1
|
Bielecka-Papierz G, Serefko A, Szopa A, Talarek S, Wróbel A, Szewczyk B, Radziwoń-Zaleska M, Kołtun-Jasion M, Poleszak E. The role of the L-arginine-NO-cGMP-dependent pathway in the development of sensitization to mephedrone effects on the locomotor activity in mice. Behav Brain Res 2023; 437:114103. [PMID: 36089098 DOI: 10.1016/j.bbr.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Mephedrone, a popular psychostimulating substance widely used illegally in recreational purposes, exerts in rodents that regularly and intermittently were exposed to it a sensitized response to the drug. Behavioral sensitization is one of experimental models of drug dependency/abuse liability. In the present study we evaluated a potential involvement of the L-arginine-NO-cGMP pathway in the development of sensitization to the mephedrone-induced hyperlocomotion. Locomotor activity was measured automatically and experiments were performed on male Albino Swiss mice. We demonstrated that a 5-day administration of 7-nitroindazole (10 or 20 mg/kg/day) and L-NAME (50 mg/kg/day) suppressed the development of sensitization to the mephedrone-induced hyperlocomotion. As for L-arginine (125 or 250 mg/kg/day) and methylene blue (5 or 10 mg/kg/day) the obtained outcomes are inconclusive. Furthermore, the lower dose of L-NAME (25 mg/kg/day) surprisingly potentiated the development of sensitization to the mephedrone-induced effects on the spontaneous locomotor activity in mice. In conclusion, our data demonstrated that modulators of the L-arginine-NO-cGMP pathway may differently affect the development of sensitization to the locomotor stimulant effects of mephedrone. Inhibition of neuronal nitric oxide synthase (NOS) seems to prevent this process quite profoundly, non-selective inhibition of NOS may have a dual effect, whereas inhibition of soluble guanylate cyclase may only partially suppress the development of sensitization to the mephedrone-induced effects.
Collapse
Affiliation(s)
- Gabriela Bielecka-Papierz
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland.
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland.
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, 8 Jaczewskiego Street, 20-090 Lublin, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Maria Radziwoń-Zaleska
- Department of Psychiatry, Medical University of Warsaw, 27 Nowowiejska Street, 00-665 Warsaw, Poland
| | - Małgorzata Kołtun-Jasion
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland.
| |
Collapse
|
2
|
Desulfovibrio confers resilience to the comorbidity of pain and anxiety in a mouse model of chronic inflammatory pain. Psychopharmacology (Berl) 2023; 240:87-100. [PMID: 36441221 DOI: 10.1007/s00213-022-06277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patients with chronic pain frequently suffer from anxiety symptoms. It has been well established that gut microbiota is associated with the pathogenesis of pain and anxiety. However, it is unknown whether the gut microbiota, particularly the specific bacteria, play a role in the comorbidity of chronic pain and anxiety. METHODS Chronic inflammatory pain was induced in mice by a single injection of complete Freund's adjuvant (CFA). Mice were then separated into anxiety-susceptible and anxiety-resilient phenotypes by hierarchical clustering analysis of behaviors. Fecal samples were collected to perform 16S rRNA gene sequencing. Chronic diazepam intervention served as a therapeutic strategy and its effect on the composition of gut microbiota was also determined. RESULTS α-Diversity and β-diversity both showed significant differences among the groups. A total of 12 gut bacteria were both altered after CFA injection and reversed by chronic diazepam treatment. More importantly, the pain hypersensitivity and anxiety-like behaviors were relieved by chronic diazepam treatment. Interestingly, we also found that Desulfovibrio was increased in anxiety-resilient group compared to control and anxiety-susceptible groups. CONCLUSION Abnormal composition of gut microbiota plays an essential role in chronic pain as well as in anxiety. Besides, the increased level of Desulfovibrio in anxiety-resilient mice indicated its therapeutic effects on the comorbidity of pain and anxiety. Collectively, targeting gut microbiota, especially increasing the Desulfovibrio level, might be effective in the alleviation of chronic pain-anxiety comorbidity.
