1
|
Lei L, Hui S, Chen Y, Yan H, Yang J, Tong S. Effect of soy isoflavone supplementation on blood pressure: a meta-analysis of randomized controlled trials. Nutr J 2024; 23:32. [PMID: 38454401 PMCID: PMC10918941 DOI: 10.1186/s12937-024-00932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Previous experimental studies have suggested that the consumption of soy isoflavones may have a potential impact on lowering blood pressure. Nevertheless, epidemiological studies have presented conflicting outcomes concerning the correlation between soy isoflavone consumption and blood pressure levels. Consequently, a comprehensive meta-analysis of all eligible randomized controlled trials (RCTs) was conducted to explore the influence of soy isoflavones on systolic blood pressure (SBP) and diastolic blood pressure (DBP) in adults. METHODS A thorough search of PubMed, Embase, and the Cochrane Library for relevant literature up to April 30, 2023 was conducted. RCTs involving adults that compared soy isoflavone supplementation with a placebo (the same matrix devoid of soy isoflavone) were included. The combined effect size was presented as the weighted mean difference (WMD) along with 95% confidence interval (CI), employing a fixed-effects model. RESULTS Our meta-analysis included a total of 24 studies involving 1945 participants. The results revealed a significant reduction in both SBP and DBP with soy isoflavone supplementation. Subgroup analyses suggested more pronounced reductions in SBP and DBP for interventions lasting ≥6 months, in individuals receiving mixed-type soy isoflavone, and among patients with metabolic syndrome or prehypertension. However, we did not detect significant nonlinear associations between supplementation dosage and intervention duration concerning both SBP and DBP. The overall quality of evidence was deemed moderate. CONCLUSIONS The current meta-analysis revealed that supplementation with soy isoflavones alone effectively reduces blood pressure. Additional high-quality studies are required to investigate the efficacy of blood pressure reduction through supplementation with an optimal quantity and proportion of soy isoflavone.
Collapse
Affiliation(s)
- Lifu Lei
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Suocheng Hui
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401135, China
| | - Yushi Chen
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongjia Yan
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401135, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 410020, China.
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 410020, China.
| | - Shiwen Tong
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Ramlal A, Nautiyal A, Baweja P, Kumar V, Mehta S, Mahto RK, Tripathi S, Shanmugam A, Pujari Mallikarjuna B, Raman P, Lal SK, Raju D, Rajendran A. Angiotensin-converting enzyme inhibitory peptides and isoflavonoids from soybean [ Glycine max (L.) Merr.]. Front Nutr 2022; 9:1068388. [PMID: 36505231 PMCID: PMC9730416 DOI: 10.3389/fnut.2022.1068388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Angiotensin-converting enzyme I (ACE I) is a zinc-containing metallopeptidase involved in the renin-angiotensin system (RAAS) that helps in the regulation of hypertension and maintains fluid balance otherwise, which results in cardiovascular diseases (CVDs). One of the leading reasons of global deaths is due to CVDs. RAAS also plays a central role in maintaining homeostasis of the CV system. The commercial drugs available to treat CVDs possess several fatal side effects. Hence, phytochemicals like peptides having plant-based origin should be explored and utilized as alternative therapies. Soybean is an important leguminous crop that simultaneously possesses medicinal properties. Soybean extracts are used in many drug formulations for treating diabetes and other disorders and ailments. Soy proteins and its edible products such as tofu have shown potential inhibitory activity against ACE. Thus, this review briefly describes various soy proteins and products that can be used to inhibit ACE thereby providing new scope for the identification of potential candidates that can help in the design of safer and natural treatments for CVDs.
Collapse
Affiliation(s)
- Ayyagari Ramlal
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Aparna Nautiyal
- Department of Botany, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pooja Baweja
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Vikash Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sahil Mehta
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Rohit Kumar Mahto
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
- School of Biotechnology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Shikha Tripathi
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology (NIPB), New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Aravindam Shanmugam
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bingi Pujari Mallikarjuna
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), Regional Research Centre, Dharwad, Karnataka, India
| | - Pushpa Raman
- Department of Plant Breeding and Genetics, Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - S. K. Lal
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Dhandapani Raju
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Ambika Rajendran
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
3
|
The Association between Plasma Concentration of Phytoestrogens and Hypertension within the Korean Multicenter Cancer Cohort. Nutrients 2021; 13:nu13124366. [PMID: 34959918 PMCID: PMC8703377 DOI: 10.3390/nu13124366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
In order to examine the association between plasma phytoestrogen concentration (genistein, daidzein, equol and enterolactone) and hypertension, we conducted a nested case–control study for 229 hypertension cases including 112 prehypertension and 159 healthy controls derived from the Korean Multi-center Cancer Cohort (KMCC). The concentration of plasma phytoestrogens was measured using time-resolved fluoroimmunoassay. We assessed the association between plasma phytoestrogens and hypertension using logistic regression models using odds ratio (OR) and 95% confidence interval (95%CI). The highest tertile of plasma equol and enterolactone concentration exhibited a significantly decreased risk of hypertension (equol, OR = 0.34, 95%CI 0.20–0.57; enterolactone, OR = 0.32, 95%CI 0.18–0.57), compared with the lowest tertile. Equol and enterolactone showed reduced ORs for prehypertension (the highest tertile relative to the lowest tertile, OR = 0.50, 95%CI 0.26–0.96; OR = 0.38, 95%CI 0.19–0.75, respectively) and hypertension (OR = 0.42, 95%CI 0.22–0.81; OR = 0.28, 95%CI 0.14–0.54, respectively). There was a stronger association in hypertension (the highest tertile relative to the lowest tertile in obesity vs. non-obesity; equol, OR = 0.06 vs. 0.63; enterolactone, OR = 0.07 vs. 0.46; both p-heterogeneity < 0.01). This study suggests that equol and enterolactone may contribute to prevent primarily prehypertension and hypertension, and control cardiovascular disease (CVD) based on the continuum of hypertension and CVD. Further study to assess hypertension risk based on useful biomarkers, including phytoestrogens, may contribute to primary prevention of hypertension.
