1
|
Alves CDO, Waku I, Chiossi JN, de Oliveira AR. Dopamine D2-like receptors on conditioned and unconditioned fear: A systematic review of rodent pharmacological studies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111080. [PMID: 38950840 DOI: 10.1016/j.pnpbp.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Growing evidence supports dopamine's role in aversive states, yet systematic reviews focusing on dopamine receptors in defensive behaviors are lacking. This study presents a systematic review of the literature examining the influence of drugs acting on dopamine D2-like receptors on unconditioned and conditioned fear in rodents. The review reveals a predominant use of adult male rats in the studies, with limited inclusion of female rodents. Commonly employed tests include the elevated plus maze and auditory-cued fear conditioning. The findings indicate that systemic administration of D2-like drugs has a notable impact on both innate and learned aversive states. Generally, antagonists tend to increase unconditioned fear, while agonists decrease it. Moreover, both agonists and antagonists typically reduce conditioned fear. These effects are attributed to the involvement of distinct neural circuits in these states. The observed increase in unconditioned fear induced by D2-like antagonists aligns with dopamine's role in suppressing midbrain-mediated responses. Conversely, the reduction in conditioned fear is likely a result of blocking dopamine activity in the mesolimbic pathway. The study highlights the need for future research to delve into sex differences, explore alternative testing paradigms, and identify specific neural substrates. Such investigations have the potential to advance our understanding of the neurobiology of aversive states and enhance the therapeutic application of dopaminergic agents.
Collapse
Affiliation(s)
- Camila de Oliveira Alves
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Isabelle Waku
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Joyce Nonato Chiossi
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Newman AH, Xi ZX, Heidbreder C. Current Perspectives on Selective Dopamine D 3 Receptor Antagonists/Partial Agonists as Pharmacotherapeutics for Opioid and Psychostimulant Use Disorders. Curr Top Behav Neurosci 2023; 60:157-201. [PMID: 35543868 PMCID: PMC9652482 DOI: 10.1007/7854_2022_347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over three decades of evidence indicate that dopamine (DA) D3 receptors (D3R) are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders (SUD). The expectation that a selective D3R antagonist/partial agonist would be efficacious for the treatment of SUD is based on the following key observations. First, D3R are distributed in strategic areas belonging to the mesolimbic DA system such as the ventral striatum, midbrain, and ventral pallidum, which have been associated with behaviors controlled by the presentation of drug-associated cues. Second, repeated exposure to drugs of abuse produces neuroadaptations in the D3R system. Third, the synthesis and characterization of highly potent and selective D3R antagonists/partial agonists have further strengthened the role of the D3R in SUD. Based on extensive preclinical and preliminary clinical evidence, the D3R shows promise as a target for the development of pharmacotherapies for SUD as reflected by their potential to (1) regulate the motivation to self-administer drugs and (2) disrupt the responsiveness to drug-associated stimuli that play a key role in reinstatement of drug-seeking behavior triggered by re-exposure to the drug itself, drug-associated environmental cues, or stress. The availability of PET ligands to assess clinically relevant receptor occupancy by selective D3R antagonists/partial agonists, the definition of reliable dosing, and the prospect of using human laboratory models may further guide the design of clinical proof of concept studies. Pivotal clinical trials for more rapid progression of this target toward regulatory approval are urgently required. Finally, the discovery that highly selective D3R antagonists, such as R-VK4-116 and R-VK4-40, do not adversely affect peripheral biometrics or cardiovascular effects alone or in the presence of oxycodone or cocaine suggests that this class of drugs has great potential in safely treating psychostimulant and/or opioid use disorders.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD, USA.
| | - Zheng-Xiong Xi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
3
|
Role of dopamine D3 receptor in alleviating behavioural deficits in animal models of post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:190-200. [PMID: 29510167 DOI: 10.1016/j.pnpbp.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complicated psychiatric disorder, which occurs after exposure to a traumatic event. The main clinical manifestation of PTSD includes fear and stress dysregulation. In both animals and humans, dysregulation of dopamine function appears to be related to conditioned fear responses. Previous studies show that the dopamine D3 receptor (D3R) is involved in schizophrenia, autism, and substance use disorders and is related to emotional disorders. However, few studies have investigated the role of the D3R in the pathogenesis and aetiology of PTSD. In the current study, we have reported that D3R knockout (D3R-/-) mice displayed decreased freezing time of contextual fearing and anxiolytic effects following training sessions consisting of exposure to inescapable electric foot-shocks. Similarly, highly selective blockade of D3Rs by YQA14, a novel D3R antagonist, significantly ameliorated freezing and anxiogenic-like behaviours in the single-prolonged stress (SPS) model of PTSD in rats. And more, YQA14 selectively alleviated the symptoms of PTSD in WT mice but not in D3R-/- mice. In summary, this study demonstrates the anti-PTSD effects of blockade or knockout of the D3R, suggesting that the D3R might play an important role in the pathogenesis and aetiology of PTSD, and might be a potential target for the clinical management of PTSD.