Collapse
|
3
|
Ródenas-González F, Blanco-Gandía MC, Miñarro J, Rodríguez-Arias M. Effects of ketosis on cocaine-induced reinstatement in male mice. Neurosci Lett 2022; 778:136619. [PMID: 35395325 DOI: 10.1016/j.neulet.2022.136619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
In recent years, the benefits of the ketogenic diet (KD) on different psychiatric disorders have been gaining attention, but the substance abuse field is still unexplored. Some studies have reported that palatable food can modulate the rewarding effects of cocaine, but the negative metabolic consequences rule out the recommendation of using it as a complementary treatment. Thus, the main aim of this study was to evaluate the effects of the KD on cocaine conditioned place preference (CPP) during acquisition, extinction, and reinstatement. 41 OF1 male mice were employed to assess the effects of the KD on a 10 mg/kg cocaine-induced CPP. Animals were divided into three groups: SD, KD, and KD after the Post-Conditioning test. The results revealed that, while access to the KD did not block CPP acquisition, it did significantly reduce the number of sessions required to extinguish the drug-associated memories and it blocked the priming-induced reinstatement.
Collapse
Affiliation(s)
- Francisco Ródenas-González
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - M Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, Teruel, Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.
| |
Collapse
|
4
|
Blanco-Gandía MDC, Ródenas-González F, Pascual M, Reguilón MD, Guerri C, Miñarro J, Rodríguez-Arias M. Ketogenic Diet Decreases Alcohol Intake in Adult Male Mice. Nutrients 2021; 13:nu13072167. [PMID: 34202492 PMCID: PMC8308435 DOI: 10.3390/nu13072167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023] Open
Abstract
The classic ketogenic diet is a diet high in fat, low in carbohydrates, and well-adjusted proteins. The reduction in glucose levels induces changes in the body’s metabolism, since the main energy source happens to be ketone bodies. Recent studies have suggested that nutritional interventions may modulate drug addiction. The present work aimed to study the potential effects of a classic ketogenic diet in modulating alcohol consumption and its rewarding effects. Two groups of adult male mice were employed in this study, one exposed to a standard diet (SD, n = 15) and the other to a ketogenic diet (KD, n = 16). When a ketotic state was stable for 7 days, animals were exposed to the oral self-administration paradigm to evaluate the reinforcing and motivating effects of ethanol. Rt-PCR analyses were performed evaluating dopamine, adenosine, CB1, and Oprm gene expression. Our results showed that animals in a ketotic state displayed an overall decrease in ethanol consumption without changes in their motivation to drink. Gene expression analyses point to several alterations in the dopamine, adenosine, and cannabinoid systems. Our results suggest that nutritional interventions may be a useful complementary tool in treating alcohol-use disorders.
Collapse
Affiliation(s)
| | - Francisco Ródenas-González
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - María Pascual
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Marina Daiana Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Correspondence: ; Tel.: +34-963864637
| |
Collapse
|
5
|
Talarek S, Listos J, Orzelska-Gorka J, Serefko A, Kotlińska J. NMDA Receptors and NO:cGMP Signaling Pathway Mediate the Diazepam-Induced Sensitization to Withdrawal Signs in Mice. Neurotox Res 2017; 33:422-432. [PMID: 28936791 PMCID: PMC5766724 DOI: 10.1007/s12640-017-9810-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 02/02/2023]
Abstract
The goal of the present study was to examine the effects of N-methyl-aspartate (NMDA) receptor antagonists-memantine and ketamine and the drugs modifying the NO:cGMP pathway-NG-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI), the endogenous precursor of NO-L-arginine, and the guanylyl cyclase inhibitor-methylene blue (MB) on the development of sensitization to withdrawal signs precipitated after chronic, interrupted treatment with diazepam, a benzodiazepine receptor agonist, in mice. To develop the sensitization, the mice were divided into groups: continuously and sporadically (with two diazepam-free periods) treated with diazepam (15 mg/kg, sc). To precipitate the withdrawal syndrome (clonic and tonic seizures, and death), pentylenetetrazole (55 mg/kg, sc) with the benzodiazepine receptor antagonist, flumazenil (5.0 mg/kg, ip), were administered after the last injection of diazepam or saline. Memantine (2.5, 5.0 mg/kg), and ketamine (2.5, 5.0 mg/kg), L-NAME (100, 200 mg/kg) and 7-NI (20 and 40 mg/kg), L-arginine (250, 500 mg/kg) and MB (5 and 10 mg/kg) were administered ip in sporadically diazepam-treated mice during the diazepam-free periods. Our results indicated that both NMDA receptor antagonists and drugs that inhibit the NO:cGMP pathway, except L-arginine (the endogenous donor of NO), attenuated the diazepam-induced sensitization to withdrawal signs in mice. Thus, NMDA receptors and the NO:cGMP pathway are involved in the mechanisms of sensitization to benzodiazepine withdrawal.