Collapse
|
4
|
Nazari-Khanamiri F, Ghasemnejad-Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. J Food Biochem 2021; 45:e13972. [PMID: 34664285 DOI: 10.1111/jfbc.13972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Genistein is the simplest secondary metabolite in soybeans and belongs to a group of compounds called isoflavones. It is a phytoestrogen and it makes up more than 60% of soy isoflavones. Studies have shown the anti-inflammatory, anti-apoptotic, and anti-angiogenic effects of genistein in addition to its modulatory effects on steroidal hormone receptors. In this review, we discuss the pharmacologic and therapeutic effects of genistein on various diseases. PRACTICAL APPLICATIONS: In this review, we have discussed the therapeutic effects of genistein as the main constituent of soybeans on health conditions. Its antioxidant, anti-inflammatory, anti-apoptotic and, anti-angiogenic effects need more attention. The pharmacological properties of genistein make this natural isoflavone a potential treatment for various diseases such as postmenopausal symptoms, cancer, bone, brain, and heart diseases. Special emphasis should be given to it, resulting in using it in clinical as a safe, potent, and bioactive molecule.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Silva H. The Vascular Effects of Isolated Isoflavones-A Focus on the Determinants of Blood Pressure Regulation. BIOLOGY 2021; 10:49. [PMID: 33445531 PMCID: PMC7827317 DOI: 10.3390/biology10010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Isoflavones are phytoestrogen compounds with important biological activities, including improvement of cardiovascular health. This activity is most evident in populations with a high isoflavone dietary intake, essentially from soybean-based products. The major isoflavones known to display the most important cardiovascular effects are genistein, daidzein, glycitein, formononetin, and biochanin A, although the closely related metabolite equol is also relevant. Most clinical studies have been focused on the impact of dietary intake or supplementation with mixtures of compounds, with only a few addressing the effect of isolated compounds. This paper reviews the main actions of isolated isoflavones on the vasculature, with particular focus given to their effect on the determinants of blood pressure regulation. Isoflavones exert vasorelaxation due to a multitude of pathways in different vascular beds. They can act in the endothelium to potentiate the release of NO and endothelium-derived hyperpolarization factors. In the vascular smooth muscle, isoflavones modulate calcium and potassium channels, leading to hyperpolarization and relaxation. Some of these effects are influenced by the binding of isoflavones to estrogen receptors and to the inhibition of specific kinase enzymes. The vasorelaxation effects of isoflavones are mostly obtained with plasma concentrations in the micromolar range, which are only attained through supplementation. This paper highlights isolated isoflavones as potentially suitable alternatives to soy-based foodstuffs and supplements and which could enlarge the current therapeutic arsenal. Nonetheless, more studies are needed to better establish their safety profile and elect the most useful applications.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| |
Collapse
|
6
|
Monteiro ASEN, Campos DR, Albuquerque AAS, Evora PRB, Ferreira LG, Celotto AC. Effect of Diterpene Manool on the Arterial Blood Pressure and Vascular Reactivity in Normotensive and Hypertensive Rats. Arq Bras Cardiol 2020; 115:669-677. [PMID: 33111868 PMCID: PMC8386962 DOI: 10.36660/abc.20190198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Many studies have shown that the diterpenoid classes exert a significant effect on the cardiovascular system. Diterpenes, in particular, are among the main compound links to cardiovascular properties such as vasorelaxant, inotropic, diuretic and hypotensive activity. While the manool vasorelaxation mechanism is visible, its effect on blood pressure (BP) is still unknown. OBJECTIVE To evaluate the in vivo hypotensive effect of manool and check the ex vivo vasorelaxation effect in rat aortic rings. METHODS The animals were divided randomly into two groups: normotensive and hypertensive. The normotensive group was sham-operated, and the 2K1C model was adopted for the hypertensive group. Invasive BP monitoring was performed for manool tests at different doses (10, 20 and 40 mg/kg). Concentration-response curves for manool were obtained in the aorta rings, with endothelium, pre-contracted with phenylephrine (Phe) after incubation with Nω-nitro-L-arginine methyl ester(L-NAME) or oxadiazole [4,3-a]quinoxalin-1-one (ODQ). Nitric oxide (NOx) plasma levels were measured by chemiluminescence assay. RESULTS After manool administration, BP was reduced in normotensive and hypertensive groups, and this effect was inhibited by L-NAME in hypertensive animals only in 10 mg/kg dose. Ex vivo manool promoted vasorelaxation, which was inhibited by L-NAME and ODQ incubation or endothelium removal. NOx plasma levels increased in the hypertensive group after manool administration. Manool elicits endothelium-dependent vascular relaxation in rat aorta mediated by the NO/cGMP signaling pathway and BP reduction, also by NOx plasma increase. These combined effects could be involved in modulating peripheral resistance, contributing to the antihypertensive effect of diterpene. CONCLUSION These effects together could be involved in modulating peripheral resistance, contributing to the antihypertensive effect of diterpene.
Collapse
Affiliation(s)
| | - Debora Ribeiro Campos
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP - Brasil
| | | | | | - Luciana Garros Ferreira
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP - Brasil
| | - Andrea Carla Celotto
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP - Brasil
| |
Collapse
|
7
|
Ahmed S, Hasan MM, Khan H, Mahmood ZA, Patel S. The mechanistic insight of polyphenols in calcium oxalate urolithiasis mitigation. Biomed Pharmacother 2018; 106:1292-1299. [DOI: 10.1016/j.biopha.2018.07.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
|
8
|
Ferreira LG, Evora PRB, Capellini VK, Albuquerque AA, Carvalho MTM, Gomes RADS, Parolini MT, Celotto AC. Effect of rosmarinic acid on the arterial blood pressure in normotensive and hypertensive rats: Role of ACE. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 38:158-165. [PMID: 29425648 DOI: 10.1016/j.phymed.2017.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/24/2017] [Accepted: 02/22/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND In recent years, it has been demonstrated the inhibitory effect of some plant species on the angiotensin-converting enzyme and rosmarinic acid is a prominent constituent of these species. HYPOTHESIS/PURPOSE This study was carried out to verify the effect of rosmarinic acid on blood pressure through inhibitory activity on angiotensin-converting enzyme in rats. STUDY DESIGN The arterial hypertension was promoted using 2-kidneys 1-clip model in rats. The potential inhibitory rosmarinic acid effect on angiotensin-converting enzyme activity was compared with captopril actions by analyzing in vivo blood pressure dose-response curves to angiotensin I and bradykinin. The in vitro plasma angiotensin-converting enzyme activity was measured by fluorimetry using the substrate Abz-FRK(Dnp)P-OH substrate. In addition, dosages of nitrite/nítrate analysis were carried out. RESULTS (1) rosmarinic acid caused systolic blood pressure dose-dependent decrease in hypertensive rats; (2) The angiotensin I dose-response curves demonstrated that rosmarinic acid promotes minor changes in systolic blood pressure only in the hypertensive group; (3) The bradykinin dose-response curves showed that both rosmarinic acid and captopril promoted a systolic blood pressure reduction, but only the captopril effect was significant; (4) The angiotensin-converting enzyme activity in rat lung tissue was inhibited by the rosmarinic acid in a dose dependent manner; (5) The analysis of nitrite/nítrate plasma concentrations showed no significant difference among the experimental groups. CONCLUSION The rosmarinic acid is effective in reducing blood pressure, selectively, only in hypertensive animals. The rosmarinic acid (173µM) promoted almost a 98.96% reduction on angiotensin-converting enzyme activity.
