1
|
Diao X, Han H, Li B, Guo Z, Fu J, Wu W. The Rare Marine Bioactive Compounds in Neurological Disorders and Diseases: Is the Blood-Brain Barrier an Obstacle or a Target? Mar Drugs 2023; 21:406. [PMID: 37504937 PMCID: PMC10381592 DOI: 10.3390/md21070406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic barrier separating neurocytes and brain tissues from blood that is extremely sealed and strictly regulated by transporters such as aquaporin-4 (AQP-4), glucose transporter (GLUT), and specialized tight junctional complexes (TJCs) including tight junctions (TJs), adherens junctions (AJs), and Zonulae occludens (ZOs). With specifically selective transcellular and paracellular permeability, the BBB maintains a homeostatic microenvironment to protect the central nervous system (CNS). In recent years, increasing attention has been paied to the importance of BBB disruption and dysfunction in the pathology of neurological disorders and diseases, such as Alzheimer's diseases (AD), Parkinson diseases (PD), stroke and cerebral edema. However, the further research on how the integral structure and function of BBB are altered under the physiological or pathological conditions is still needed. Focusing on the ultrastructural features of the BBB and combining the latest research on associated proteins and transporters, physiological regulation and pathological change of the BBB were elucidated. By summarizing the protective effects of known bioactive compounds derived from marine life on the BBB, this review aims to highlight the BBB as a key to the treatment of several major neurological diseases instead of a normally described obstacle to drug absorption and transport. Overall, the BBB's morphological characteristics and physiological function and their regulation provide the theoretical basis for the study on the BBB and inspire the diagnosis of and therapy for neurological diseases.
Collapse
Affiliation(s)
- Xiaozhen Diao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (H.H.); (B.L.)
| | - Hui Han
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (H.H.); (B.L.)
| | - Bailin Li
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (H.H.); (B.L.)
| | - Zhen Guo
- Innovation Center, Shanghai BociMed Pharmaceutical Co., Ltd., Shanghai 201203, China; (Z.G.); (J.F.)
| | - Jun Fu
- Innovation Center, Shanghai BociMed Pharmaceutical Co., Ltd., Shanghai 201203, China; (Z.G.); (J.F.)
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.D.); (H.H.); (B.L.)
| |
Collapse
|
2
|
Girek M, Kłosiński K, Grobelski B, Pizzimenti S, Cucci MA, Daga M, Barrera G, Pasieka Z, Czarnecka K, Szymański P. Novel tetrahydroacridine derivatives with iodobenzoic moieties induce G0/G1 cell cycle arrest and apoptosis in A549 non-small lung cancer and HT-29 colorectal cancer cells. Mol Cell Biochem 2019; 460:123-150. [PMID: 31313023 PMCID: PMC6745035 DOI: 10.1007/s11010-019-03576-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022]
Abstract
A series of nine tetrahydroacridine derivatives with iodobenzoic moiety were synthesized and evaluated for their cytotoxic activity against cancer cell lines—A549 (human lung adenocarcinoma), HT-29 (human colorectal adenocarcinoma) and somatic cell line—EA.hy926 (human umbilical vein cell line). All compounds displayed high cytotoxicity activity against A549 (IC50 59.12–14.87 µM) and HT-29 (IC50 17.32–5.90 µM) cell lines, higher than control agents—etoposide and 5-fluorouracil. Structure–activity relationship showed that the position of iodine in the substituent in the para position and longer linker most strongly enhanced the cytotoxic effect. Among derivatives, 1i turned out to be the most cytotoxic and displayed IC50 values of 14.87 µM against A549 and 5.90 µM against HT-29 cell lines. In hyaluronidase inhibition assay, all compounds presented anti-inflammatory activity, however, slightly lower than reference compound. ADMET prediction showed that almost all compounds had good pharmacokinetic profiles. 1b, 1c and 1f compounds turned out to act against chemoresistance in cisplatin-resistant 253J B-V cells. Compounds intercalated into DNA and inhibited cell cycle in G0/G1 phase—the strongest inhibition was observed for 1i in A549 and 1c in HT-29. Among compounds, the highest apoptotic effect in both cell lines was observed after treatment with 1i. Compounds caused DNA damage and H2AX phosphorylation, which was detected in A549 and HT-29 cells. All research confirmed anticancer properties of novel tetrahydroacridine derivatives and explained a few pathways of their mechanism of cytotoxic action.