Collapse
Affiliation(s)
- Sylwia Talarek
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093, Lublin, Poland.
| | - Joanna Listos
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093, Lublin, Poland
| | - Jolanta Orzelska-Gorka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093, Lublin, Poland
| | - Anna Serefko
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Jolanta Kotlińska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093, Lublin, Poland
| |
Collapse
|
6
|
Listos J, Baranowska-Bosiacka I, Wąsik A, Talarek S, Tarnowski M, Listos P, Łupina M, Antkiewicz-Michaluk L, Gutowska I, Tkacz M, Pilutin A, Orzelska-Górka J, Chlubek D, Fidecka S. The adenosinergic system is involved in sensitization to morphine withdrawal signs in rats-neurochemical and molecular basis in dopaminergic system. Psychopharmacology (Berl) 2016; 233:2383-97. [PMID: 27087433 PMCID: PMC4873537 DOI: 10.1007/s00213-016-4289-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
RATIONALE Experimental data informs that not only do the dose and time duration of dependent drugs affect the severity of withdrawal episodes. Previous withdrawal experiences may intensify this process, which is referred as sensitization to withdrawal signs. Adenosine and dopamine (DA) receptors may be involved in this sensitization. OBJECTIVES Rats were continuously and sporadically treated with increasing doses of morphine for 8 days. In rats, sporadically treated with morphine, morphine administration was modified by adding three morphine-free periods. Adenosine agonists were given during each of the morphine-free periods (six injections in total). On the 9th day, morphine was injected. One hour later, naloxone was administered to induce morphine withdrawal signs. Then, the animals were placed into cylinders and the number of jumpings was recorded. Next, the rats were decapitated and brain and brain structures (striatum, hippocampus, and prefrontal cortex) were dissected for neurochemical, molecular, and immunohistochemical experiments within DAergic pathways. RESULTS We demonstrated that previous experiences of opioid withdrawal intensified subsequent withdrawal signs. Adenosine ligands attenuated the sensitization to withdrawal signs. In a neurochemical study, the release of DA and its metabolites was impaired in all structures. Significant alterations were also observed in mRNA and protein expression of DA receptors. CONCLUSIONS Results demonstrate that intermittent treatment with morphine induces alterations in the DAergic system which may be responsible for sensitization to morphine withdrawal signs. Although adenosine ligands attenuate this type of sensitization, they are not able to fully restore the physiological brain status.