Collapse
Affiliation(s)
- Luciana Garros Ferreira
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo Roberto Barbosa Evora
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Verena Kise Capellini
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Agnes Afrodite Albuquerque
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marco Túlio Menezes Carvalho
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Marco Túlio Parolini
- Institute of Biological and Natural Science, University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Andrea Carla Celotto
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil.
| |
Collapse
|
9
|
Khan MY, Kumar V. Mechanism of antihypertensive effect of Mucuna pruriens L. seed extract and its isolated compounds. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017. [PMID: 28640753 DOI: 10.1515/jcim-2017-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background In the search of safe and effective lead molecules from natural sources, Mucuna pruriens (MP) L. (Fabaceae) seeds were utilized for exploring the antihypertensive potential. Traditionally, it is used as diuretic and hypotensive. Methods Bioassay-guided fractions were utilized for the isolation of active compounds by column chromatography. IC50 value, enzyme kinetics and inhibition mechanism were determined. In vivo time and dose-dependent hypotensive study followed by changes in mean arterial pressure (MAP) induced by angiotensin I (3 nmol/kg), angiotensin II (3 nmol/kg), and bradykinin (10 nmol/kg) in anesthetized rats was done. Plasma and tissue angiotensin I-converting enzyme (ACE) activities were also determined. Results Phytochemical analysis by spectroscopic techniques revealed the presence of known compounds like genistein, ursolic acid and L-DOPA from the ethyl acetate and water fraction, respectively. In vitro study revealed MP ethyl acetate (MPEA) fraction and genistein as the most active fraction (IC50 156.45 µg/mL) and compound (IC50 253.81 µM), respectively. Lineweaver-Burk plots revealed a non-competitive mode of inhibition. ACE protein precipitation was the suggested mechanism for inhibition. The extract showed a time- and dose-dependent decrease in MAP. Genistein was able to dose-dependently reduce the MAP, up to 53±1.5 mmHg (40 mg/kg, i.v.). As compared to control, it showed a dose-dependent decrease in plasma ACE activity of 40.61 % and 54.76 % at 10 mg/kg and 20 mg/kg, respectively. It also decreased the ACE activity in the aorta (107.67nM/ml min at 10 mg, p<0.001; 95.33nM/ml min at 20 mg p<0.001). Captopril was used as a standard for various in vitro and in vivo assays. Conclusions The study revealed the antihypertensive potential of MP seed compounds via ACE inhibition.
Collapse
|
10
|
Sureda A, Sanches Silva A, Sánchez-Machado DI, López-Cervantes J, Daglia M, Nabavi SF, Nabavi SM. Hypotensive effects of genistein: From chemistry to medicine. Chem Biol Interact 2017; 268:37-46. [PMID: 28242380 DOI: 10.1016/j.cbi.2017.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/06/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
Genistein (4', 5, 7-trihydroxyisoflavone), a naturally occurring flavonoid characteristic of Leguminoseae plants, is a phyto-oestrogen exerting oestrogenic activity as both an agonist and an antagonist substance. A large body of evidence suggests that genistein possesses many physiological and pharmacological properties that make this molecule a potential agent for the prevention and treatment of a number of chronic diseases. Growing evidence suggests that genistein could act as a vasodilating, anti-thrombotic, and anti-atherosclerotic agent, exerting these effects through different mechanisms of action. This paper aims to review data from the literature assessing the beneficial effects of genistein on hypertension, one of the most important cardiovascular disease risk factors along with hyperglycemia and hyperlidipemia. In addition, we discuss the chemistry, main sources and bioavailability of genistein. Scientific findings support genistein's potential as a promising anti-hypertensive agent in different experimental models. However, clinical trials are very limited and more research will be required before genistein intake can be recommended as part of therapies targeting raised blood pressure.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Ana Sanches Silva
- National Institute of Health Dr. Ricardo Jorge, I.P., Department of Food and Nutrition - Av. Padre Cruz, Lisbon 1649-016, Portugal; Centro de Estudos de Ciência Animal (CECA), ICETA - Instituto de Ciências, Tecnologias e Agroambiente da Universidade Do Porto, Universidade Do Porto - Praça Gomes Teixeira, Apartado 55142, Oporto 4051-401, Portugal
| | | | - Jaime López-Cervantes
- Instituto Tecnológico de Sonora, 5 de Febrero No. 818 sur, Apdo. 335, Ciudad Obregón C.P. 85000, Sonora, Mexico
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Li F, Liu W, Yamaki K, Liu Y, Fang Y, Li Z, Chen M, Wang C. Angiotensin I-Converting Enzyme Inhibitory Effect of Chinese Soypaste Along Fermentation and Ripening: Contribution of Early Soybean Protein Borne Peptides and Late Maillard Reaction Products. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1136941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fengjuan Li
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Wanlu Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Kohji Yamaki
- National Food Research Institute, National Agricultural and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yanhong Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Yuanyuan Fang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Zhenjing Li
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Mianhua Chen
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Changlu Wang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| |
Collapse
|
12
|