Collapse
Affiliation(s)
- Małgorzata Girek
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Karol Kłosiński
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Pabianicka 62, 93-513, Lodz, Poland
| | - Bartłomiej Grobelski
- Animal House, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Marie Angele Cucci
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Zbigniew Pasieka
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Pabianicka 62, 93-513, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
3
|
Alghazwi M, Smid S, Zhang W. In vitro protective activity of South Australian marine sponge and macroalgae extracts against amyloid beta (Aβ 1-42) induced neurotoxicity in PC-12 cells. Neurotoxicol Teratol 2018; 68:72-83. [PMID: 29782912 DOI: 10.1016/j.ntt.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
Abstract
South Australia is a biodiversity hotspot of marine sponges and macroalgae. This study aimed to evaluate the potential neuroprotective activity of extracts from these two marine sources by reducing the toxicity of human amyloid beta Aβ1-42 in a cell model assay using PC-12 cells. A total of 92 extracts (43, 13, 16, and 20 extracts from sponge of 8 orders and 17 families, green algae of 3 orders and 4 families, brown algae of 6 orders and 8 families, and red algae of 5 orders and 10 families, respectively) were initially screened at three different concentrations (0.25, 2.5 and 25 μg/mL) to evaluate their toxicity using the MTT assay. About half of these extracts (26, 6, 5, and 10 extracts from sponge, green algae, brown algae, and red algae, respectively) showed some cytotoxicity, and were hence excluded from further assays. The rest of extracts (45 extracts in total) at 0.25 and 25 μg/mL were subsequently screened in a neuroprotection assay against Aβ1-42 cytotoxicity. A cell viability reduction of 30% was observed in the MTT assay when the cells were treated with 1 μM Aβ1-42. 29 extracts (13, 4, 7, and 5 extracts from sponge, green algae, brown algae, and red algae, respectively) reduced the toxicity induced by Aβ1-42 (P < 0.05), indicating neuroprotective activity. These results demonstrate that marine sponge and macroalgae form a broad spectrum are promising sources of neuroprotective compounds against the hallmark neurotoxic protein in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Mousa Alghazwi
- Centre for Marine Bioproducts Development (CMBD), Flinders University, GPO Box 2100, Adelaide 5001, South Australia, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide 5001, South Australia, Australia; Ministry of Higher education in Saudi Arabia, King Faisal Hospital Street, Riyadh 11153, Saudi Arabia.
| | - Scott Smid
- Discipline of Pharmacology, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Wei Zhang
- Centre for Marine Bioproducts Development (CMBD), Flinders University, GPO Box 2100, Adelaide 5001, South Australia, Australia; Medical Biotechnology, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide 5001, South Australia, Australia.
| |
Collapse
|
4
|
de Los Rios C, Cano-Abad MF, Villarroya M, López MG. Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds. Pflugers Arch 2017; 470:187-198. [PMID: 28823085 DOI: 10.1007/s00424-017-2044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
In this review, we show how chromaffin cells have contributed to evaluate neuroprotective compounds with diverse mechanisms of action. Chromaffin cells are considered paraneurons, as they share many common features with neurons: (i) they synthesize, store, and release neurotransmitters upon stimulation and (ii) they express voltage-dependent calcium, sodium, and potassium channels, in addition to a wide variety of receptors. All these characteristics, together with the fact that primary cultures from bovine adrenal glands or chromaffin cells from the tumor pheochromocytoma cell line PC12 are easy to culture, make them an ideal model to study neurotoxic mechanisms and neuroprotective drugs. In the first part of this review, we will analyze the different cytotoxicity models related to calcium dyshomeostasis and neurodegenerative disorders like Alzheimer's or Parkinson's. Along the second part of the review, we describe how different classes of drugs have been evaluated in chromaffin cells to determine their neuroprotective profile in different neurodegenerative-related models.
Collapse
Affiliation(s)
- Cristobal de Los Rios
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria F Cano-Abad
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuela G López
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain. .,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Dibenzo[1,4,5]thiadiazepine: A hardly-known heterocyclic system with neuroprotective properties of potential usefulness in the treatment of neurodegenerative diseases. Eur J Med Chem 2014; 81:350-8. [DOI: 10.1016/j.ejmech.2014.04.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
|
6
|
N-Acylaminophenothiazines: Neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer’s disease. Eur J Med Chem 2011; 46:2224-35. [DOI: 10.1016/j.ejmech.2011.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/19/2022]
|
7
|
Abstract
This review focuses on recent developments in the use of natural products as therapeutics for Alzheimer's disease. The compounds span a diverse array of structural classes and are organized according to their mechanism of action, with the focus primarily on the major hypotheses. Overall, the review discusses more than 180 compounds and summarizes 400 references.
Collapse
Affiliation(s)
- Philip Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
8
|
Morales-Garcia JA, Luna-Medina R, Martinez A, Santos A, Perez-Castillo A. Anticonvulsant and neuroprotective effects of the novel calcium antagonist NP04634 on kainic acid-induced seizures in rats. J Neurosci Res 2009; 87:3687-96. [DOI: 10.1002/jnr.22165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Arce MP, Rodríguez-Franco MI, González-Muñoz GC, Pérez C, López B, Villarroya M, López MG, García AG, Conde S. Neuroprotective and Cholinergic Properties of Multifunctional Glutamic Acid Derivatives for the Treatment of Alzheimer’s Disease. J Med Chem 2009; 52:7249-57. [DOI: 10.1021/jm900628z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mariana P. Arce
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | - Concepción Pérez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Beatriz López
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Mercedes Villarroya
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Manuela G. López
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Antonio G. García
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Santiago Conde
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|