Collapse
Affiliation(s)
- Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 St., 31-343, Kraków, Poland
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Piotr Listos
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30 St., 20-612, Lublin, Poland
| | - Małgorzata Łupina
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland
| | - Lucyna Antkiewicz-Michaluk
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 St., 31-343, Kraków, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 St., 71-460, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Jolanta Orzelska-Górka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Sylwia Fidecka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland
| |
Collapse
|
7
|
Krügel U. Purinergic receptors in psychiatric disorders. Neuropharmacology 2015; 104:212-25. [PMID: 26518371 DOI: 10.1016/j.neuropharm.2015.10.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders describe different mental or behavioral patterns, causing suffering or poor coping of ordinary life with manifold presentations. Multifactorial processes can contribute to their development and progression. Purinergic neurotransmission and neuromodulation in the brain have attracted increasing therapeutic interest in the field of psychiatry. Purine nucleotides and nucleosides are well recognized as signaling molecules mediating cell to cell communication. The actions of ATP are mediated by ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 (A1 or A2) adenosine receptors. Purinergic mechanisms and specific receptor subtypes have been shown to be linked to the regulation of many aspects of behavior and mood and to dysregulation in pathological processes of brain function. In this review the recent knowledge on the role of purinergic receptors in the two most frequent psychiatric diseases, major depression and schizophrenia, as well as on related animal models is summarized. At present the most promising data for therapeutic strategies derive from investigations of the adenosine system emphasizing a unique function of A2A receptors at neurons and astrocytes in these disorders. Among the P2 receptor family, in particular P2X7 and P2Y1 receptors were related to disturbances in major depression and schizophrenia, respectively. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
8
|
Listos J, Talarek S, Poleszak E, Wróbel A, Fidecka S. Attenuating effect of adenosine receptor agonists on the development of behavioral sensitization induced by sporadic treatment with morphine. Pharmacol Biochem Behav 2011; 98:356-61. [DOI: 10.1016/j.pbb.2011.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
9
|
Listos J, Talarek S, Fidecka S. Adenosinergic system is involved in development of diazepam tolerance in mice. Pharmacol Biochem Behav 2010; 94:510-5. [DOI: 10.1016/j.pbb.2009.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/28/2009] [Accepted: 11/16/2009] [Indexed: 11/15/2022]
|
10
|
Mitrovic V, Seferovic P, Dodic S, Krotin M, Neskovic A, Dickstein K, de Voogd H, Böcker C, Ziegler D, Godes M, Nakov R, Essers H, Verboom C, Hocher B. Cardio-renal effects of the A1 adenosine receptor antagonist SLV320 in patients with heart failure. Circ Heart Fail 2009; 2:523-31. [PMID: 19919976 DOI: 10.1161/circheartfailure.108.798389] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Blocking the tubuloglomerular feedback mechanism with adenosine A1 receptor antagonists seems to improve diuresis and sodium excretion without compromising the glomerular filtration rate in patients with heart failure. However, the direct cardiac effects of this compound class have not been investigated to date. METHODS AND RESULTS In total, 111 patients (109 men and 2 women) received a 1-hour infusion of 5, 10, and 15 mg SLV320, an adenosine A1 receptor antagonist, placebo, or 40 mg furosemide. Mean age was 57.9 years, mean ejection fraction was 28.1%, 82 patients were of New York Heart Association class II, and 29 patients were of New York Heart Association class III. Hemodynamic parameters (heart rate, blood pressure, pulmonary capillary wedge pressure, mean pulmonary arterial pressure, systemic vascular resistance, right atrial pressure, and cardiac output) were determined. Kidney function was assessed by cystatin C measurements and by analysis of urine output and urine electrolytes. In addition, pharmacokinetics of SLV320 and ex vivo inhibition of adenosine A1 receptor activity were performed. SLV320 was well tolerated, and no serious adverse events were observed. Heart rate, blood pressure, pulmonary capillary wedge pressure, mean pulmonary arterial pressure, right atrial pressure, and cardiac output were not altered by any dose of SLV320. Pulmonary capillary wedge pressure was significantly (P=0.04) decreased by furosemide (-6.2+/-5.9 mm Hg). Systemic vascular resistance was significantly (P=0.04) increased in the furosemide group (+166.70+/-261.87 dynes . s(-1) . cm(-5)), whereas all SLV320 groups showed no significant alterations of systemic vascular resistance. Changes from baseline cystatin C plasma concentrations decreased after 10 mg SLV320 (-0.093+/-0.137 mg/L, P=0.046), whereas furosemide resulted in a significant (P=0.03) increase of cystatin C (+0.052+/-0.065 mg/L) versus baseline. All values represent mean changes+/-SD from baseline at 3 hours postdosing: SLV320 (10 and 15 mg) increased significantly sodium excretion and diuresis compared with placebo during the 0- to 6-hour collection period postdosing. CONCLUSIONS SLV320 infusion shows no immediate effects on cardiac hemodynamics. SLV320 might improve glomerular filtration rate while simultaneously promoting natriuresis and diuresis. Clinical Trial Registration- clinicaltrials.gov Indentifier: NCT00160134.
Collapse
Affiliation(s)
- Veselin Mitrovic
- Kerckhoff-Klinik, Department of Cardiology and Cardiosurgery, Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Institute of Molecular Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|