Kong F, Yu S, Bi Y, Huang X, Huang M. Optimization of Process Parameters and Kinetic Model of Enzymatic Extraction of Polyphenols from Lonicerae Flos. Pharmacogn Mag 2016; 12:70-4. [PMID: 27018039 PMCID: PMC4787340 DOI: 10.4103/0973-1296.176055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective: To optimize and verify the cellulase extraction of polyphenols from honeysuckle and provide a reference for enzymatic extracting polyphenols from honeysuckle. Materials and Methods: The uniform design was used According to Fick's first law and kinetic model, fitting analysis of the dynamic process of enzymatic extracting polyphenols was conducted. Results: The optimum enzymatic extraction parameters for polyphenols from honeysuckle are found to be 80% (v/v) of alcohol, 35:1 (mL/g) of liquid-solid ratio, 80°C of extraction temperature, 8.5 of pH, 6.0 mg of enzyme levels, and 130 min of extraction time. Under the optimal conditions, the extraction rate of polyphenols was 3.03%. The kinetic experiments indicated kinetic equation had a good linear relationship with t even under the conditions of different levels of enzyme and temperature, which means fitting curve tallies well with the experimental values. Conclusion: The results of quantification showed that the results provide a reference for enzymatic extracting polyphenols from honeysuckle. SUMMARY Lonicerae flos (Lonicera japonica Thunb.) is a material of traditional Chinese medicine and healthy drinks, of which active compounds mainly is polyphenols. At present, plant polyphenols are the hotspots centents of food, cosmetic and medicine, because it has strong bioactivity. Several traditional methods are available for the extraction of plant polyphenols including impregnation, solvent extraction, ultrasonic extraction, hot-water extraction, alkaline dilute alcohol or alkaline water extraction, microwave extraction and Supercritical CO2 extraction. But now, an increasing number of research on using cellulase to extract active ingredients from plants. Enzymatic method is widely used for enzyme have excellent properties of high reaction efficiency and specificity, moderate reaction conditions, shorter extraction time and easier to control, less damage to the active ingredient. At present, the enzymatic extraction of polyphenols from honeysuckle and dynamic had not been reported. In this study, using cellulase to extract polyphenols from honeysuckle is first applied. Moreover, uniform design was used to optimize process and kinetic model of extraction was established to analyze the characteristics of enzymatic extraction, in order to improve the yield of polyphenols from honeysuckle and make maximum use of Lonicerae flos, which provide references for industrial production.
Collapse
Affiliation(s)
- Fansheng Kong
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China; College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Shujuan Yu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Yongguang Bi
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaojun Huang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengqian Huang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
13
|
Oboh G, Bello FO, Ademosun AO. Hypocholesterolemic properties of grapefruit (Citrus paradisii) and shaddock (Citrus maxima) juices and inhibition of angiotensin-1-converting enzyme activity. J Food Drug Anal 2014; 22:477-484. [PMID: 28911463 PMCID: PMC9355010 DOI: 10.1016/j.jfda.2014.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
Grapefruit (Citrus paradisii) and shaddock (Citrus maxima) juices are used in folk medicine for the management of hypertension and other cardiovascular diseases, but the mechanism of action by which they exert their therapeutic action is unclear. The aim of this study was to investigate the effect of grapefruit and shaddock juices on angiotensin-1-converting enzyme (ACE) activity in vitro and the hypocholesterolemic properties of the juices in rats fed a high-cholesterol diet. Grapefruit juice had higher total phenol and flavonoid contents than shaddock juice, while both juices inhibited ACE activity in a dose-dependent manner. Furthermore, administration of the juices to rats fed a high-cholesterol diet caused a significant reduction in plasma total cholesterol, triglyceride, and low-density lipoprotein–cholesterol levels and an increase in high-density lipoprotein–cholesterol levels. The inhibition of ACE activity in vitro and in vivo hypocholesterolemic effect of the juices could explain the use of the juices in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
| | - Fatai O Bello
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
14
|
Maji AK, Pandit S, Banerji P, Banerjee D. Pueraria tuberosa: a review on its phytochemical and therapeutic potential. Nat Prod Res 2014; 28:2111-27. [DOI: 10.1080/14786419.2014.928291] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amal K. Maji
- Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, India
| | - Subrata Pandit
- Ulysses Research Foundation, 125, Rash Behari Avenue, Kolkata 700029, India
| | - Pratim Banerji
- Ulysses Research Foundation, 125, Rash Behari Avenue, Kolkata 700029, India
| | - Debdulal Banerjee
- Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, India
| |
Collapse
|
15
|
The antihypertensive effects of sodium nitrite are not associated with circulating angiotensin converting enzyme inhibition. Nitric Oxide 2014; 40:52-9. [PMID: 24878382 DOI: 10.1016/j.niox.2014.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/04/2014] [Accepted: 05/20/2014] [Indexed: 01/15/2023]
Abstract
Nitrite-derived nitric oxide (NO) formation exerts antihypertensive effects. Because NO inhibits angiotensin converting enzyme (ACE) activity, we carried a comprehensive series of experiments in rats to test the hypothesis that sodium nitrite exerts antihypertensive effects by inhibiting ACE. We examined whether sodium nitrite (15 mg/kg; or vehicle; by gavage): (I) attenuates the pressor responses to angiotensin I at doses of 0.03, 0.1, 0.3, 1, 3, and 10 μg/kg intravenously; (II) attenuates the acute hypertension induced by L-NAME (100 mg/kg; or vehicle; by gavage); (III) attenuates the chronic hypertension induced by L-NAME (1 g/L in drinking water; or vehicle) administered for 6 weeks; (IV) attenuates the hypertension in the 2 kidney-1 clip (2K1C) chronic hypertension model. Blood samples were collected at the end of each study and plasma angiotensin converting enzyme (ACE) activity was measured with a fluorimetric assay using Hippuryl-His-Leu as substrate. ACE inhibitors were used as positive controls. Plasma nitrite concentrations were measured by ozone-based reductive chemiluminescence. The in vitro effects of sodium nitrite (0, 1, 3, 10, 30, 100 μmol/L) on plasma ACE activity were also determined. We found that sodium nitrite did not affect the pressor responses to angiotensin I. Moreover, while sodium nitrite exerted significant antihypertensive effects in acute and chronic hypertension models, no significant effects on plasma ACE activity were found. In vitro experiments showed no effects of sodium nitrite on plasma ACE activity. This is the first study to demonstrate that the acute and chronic antihypertensive effects of sodium nitrite are not associated with significant inhibition of circulating ACE activity.
