: 21762710 DOI: 10.1016/j.neuropharm.2011.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/16/2011] [Accepted: 06/25/2011] [Indexed: 12/24/2022]
Abstract
C57BL/6J mice were introduced to a nine arm radial maze without prior habituation and trained in the acquisition of a working memory task in 16 sessions, one session per day. In this maze mice need to climb onto an upward inclined bridge in order to reach and cross onto an arm. They received in each session an i.p. injection of MK-801 (0.1 mg/kg) 30 min before training or immediately after training. MK-801 pre-treated mice made significantly more entries onto the bridges, fewer entries onto the arms and took significantly longer time to make a first arm visit compared to saline and MK-801 post-treated mice during the first 3 session blocks (4 sessions per block). These results indicate that MK-801 induced anxiety which was extended throughout the first 3 session blocks. MK-801 pre-treated mice made also significantly more errors and required more sessions to reach the criterion compared to saline and MK-801 post-treated mice. Administration of MK-801 after training did not affect the acquisition of the task. The present results indicate that MK-801 pre-treatment impaired the acquisition of a spatial task and this can be accounted for by its effect on the baseline level of anxiety which was elevated. The introduction of mice to the acquisition of the task without prior habituation demonstrates that a drug treatment can affect learning and memory by increasing and/or prolonging anxiety. Such effect may be confounded with learning and memory performance and not detected with pre-habituation training procedures, particularly when the number of sessions is determined a-priori.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Department of Pharmacy, Sunderland, UK.
| | | | | | | |
Collapse
|
15
|
Takashima N, Odaka YS, Sakoori K, Akagi T, Hashikawa T, Morimura N, Yamada K, Aruga J. Impaired cognitive function and altered hippocampal synapse morphology in mice lacking Lrrtm1, a gene associated with schizophrenia. PLoS One 2011; 6:e22716. [PMID: 21818371 PMCID: PMC3144940 DOI: 10.1371/journal.pone.0022716] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/29/2011] [Indexed: 11/29/2022] Open
Abstract
Recent genetic linkage analysis has shown that LRRTM1 (Leucine rich repeat transmembrane neuronal 1) is associated with schizophrenia. Here, we characterized Lrrtm1 knockout mice behaviorally and morphologically. Systematic behavioral analysis revealed reduced locomotor activity in the early dark phase, altered behavioral responses to novel environments (open-field box, light-dark box, elevated plus maze, and hole board), avoidance of approach to large inanimate objects, social discrimination deficit, and spatial memory deficit. Upon administration of the NMDA receptor antagonist MK-801, Lrrtm1 knockout mice showed both locomotive activities in the open-field box and responses to the inanimate object that were distinct from those of wild-type mice, suggesting that altered glutamatergic transmission underlay the behavioral abnormalities. Furthermore, administration of a selective serotonin reuptake inhibitor (fluoxetine) rescued the abnormality in the elevated plus maze. Morphologically, the brains of Lrrtm1 knockout mice showed reduction in total hippocampus size and reduced synaptic density. The hippocampal synapses were characterized by elongated spines and diffusely distributed synaptic vesicles, indicating the role of Lrrtm1 in maintaining synaptic integrity. Although the pharmacobehavioral phenotype was not entirely characteristic of those of schizophrenia model animals, the impaired cognitive function may warrant the further study of LRRTM1 in relevance to schizophrenia.