Collapse
|
4
|
Rice OV, Ashby CR, Dixon C, Laurenzo W, Hayden J, Song R, Li J, Tiwari AK, Gardner EL. Selective dopamine D 3 receptor antagonism significantly attenuates stress-induced immobility in a rat model of post-traumatic stress disorder. Synapse 2018; 72:e22035. [PMID: 29704283 DOI: 10.1002/syn.22035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric syndrome that occurs in individuals exposed to extremely threatening or traumatic events. In both animals and humans, dopamine (DA) function appears to be dysregulated in brain areas involved in the conditioned fear response(s) that underlie PTSD. In this study, we determined the effect of the selective DA D3 receptor antagonists YQA14A (6.25, 12.5 and 25 mg/kg i.p.) and SB-277011A (6 mg/kg i.p.) on tone-induced fear (assessed by measuring freeze time) in a modified version of the single-prolonged stress (SPS) model of PTSD in adult male Sprague-Dawley rats. Rats pretreated with vehicle and then subjected to restraint stress, forced swim and random foot shock (SPS) in the presence of a distinctive tone, displayed a significantly increased tone-induced contextual freeze time and fecal pellet mass following re-exposure to the tone. Rats pretreated with a single i.p. injection of 6.25 or 12.5 mg/kg of YQA14 or 6 mg/kg of SB-277011A showed significantly attenuated contextual freeze time in the presence of the tone when tested 14 days after exposure to SPS. Overall, our results indicate that selectively antagonizing DA D3 receptors significantly decreases freezing time caused by an environment previously associated with stress. If our findings can be extrapolated to humans with PTSD, they suggest that DA D3 receptors may play a role in the pathophysiology of PTSD, and may have therapeutic utility for the clinical management of PTSD.
Collapse
Affiliation(s)
- Onarae V Rice
- Psychology Department, Neuroscience Program, Furman University, 3300 Poinsett Highway, Greenville, South Carolina
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, 8000 Utopia Parkway, Jamaica, New York
| | - Clark Dixon
- Psychology Department, Neuroscience Program, Furman University, 3300 Poinsett Highway, Greenville, South Carolina
| | - William Laurenzo
- Psychology Department, Neuroscience Program, Furman University, 3300 Poinsett Highway, Greenville, South Carolina
| | - Jason Hayden
- Psychology Department, Neuroscience Program, Furman University, 3300 Poinsett Highway, Greenville, South Carolina
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio
| | - Eliot L Gardner
- Neuropsychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
5
|
Ashby CR, Rice OV, Heidbreder CA, Gardner EL. The selective dopamine D₃ receptor antagonist SB-277011A attenuates drug- or food-deprivation reactivation of expression of conditioned place preference for cocaine in male Sprague-Dawley rats. Synapse 2016; 69:336-44. [PMID: 25851636 DOI: 10.1002/syn.21820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
Abstract
We determined the effect of the selective dopamine D3 receptor antagonist SB-277011A on reactivation of conditioned place preference (CPP) to cocaine elicited by priming injections of cocaine or exposure to food deprivation stress (21 h) in male Sprague-Dawley rats. Animals paired with the cocaine-associated chamber displayed a robust and consistent CPP response. This CPP was extinguished after repeated pairings of the conditioned stimuli (cocaine-paired chamber contextual cues) in the absence of the unconditioned stimulus (cocaine). Twenty-four hours later, the administration of 5 mg kg(-1) i.p. of cocaine (immediately before the test) or exposure to 21 h of food deprivation reactivated the expression of the cocaine-induced CPP. In contrast, administration of 1 ml kg(-1) i.p. of vehicle did not reactivate the CPP response. Administration of the selective dopamine D3 receptor antagonist SB-277011A (3-24 mg kg(-1) i.p.) 30 min before cocaine administration on the test day produced a significant attenuation of CPP reactivation. Reactivation of the CPP response produced by food deprivation was also significantly attenuated by SB-277011A (6 or 12 mg kg(-1) i.p.) given 30 min before the test session. SB-277011A (12 or 24 mg kg(-1) i.p.) did not itself produce reactivation of the CPP response. Overall, these results suggest that the reactivation of the incentive value of drug-associated cues by cocaine or food deprivation is attenuated by selective antagonism of D3 receptors.