Collapse
|
16
|
Sharifi N, Souri E, Ziai SA, Amin G, Amanlou M. Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay. ACTA ACUST UNITED AC 2013; 21:74. [PMID: 24359711 PMCID: PMC3896793 DOI: 10.1186/2008-2231-21-74] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND PURPOSE OF THE STUDY Angiotensin converting enzyme (ACE) inhibitors plays a critical role in treating hypertension. The purpose of the present investigation was to evaluate ACE inhibition activity of 50 Iranian medicinal plants using an in vitro assay. METHODS The ACE activity was evaluated by determining the hydrolysis rate of substrate, hippuryl-L-histidyl-L-leucine (HHL), using reverse phase high performance liquid chromatography (RP-HPLC). Total phenolic content and antioxidant activity were determined by Folin-Ciocalteu colorimetric method and DPPH radical scavenging assay respectively. RESULTS Six extracts revealed > 50% ACE inhibition activity at 330 μg/ml concentration. They were Berberis integerrima Bunge. (Berberidaceae) (88.2 ± 1.7%), Crataegus microphylla C. Koch (Rosaceae) (80.9 ± 1.3%), Nymphaea alba L. (Nymphaeaceae) (66.3 ± 1.2%), Onopordon acanthium L. (Asteraceae) (80.2 ± 2.0%), Quercus infectoria G. Olivier. (Fagaceae) (93.9 ± 2.5%) and Rubus sp. (Rosaceae) (51.3 ± 1.0%). Q. infectoria possessed the highest total phenolic content with 7410 ± 101 mg gallic acid/100 g dry plant. Antioxidant activity of Q. infectoria (IC50 value 1.7 ± 0.03 μg/ml) was more than that of BHT (IC50 value of 10.3 ± 0.15 μg/ml) and Trolox (IC50 value of 3.2 ± 0.06 μg/ml) as the positive controls. CONCLUSIONS In this study, we introduced six medicinal plants with ACE inhibition activity. Despite the high ACE inhibition and antioxidant activity of Q. infectoria, due to its tannin content (tannins interfere in ACE activity), another plant, O. acanthium, which also had high ACE inhibition and antioxidant activity, but contained no tannin, could be utilized in further studies for isolation of active compounds.
Collapse
Affiliation(s)
| | | | | | | | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Angiotensin I-converting enzyme inhibitory activities of Chinese fermented soypaste and estimation of the inhibitory substances. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Sharifi N, Souri E, Ziai SA, Amin G, Amini M, Amanlou M. Isolation, identification and molecular docking studies of a new isolated compound, from Onopordon acanthium: a novel angiotensin converting enzyme (ACE) inhibitor. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:934-939. [PMID: 23743058 DOI: 10.1016/j.jep.2013.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/20/2013] [Accepted: 05/27/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Onopordon acanthium (also known as Scotch thistle) is a medicinal plant of the Asteraceae family that is widely distributed in Europe and Asia. This plant has been long used in traditional medicine as a hypotensive, cardiotonic and diuretic agent. AIM OF THE STUDY The present study is designed to isolate an active compound with ACE inhibition activity from O. acanthium, measure antioxidant activity, predict domain specificity and pharmacokinetic properties of the isolated compound. MATERIALS AND METHODS Methanolic extract of O. acanthium seeds, has been subjected to a repeated column chromatography to give a pure compound with Angiotensin Converting Enzyme (ACE) inhibition activity. The ACE inhibition activity was determined using hippuryl-L-histidyl-L-leucine (HHL) as substrate in an in vitro ACE assay. Structure of the pure compound, isolated from O. acanthium has been established by spectroscopic methods, including Infrared (IR), Nuclear Magnetic Resonance (NMR) and Mass spectrum analysis. In addition, antioxidant activity of the new isolated compound, was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and compared with those of BHT and Trolox as positive controls. Enzyme type inhibition and ACE-C or N domain specificity of the new compound was further evaluated through molecular modeling and docking studies. RESULTS Structure of the pure compound, isolated from O. acanthium (83±1% ACE inhibition activity at concentration of 330 μg/ml), has been established. The isolated compound possessed acceptable antioxidant activity (IC50 value of 2.6±0.04 μg/ml) in comparison with BHT (IC50 value of 10.3±0.15 μg/ml) and Trolox (IC50 value of 3.2±0.06 μg/ml). Molecular docking predicted competitive type enzyme inhibition and approximately similar affinity of the isolated compound for ACE-C and N domains. CONCLUSION The results derived from computational and in vitro experiments, confirm the potential of the isolated compound, from O. acanthium as a new antihypertensive compound and give additional scientific support to an anecdotal use of O. acanthium in traditional medicine to treat cardiovascular disease such as hypertension.
Collapse
Affiliation(s)
- Niusha Sharifi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Palanisamy N, Venkataraman AC. Beneficial effect of genistein on lowering blood pressure and kidney toxicity in fructose-fed hypertensive rats. Br J Nutr 2013; 109:1806-12. [PMID: 23116847 DOI: 10.1017/s0007114512003819] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The study evaluates the effects of genistein on blood pressure (BP) and ultrastructural changes in kidney of fructose-fed hypertensive rats. Male Wistar rats were fed a diet containing 60 % starch or 60 % fructose as the source of carbohydrate. After 15 d, rats in each dietary group were divided into two groups and were treated with either genistein (1 mg/kg per d) in dimethylsulfoxide (DMSO) or 30 % DMSO alone. BP, pressor mechanisms, protein kinase C-βII (PKC-βII) expression, endothelial NO synthase (eNOS) expression and renal ultrastructural changes were evaluated after 60 d. Fructose-fed rats displayed significant elevation in BP and heart rate. Significant increase in plasma angiotensin-converting enzyme (ACE) activity, alterations in renal lipid profile, nitrite and kallikrein activity, enhanced expression of membrane-associated PKC-βII and decreased expression of eNOS were observed in them. Histology and electron microscopic studies showed structural changes in the kidney. Genistein administration lowered BP, restored ACE, PKC-βII and eNOS expression and preserved renal ultrastructural integrity. These findings demonstrate that genistein has effects on eNOS activity in renal cells, leading to eNOS activation and NO synthesis. These effects could have been mediated by activation of PKC-βII. The observed benefits of genistein make it a promising candidate for therapy of diabetic kidney disease.