Collapse
Affiliation(s)
- Noriko Takashima
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Saitama, Japan
| | - Yuri S. Odaka
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Saitama, Japan
| | - Kazuto Sakoori
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Saitama, Japan
| | - Takumi Akagi
- Support Unit for Neuromorphological Analysis, RIKEN Brain Science Institute (BSI), Wako-shi, Saitama, Japan
| | - Tsutomu Hashikawa
- Support Unit for Neuromorphological Analysis, RIKEN Brain Science Institute (BSI), Wako-shi, Saitama, Japan
| | - Naoko Morimura
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Saitama, Japan
| | - Kazuyuki Yamada
- Support Unit for Animal Experiments, RIKEN Brain Science Institute (BSI), Wako-shi, Saitama, Japan
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Saitama, Japan
- * E-mail:
| |
Collapse
|
16
|
Bardgett ME, Points M, Kleier J, Blankenship M, Griffith MS. The H3 antagonist, ciproxifan, alleviates the memory impairment but enhances the motor effects of MK-801 (dizocilpine) in rats. Neuropharmacology 2010; 59:492-502. [PMID: 20621107 DOI: 10.1016/j.neuropharm.2010.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 11/30/2022]
Abstract
Antagonists of H(3)-type histamine receptors exhibit cognitive-enhancing properties in various memory paradigms as well as evidence of antipsychotic activity in normal animals. The present study determined if a prototypical H(3) antagonist, ciproxifan, could reverse the behavioral effects of MK-801, a drug used in animals to mimic the hypoglutamatergic state suspected to exist in schizophrenia. Four behaviors were chosen for study, locomotor activity, ataxia, prepulse inhibition (PPI), and delayed spatial alternation, since their modification by dizocilpine (MK-801) has been well characterized. Adult male Long-Evans rats were tested after receiving a subcutaneous injection of ciproxifan or vehicle followed 20 min later by a subcutaneous injection of MK-801 or vehicle. Three doses of MK-801 (0.05, 0.1, & 0.3 mg/kg) increased locomotor activity. Each dose of ciproxifan (1.0 & 3.0 mg/kg) enhanced the effect of the moderate dose of MK-801, but suppressed the effect of the high dose. Ciproxifan (3.0 mg/kg) enhanced the effects of MK-801 (0.1 & 0.3 mg/kg) on fine movements and ataxia. Deficits in PPI were observed after treatment with MK-801 (0.05 & 0.1 mg/kg), but ciproxifan did not alter these effects. Delayed spatial alternation was significantly impaired by MK-801 (0.1 mg/kg) at a longer delay, and ciproxifan (3.0 mg/kg) alleviated this impairment. These results indicate that some H(3) antagonists can alleviate the impact of NMDA receptor hypofunction on some forms of memory, but may exacerbate its effect on other behaviors.
Collapse
Affiliation(s)
- Mark E Bardgett
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41076, USA.
| | | | | | | | | |
Collapse
|
17
|
Sun F, Su Z, Sui C, Zhang C, Yuan L, Meng Q, Teng L, Li Y. Studies on the Acute Toxicity, Pharmacokinetics and Pharmacodynamics of Paliperidone Derivatives - Comparison to Paliperidone and Risperidone in Mice and Rats. Basic Clin Pharmacol Toxicol 2010; 107:656-62. [DOI: 10.1111/j.1742-7843.2010.00552.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Yarkov AV, Der TC, Joyce JN. Locomotor activity induced by MK-801 is enhanced in dopamine D3 receptor knockout mice but suppression by dopamine D3/D2 antagonists does not occur through the dopamine D3 receptor. Eur J Pharmacol 2010; 627:167-72. [DOI: 10.1016/j.ejphar.2009.10.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 09/21/2009] [Accepted: 10/14/2009] [Indexed: 11/28/2022]
|
19
|
Iarkov AV, Der TC, Joyce JN. Age-related differences in MK-801 induced behaviors in dopamine D3 receptor knock out mice. Eur J Pharmacol 2010; 627:177-84. [DOI: 10.1016/j.ejphar.2009.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/16/2009] [Accepted: 11/03/2009] [Indexed: 11/16/2022]
|
20
|
Zhang M, Ji B, Zou H, Shi J, Zhang Z, Li X, Zhu H, Feng G, Jin M, Yu L, He L, Wan C. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice. Behav Brain Funct 2010; 6:7. [PMID: 20180994 PMCID: PMC2832782 DOI: 10.1186/1744-9081-6-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 01/22/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Vitamin A and its derivatives (retinoids) are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS). Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. METHODS In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801). RESULTS Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. CONCLUSIONS These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.
Collapse
Affiliation(s)
- Ming Zhang
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|