Collapse
Affiliation(s)
- Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, New York, 11439
| | | | | | | |
Collapse
|
6
|
Li S, Shi Y, Kirouac GJ. The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat. Front Neuroanat 2014; 8:136. [PMID: 25477789 PMCID: PMC4238322 DOI: 10.3389/fnana.2014.00136] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/03/2014] [Indexed: 11/16/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the nucleus accumbens. This area of the striatum plays a key role in motivation and recent experimental evidence indicates that the PVT may have a similar function. It is well known that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) fibers have also been localized in the PVT but the source of these fibers in the rat has not been unequivocally identified. The present study was done to re-examine this question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the periaqueductal gray). In contrast, double-labeled neurons were absent in the retrorubral field (A8), substantia nigra (A9) and VTA (A10) of the midbrain. We conclude that DA fibers in the PVT do not originate from VTA but from a heterogeneous population of DA neurons located in the hypothalamus and periaqueductal gray.
Collapse
Affiliation(s)
- Sa Li
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China ; Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China
| | - Gilbert J Kirouac
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada ; Department of Psychiatry, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
7
|
Analysis of extinction acquisition to attenuated tones in prenatally stressed and non-stressed offspring following auditory fear conditioning. Physiol Behav 2014; 139:157-66. [PMID: 25449394 DOI: 10.1016/j.physbeh.2014.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 07/04/2014] [Accepted: 11/07/2014] [Indexed: 11/24/2022]
Abstract
Stimulus generalization occurs when stimuli with characteristics similar to a previously conditioned stimulus (CS) become able to evoke a previously conditioned response. Experimental data (Lissek et al., 2005) indicate that patients with post-traumatic stress disorder (PTSD), more often show stimulus generalization following fear conditioning when tested under laboratory conditions. Factors surrounding this observation may contribute to two common features of PTSD: 1) hyper-responsiveness to sensory stimuli reminiscent of those associated with the original trauma, and 2) resistance of PTSD to extinction-based therapies. Adverse early experience is considered a risk factor for the later development of PTSD and in the present experiments we hypothesized that stimulus generalization would occur in an animal model of adverse early experience, the prenatally stressed (PS) rat. Adult PS and control (CON) rats underwent extensive pre-habituation to a conditioning chamber followed by conventional auditory fear conditioning. The next day both groups began an extinction regimen where a series of quieter (attenuated), CSs were administered prior to the full 75 dB training CS. When tested in this manner, PS rats froze at significantly lower tone amplitudes than did CON offspring on the first day of extinction training. This suggests that the PS rats had stimulus-generalized the CS to lower decibel tones. In addition to this finding, we also observed that PS rats froze more often and longer during three ensuing days of extinction training to attenuated tones. Group differences vanished when PS and CON rats were extinguished under conventional conditions. Thus, it appears that the two extinction regimens differed in their aversive cue saliency for the PS vs. CON rats. Follow-up prefrontal cortex transcriptome probing suggests that cholinergic and dopaminergic alterations may be involved.
Collapse
|
8
|
Micheli F, Heidbreder C. Dopamine D3 receptor antagonists: a patent review (2007 - 2012). Expert Opin Ther Pat 2013; 23:363-81. [PMID: 23282131 DOI: 10.1517/13543776.2013.757593] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The synthesis and characterization of new highly potent and selective dopamine (DA) D3 receptor antagonists has permitted to characterize the role of the DA D3 receptor in the control of drug-seeking behavior and in the pathophysiology of impulse control disorders and schizophrenia. AREAS COVERED In the present review, the authors will first describe most recent classes of DA D3 receptor antagonists by reviewing about 43 patent applications during the 2007 - 2012 period; they will then outline the biological rationale in support of the use of selective DA D3 receptor antagonists in the treatment of drug addiction, impulse control disorders and schizophrenia. EXPERT OPINION The strongest clinical application and potential for selective DA D3 receptor antagonists lies in the reduction of drug-induced incentive motivation, the attenuation of drug's rewarding efficacy and the reduction in reinstatement of drug-seeking behavior triggered either by re-exposure to the drug itself, re-exposure to environmental cues that had been previously associated with drug-taking behavior or stress. The selectivity of these antagonists together with reduced lipophilicity (minimizing unspecific binding), increased brain penetration and improved physico-chemical profile are all key factors for clinical efficacy and safety.