Collapse
Affiliation(s)
- Nallasamy Palanisamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India.
| | | |
Collapse
|
20
|
Curtis PJ, Potter J, Kroon PA, Wilson P, Dhatariya K, Sampson M, Cassidy A. Vascular function and atherosclerosis progression after 1 y of flavonoid intake in statin-treated postmenopausal women with type 2 diabetes: a double-blind randomized controlled trial. Am J Clin Nutr 2013; 97:936-42. [PMID: 23553151 DOI: 10.3945/ajcn.112.043745] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In healthy participants, short-term flavan-3-ol and isoflavone intakes improve vascular function; however, the potential combined benefit of these compounds on atherosclerosis progression remains unclear for those at elevated risk of cardiovascular disease. OBJECTIVE The objective was to examine whether combined isoflavone and flavan-3-ol intake alters vascular function in postmenopausal women with type 2 diabetes mellitus (T2DM). DESIGN A double-blind, parallel-design, placebo-controlled 1-y trial was conducted in postmenopausal T2DM patients randomly assigned to a split dose of 27 g flavonoid-enriched chocolate/d [850 mg flavan-3-ols (90 mg epicatechin) + 100 mg isoflavones (aglycone equivalents)/d] or matched placebo. Intima-media thickness of the common carotid artery (CCA-IMT), pulse wave velocity (PWV), augmentation index, blood pressure (BP), and vascular biomarkers were assessed. RESULTS A total of 93 patients completed the trial. Overall, the flavonoid intervention did not significantly change CCA-IMT, augmentation index, or BP, but pulse pressure variability improved (flavonoid: -0.11 ± 0.07 mm Hg/min; placebo: 0.10 ± 0.11 mm Hg/min; P = 0.04). In a subgroup with PWV data, net improvements were observed [flavonoid (n = 18): -0.07 ± 0.38 m/s; placebo (n = 17): 0.68 ± 0.25 m/s; P = 0.01], which equated to a 10% CV risk reduction. Equol producers (n = 17) had larger reductions in diastolic BP, mean arterial pressure, and PWV (-2.24 ± 1.31 mm Hg, -1.24 ± 1.30 mm Hg, and -0.68 ± 0.40 m/s, respectively; P < 0.01) compared with non-equol producers (n = 30). CONCLUSIONS Although the 1-y intervention did not change CCA-IMT or BP, clinically relevant improvements in arterial stiffness were observed; equol producers were particularly responsive. Flavonoids may augment existing therapeutic strategies to reduce cardiovascular disease risk in postmenopausal T2DM patients, and longer studies are needed to examine the effects on atherosclerosis progression. This trial was registered at clinicaltrials.gov as NCT00677599.
Collapse
Affiliation(s)
- Peter J Curtis
- Departments of Nutrition and Radiology Department, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Fontana V, Silva PS, Izidoro-Toledo TC, Biagi C, Oliveira EB, Gerlach RF, Tanus-Santos JE. Comprehensive Evaluation of the Effects of Enalapril on Matrix Metalloproteinases Levels in Hypertension. Cardiovasc Drugs Ther 2012; 26:511-9. [DOI: 10.1007/s10557-012-6420-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Gencel VB, Benjamin MM, Bahou SN, Khalil RA. Vascular effects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease. Mini Rev Med Chem 2012; 12:149-74. [PMID: 22070687 DOI: 10.2174/138955712798995020] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/27/2011] [Accepted: 08/05/2011] [Indexed: 01/10/2023]
Abstract
Phytoestrogens are estrogenic compounds of plant origin classified into different groups including isoflavones, lignans, coumestans and stilbenes. Isoflavones such as genistein and daidzein are the most studied and most potent phytoestrogens, and are found mainly in soy based foods. The effects of phytoestrogens are partly mediated via estrogen receptors (ERs): ERα, ERβ and possibly GPER. The interaction of phytoestrogens with ERs is thought to induce both genomic and non-genomic effects in many tissues including the vasculature. Some phytoestrogens such as genistein have additional non-ER-mediated effects involving signaling pathways such as tyrosine kinase. Experimental studies have shown beneficial effects of phytoestrogens on endothelial cells, vascular smooth muscle, and extracellular matrix. Phytoestrogens may also affect other pathophysiologic vascular processes such as lipid profile, angiogenesis, inflammation, tissue damage by reactive oxygen species, and these effects could delay the progression of atherosclerosis. As recent clinical trials showed no vascular benefits or even increased risk of cardiovascular disease (CVD) and CV events with conventional menopausal hormone therapy (MHT), phytoestrogens are being considered as alternatives to pharmacologic MHT. Epidemiological studies in the Far East population suggest that dietary intake of phytoestrogens may contribute to the decreased incidence of postmenopausal CVD and thromboembolic events. Also, the WHO-CARDIAC study supported that consumption of high soybean diet is associated with lower mortalities from coronary artery disease. However, as with estrogen, there has been some discrepancy between the experimental studies demonstrating the vascular benefits of phytoestrogens and the data from clinical trials. This is likely because the phytoestrogens clinical trials have been limited in many aspects including the number of participants enrolled, the clinical end points investigated, and the lack of long-term follow-up. Further investigation of the cellular mechanisms underlying the vascular effects of phytoestrogens and careful evaluation of the epidemiological evidence and clinical trials of their potential vascular benefits would put forward the use of phytoestrogens as an alternative MHT for the relief of menopausal symptoms and amelioration of postmenopausal CVD.
Collapse
Affiliation(s)
- V B Gencel
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
23
|
Ceron CS, Rizzi E, Guimaraes DA, Martins-Oliveira A, Cau SB, Ramos J, Gerlach RF, Tanus-Santos JE. Time course involvement of matrix metalloproteinases in the vascular alterations of renovascular hypertension. Matrix Biol 2012; 31:261-70. [PMID: 22342460 DOI: 10.1016/j.matbio.2012.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
Increased vascular matrix metalloproteinases (MMPs) levels play a role in late phases of hypertensive vascular remodeling. However, no previous study has examined the time course of MMPs in the various phases of two-kidney, one-clip hypertension (2K1C). We examined structural vascular changes, collagen and elastin content, vascular oxidative stress, and MMPs levels/activities during the development of 2K1C hypertension. Plasma angiotensin converting enzyme (ACE) activity was measured to assess renin-angiotensin system activation. Sham or 2K1C hypertensive rats were studied after 2, 4, 6, and 10weeks of hypertension. Systolic blood pressure (SBP) was monitored weekly. Morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin, orcein and picrosirius red sections. Aortic NADPH activity and superoxide production was evaluated. Aortic gelatinolytic activity was determined by in situ zymography, and MMP-2, MMP-14, and tissue inhibitor of MMPs (TIMP)-2 levels were determined by gelatin zymography, immunofluorescence and immunohistochemistry. 2K1C hypertension was associated with increased ACE activity, which decreased to normal after 10 weeks. We found increased aortic collagen and elastin content in the early phase of hypertension, which were associated with vascular hypertrophy, increased vascular MMP-2 and MMP-14 (but not TIMP-2) levels, and increased gelatinolytic activity, possibly as a result of increased vascular NADPH oxidase activity and oxidative stress. These results indicate that vascular remodeling of renovascular hypertension is an early process associated with early increases in MMPs activities, enhanced matrix deposition and oxidative stress. Using antioxidants or MMPs inhibitors in the early phase of hypertension may prevent the vascular alterations of hypertension.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dias CA, Neto-Neves EM, Montenegro MF, Tanus-Santos JE. Losartan exerts no protective effects against acute pulmonary embolism-induced hemodynamic changes. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:211-7. [PMID: 21964667 DOI: 10.1007/s00210-011-0695-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/20/2011] [Indexed: 11/30/2022]
Abstract
The acute obstruction of pulmonary vessels by venous thrombi is a critical condition named acute pulmonary embolism (APE). During massive APE, severe pulmonary hypertension may lead to death secondary to right heart failure and circulatory shock. APE-induced pulmonary hypertension is aggravated by active pulmonary vasoconstriction. While blocking the effects of some vasoconstrictors exerts beneficial effects, no previous study has examined whether angiotensin II receptor blockers protect against the hemodynamic changes associated with APE. We examined the effects exerted by losartan on APE-induced hemodynamic changes. Hemodynamic evaluations were performed in non-embolized lambs treated with saline (n = 4) and in lambs that were embolized with silicon microspheres and treated with losartan (30 mg/kg followed by 1 mg/kg/h, n = 5) or saline (n = 7) infusions. The plasma and lung angiotensin-converting enzyme (ACE) activity were assessed using a fluorometric method. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 21 ± 2 mmHg and 375 ± 20 dyn s cm⁻⁵ m⁻², respectively (P < 0.05). Losartan decreased MPAP significantly (by approximately 15%), without significant changes in PVRI and tended to decrease cardiac index (P > 0.05). Lung and plasma ACE activity were similar in both embolized and non-embolized animals. Our findings show evidence of lack of activation of the renin-angiotensin system during APE. The lack of significant effects of losartan on the pulmonary vascular resistance suggests that losartan does not protect against the hemodynamic changes found during APE.
Collapse
Affiliation(s)
- Carlos A Dias
- Department of Pharmacology, Campus Centro-Oeste Dona Lindu, Federal University of Sao Joao Del Rei, Rua Sebastiao Goncalves Coelho 400, 35501-296 Divinopolis, MG, Brazil
| | | | | | | |
Collapse
|
25
|
de Souza P, Gasparotto A, Crestani S, Stefanello MÉA, Marques MCA, da Silva-Santos JE, Kassuya CAL. Hypotensive mechanism of the extracts and artemetin isolated from Achillea millefolium L. (Asteraceae) in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:819-25. [PMID: 21420289 DOI: 10.1016/j.phymed.2011.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/28/2010] [Accepted: 02/06/2011] [Indexed: 05/20/2023]
Abstract
Traditional uses of Achillea millefolium L. (Asteraceae) include the treatment of cardiovascular diseases. In the present study, we used anesthetized rats to assess the hypotensive effect of a hydroethanolic extract (HEAM), and its dichloromethane (DCM), ethyl acetate (EA), butanolic (BT), and dichloromethane-2 (DCM-2) fractions, besides the flavonoid artemetin, isolated from A. millefolium. The oral administration of HEAM (100-300 mg/kg), DCM (20mg/kg), DCM-2 (10-30 mg/kg), but not EA (10 mg/kg) and BT (50 mg/kg) fractions significantly reduced the mean arterial pressure (MAP) of normotensive rats. The phytochemical analysis by NMR (1)H of DCM and DCM-2 fractions revealed high amounts of artemetin, that was isolated and administered by either oral (1.5 mg/kg) or intravenous (0.15-1.5 mg/kg) routes in rats. This flavonoid was able to dose-dependently reduce the MAP, up to 11.47 ± 1.5 mmHg (1.5 mg/kg, i.v.). To investigate if artemetin-induced hypotension was related to angiotensin-converting enzyme inhibition, we evaluated the influence of this flavonoid on the vascular effects of both angiotensin I and bradykinin. Intravenous injection of artemetin (0.75 mg/kg) significantly reduced the hypertensive response to angiotensin I while increased the average length of bradykinin-induced hypotension. Artemetin (1.5 mg/kg, p.o.) was also able to reduce plasma (about 37%) and vascular (up to 63%) ACE activity in vitro, compared to control group. On the other hand, artemetin did not change angiotensin II-induced hypertension. Our study is the first showing the hypotensive effects induced by the extract and fractions obtained from A. millefollium. In addition, our results disclosed that this effect may be, at least in part, associated with high levels of artemetin and its ability to decrease angiotensin II generation in vivo, by ACE inhibition.