Collapse
Affiliation(s)
- Fabrizio Micheli
- Drug Design & Discovery, Aptuit Verona srl, Via A Fleming 4, 37135 Verona, Italy.
| | | |
Collapse
|
9
|
Heidbreder C. Rationale in support of the use of selective dopamine D₃ receptor antagonists for the pharmacotherapeutic management of substance use disorders. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:167-76. [PMID: 23104235 DOI: 10.1007/s00210-012-0803-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Growing evidence indicates that dopamine (DA) D(3) receptors are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders. First, DA D(3) receptors are distributed in strategic areas belonging to the mesolimbic DA system such as the ventral striatum, midbrain, and pallidum, which have been associated with behaviors controlled by the presentation of drug-associated cues. Second, repeated exposure to drugs of abuse has been shown to produce neuroadaptations in the DA D(3) system. Third, the synthesis and characterization of highly potent and selective DA D(3) receptor antagonists has permitted to further define the role of the DA D(3) receptor in drug addiction. Provided that the available preclinical and preliminary clinical evidence can be translated into clinical proof of concept in human, selective DA D(3) receptor antagonists show promise for the treatment of substance use disorders as reflected by their potential to (1) regulate the motivation to self-administered drugs under schedules of reinforcement that require an increase in work demand and (2) disrupt the responsiveness to drug-associated stimuli that play a key role in the reinstatement of drug-seeking behavior triggered by re-exposure to the drug itself, re-exposure to environmental cues that had been previously associated with drug-taking behavior, or stress.
Collapse
Affiliation(s)
- Christian Heidbreder
- Reckitt Benckiser Pharmaceuticals-Global Research and Development, 10710 Midlothian Turnpike Suite 430, Richmond, VA 23235, USA.
| |
Collapse
|
10
|
Banasikowski TJ, Beninger RJ. Reduced expression of haloperidol conditioned catalepsy in rats by the dopamine D3 receptor antagonists nafadotride and NGB 2904. Eur Neuropsychopharmacol 2012; 22:761-8. [PMID: 22410316 DOI: 10.1016/j.euroneuro.2012.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/30/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Haloperidol, a dopamine (DA) D2 receptor-preferring antagonist, produces catalepsy whereby animals maintain awkward posture for a period of time. Sub-threshold doses of haloperidol fail to produce catalepsy initially, however, when the drug is given repeatedly in the same test environment, gradual day-to-day increases in catalepsy are observed. More importantly, if sensitized rats are injected with saline instead of haloperidol they continue to be cataleptic in the test environment suggesting that environment-drug associations may play a role. DA D3 receptors have been implicated in a number of conditioned behaviors. We were interested if DA D3 receptors contribute to catalepsy sensitization and conditioning in rats. We tested this hypothesis using the DA D3 receptor-selective antagonist NGB 2904 (0.5, 1.8 mg/kg) and the DA D3 receptor-preferring antagonist nafadotride (0.1, 0.5 mg/kg). For 10 consecutive conditioning days rats were treated with one of the D3 receptor antagonists alone or in combination with haloperidol (0.25 mg/kg) and tested for catalepsy, quantified by the time a rat remained with its forepaws on a horizontal bar. On test day (day 11), rats were injected with saline or the D3 receptor antagonist and tested for conditioned catalepsy in the previously drug-paired environment. Rats treated with NGB 2904 or nafadotride alone did not develop catalepsy. Rats treated with haloperidol or haloperidol plus NGB 2904 or nafadotride developed catalepsy sensitization with repeated conditioning. When injected with saline they continued to exhibit catalepsy in the test environment--now conditioned. On the other hand, NGB 2904 (1.8 mg/kg) or nafadotride (0.5 mg/kg) given on the test day (after sensitization to haloperidol) significantly attenuated the expression of conditioned catalepsy. Our data suggest that the D3 receptor antagonist NGB 2904 (1.8 mg/kg) and nafadotride (0.5 mg/kg) significantly attenuate conditioned catalepsy in rats when given in test but not when given during sensitization. Results implicate DA D3 receptors in regulating the expression of conditioned catalepsy.
Collapse
Affiliation(s)
- Tomek J Banasikowski
- Center Neurosci Studies, Department Psychology, Queen's University, Kingston, ON, Canada K7L 3 N6
| | | |
Collapse
|
11
|
Rice OV, Gardner EL, Heidbreder CA, Ashby CR. The acute administration of the selective dopamine D(3) receptor antagonist SB-277011A reverses conditioned place aversion produced by naloxone precipitated withdrawal from acute morphine administration in rats. Synapse 2011; 66:85-7. [PMID: 21905128 DOI: 10.1002/syn.20983] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 01/14/2023]
Abstract
We examined the effect of SB-277011A, a selective D(3) receptor antagonist, on the conditioned place aversion (CPA) response associated with naloxone-induced withdrawal from acute morphine administration in male Sprague-Dawley rats. Morphine (5.6 mg/kg i.p.) was given, followed 4 hrs later by naloxone (0.3 mg/kg i.p.) and prior to placing the animals in one specific chamber of the test apparatus. All animals were subjected to 2 of these trials. A significant CPA occurred in animals that received an i.p. injection of vehicle 30 minutes prior to the measurement of chamber preference. The pretreatment of animals (30 minutes prior to testing) with 3 mg/kg i.p. of SB-277011A did not significantly alter the CPA compared to animals treated with vehicle (1 ml/kg i.p. of deionized distilled water). In contrast, the acute pretreatment of animals with 6, 12 or 24 mg/kg i.p. of SB-277011A significantly decreased the CPA compared to vehicle-treated animals. In fact, the 12 and 24 mg/kg doses of SB-277011A significantly increased the time spent in the chamber where animals were paired with morphine and naloxone. These results suggest that the selective antagonism of D(3) receptors attenuates the CPA produced by a model of naloxone-induced withdrawal from acute morphine dependence.
Collapse
Affiliation(s)
- Onarae V Rice
- Psychology Department, Furman University, Greenville, South Carolina, USA
| | | | | | | |
Collapse
|
12
|
Heidbreder CA, Newman AH. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders. Ann N Y Acad Sci 2010; 1187:4-34. [PMID: 20201845 PMCID: PMC3148950 DOI: 10.1111/j.1749-6632.2009.05149.x] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.
Collapse
Affiliation(s)
- Christian A Heidbreder
- Reckitt Benckiser Pharmaceuticals, Global Research & Development, Richmond, Virginia 23235, USA.
| | | |
Collapse
|
13
|
Hwang R, Zai C, Tiwari A, Müller DJ, Arranz MJ, Morris AG, McKenna PJ, Munro J, Potkin SG, Lieberman JA, Meltzer HY, Kennedy JL. Effect of dopamine D3 receptor gene polymorphisms and clozapine treatment response: exploratory analysis of nine polymorphisms and meta-analysis of the Ser9Gly variant. THE PHARMACOGENOMICS JOURNAL 2009; 10:200-18. [PMID: 20029384 DOI: 10.1038/tpj.2009.65] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
D2 blockade has been implicated in having a central role in antipsychotic response. However, treatment refractoriness, in spite of complete D2 blockade, as well as the efficacy of clozapine (CLZ) in a portion of this patient population, indicates the involvement of other factors as well. Several lines of evidence suggest a role for D3. Furthermore, an earlier meta-analysis by Jönsson et al. (2003) (n=233) suggested a role for genetic variation in the D3 gene. Relevant to this study, Jönsson et al. found the Ser allele of the D3 serine-to-glycine substitution at amino acid position 9 (Ser9Gly) polymorphism to be associated with worse CLZ response compared with the Gly allele. In this study, we attempt to validate these findings by performing a meta-analysis in a much larger sample (n=758). Eight other variants were also tested in our own sample to explore the possible effect of other regions of the gene. We report a negative but consistent trend across individual studies in our meta-analysis for the DRD3 Ser allele and poor CLZ response. A possible minor role for this single-nucleotide polymorphism cannot be disregarded, as our sample size may have been insufficient. Other DRD3 variants and haplotypes of possible interest were also identified for replication in future studies.
Collapse
Affiliation(s)
- R Hwang
- Neurogenetics Section, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Micheli F, Heidbreder C. Selective dopamine D3receptor antagonists. A decade of progress: 1997 – 2007. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.8.821] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|