Collapse
Affiliation(s)
- Priscila de Souza
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Neto-Neves EM, Montenegro MF, Dias-Junior CA, Spiller F, Kanashiro A, Tanus-Santos JE. Chronic treatment with quercetin does not inhibit angiotensin-converting enzyme in vivo or in vitro. Basic Clin Pharmacol Toxicol 2011; 107:825-9. [PMID: 20406213 DOI: 10.1111/j.1742-7843.2010.00583.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The precise mechanisms explaining the anti-hypertensive effects produced by quercetin are not fully known. Here, we tested the hypothesis that chronic quercetin treatment inhibits the angiotensin-converting enzyme (ACE). We examined whether quercetin treatment for 14 days reduces in vivo responses to angiotensin I or enhances the responses to bradykinin in anaesthetised rats. We measured the changes in systemic arterial pressure induced by angiotensin I in doses of 0.03-10 μg/kg, by angiotensin II in doses of 0.01-3 μg/kg, and to bradykinin in doses of 0.03-10 μg/kg in anaesthetised rats pre-treated with vehicle (controls), or daily quercetin 10 mg/kg intraperitoneally for 14 days, or a single i.v. dose of captopril 2 mg/kg. Plasma ACE activity was determined by a fluorometric method. Plasma quercetin concentrations were assessed by high performance liquid chromatography. Quercetin treatment induced no significant changes in the hypertensive responses to angiotensin I and angiotensin II, as well in the hypotensive responses to bradykinin (all p>0.05). Conversely, as expected, a single dose of captopril inhibited the hypertensive responses to angiotensin I and potentiated the bradykinin responses (all p<0.01), while no change was found in the vascular responses to angiotensin II (all p>0.05). In addition, although we found significant amounts of quercetin in plasma samples (mean=206 ng/mL), no significant differences were found in plasma ACE activity in rats treated with quercetin compared with those found in the control group (50±6 his-leu nmol/min/mL and 40±7 his-leu nmol/min/mL, respectively; p>0.05). These findings provide strong evidence indicating that quercetin does not inhibit ACE in vivo or in vitro and indicate that other mechanisms are probably involved in the antihypertensive and protective cardiovascular effects associated with quercetin.
Collapse
Affiliation(s)
- Evandro Manoel Neto-Neves
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Lee DE, Lee KW, Jung SK, Lee EJ, Hwang JA, Lim TG, Kim BY, Bode AM, Lee HJ, Dong Z. 6,7,4'-trihydroxyisoflavone inhibits HCT-116 human colon cancer cell proliferation by targeting CDK1 and CDK2. Carcinogenesis 2011; 32:629-35. [PMID: 21258042 DOI: 10.1093/carcin/bgr008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colon cancer is a common epithelial malignancies worldwide. Epidemiologic evidence has shown that nutrition and dietary components are important environmental factors involved in the development of this disease. We investigated the biological activity of 6,7,4'-trihydroxyisoflavone (6,7,4'-THIF, a metabolite of daidzein) in in vitro and in vivo models of human colon cancer. 6,7,4'-THIF suppressed anchorage-dependent and -independent growth of HCT-116 and DLD1 human colon cancer cells more effectively than daidzein. In addition, 6,7,4'-THIF induced cell cycle arrest at the S and G2/M phases in HCT-116 human colon cancer cells. Western blot analysis revealed that 6,7,4'-THIF effectively suppressed the expression of cyclin-dependent kinase (CDK) 2, but had no effect on other S- or G2/M-phase regulatory proteins such as cyclin A, cyclin B1 or CDK1. Daidzein did not affect the expression of any of these proteins. In kinase and pull-down assays, 6,7,4'-THIF, but not daidzein, inhibited CDK1 and CDK2 activities in HCT-116 cells by directly interacting with CDK1 and CDK2. In a xenograft mouse model, 6,7,4'-THIF significantly decreased tumor growth, volume and weight of HCT-116 xenografts. 6,7,4'-THIF bound directly to CDK1 and CDK2 in vivo, resulting in the suppression of CDK1 and CDK2 activity in tumors corresponding with our in vitro results. Collectively, these results suggest that CDK1 and CDK2 are potential molecular targets of 6,7,4'-THIF to suppress HCT-116 cell proliferation in vitro and in vivo. These findings provide insight into the biological actions of 6,7,4'-THIF and might establish a molecular basis for the development of new cancer therapeutic agents.
Collapse
Affiliation(s)
- Dong Eun Lee
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ding B, Yuan L, Yu H, Li L, Ma W, Bi Y, Feng J, Xiao R. Genistein and Folic Acid Prevent Oxidative Injury Induced by β-Amyloid Peptide. Basic Clin Pharmacol Toxicol 2011; 108:333-40. [DOI: 10.1111/j.1742-7843.2010.00661.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Wang YN, Wu W, Chen HC, Fang H. Genistein protects against UVB-induced senescence-like characteristics in human dermal fibroblast by p66Shc down-regulation. J Dermatol Sci 2010; 58:19-27. [PMID: 20211546 DOI: 10.1016/j.jdermsci.2010.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND Genistein, as an active compound of dietary antioxidants, has shown considerable promise as an effective agent against aging process. However, the effect of genistein on skin photoaging and the associated mechanism remain unclear. OBJECTIVE To delineate the effect of genistein on UVB-induced senescence in human dermal fibroblasts (HDFs) with emphasis on the mechanism of oxidative pathway regulated by p66Shc involved in the events. METHODS HDFs were induced to premature senescence by repetitive subcytotoxic doses of UVB irradiation. Cellular apoptosis and DNA cell cycle were analyzed using flow cytometry. Intracellular levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by ELISA. Mutation levels of two large deletions of mitochondrial DNA, 4977bp and 3895bp deletion, were determined by quantitative PCR. Western blot was applied to detect the expression and activation of p66Shc (the 66-kilodalton isoform of the growth factor adapter Shc) and FKHRL1 (a forkhead protein that is intimately linked with intracellular oxidation). RESULTS Strong activity of senescence-associated beta-galactosidase (SA-beta-gal), high percent of cell apoptosis as well as cell cycle arrest in G0/G1 phase, and increased intracellular oxidative stress were observed in HDFs irradiated by UVB. Genistein exerted dramatically protective effects on HDFs in a dose-dependent manner. Elevated copy numbers of large deletions in mitochondrial DNA were also inhibited by genistein. Down-regulation of total and phosphorylated p66Shc on Ser36, as well as FKHRL1 and its phosphorylation on Thr32, were observed after genistein treatment. CONCLUSION The results indicate that genistein protects UVB-induced senescence-like characteristics in HDFs via maintenance of antioxidant enzyme activities and modulation of mitochondrial oxidative stress through down-regulation of a p66Shc-dependent signaling pathway, which may provide potential prevention against skin aging and even photoaging.
Collapse
Affiliation(s)
- Yi Na Wang
- Department of Dermatology, 1st Affiliated Hospital, Zhejiang University School of Medicine, 79# Qing Chun Road, Hangzhou 310003, China
| | | | | | | |
Collapse
|