1
|
Han Y, Ji B, Leng Y, Xie C. Inhibited hypoxia-inducible factor by intraoperative hyperglycemia increased postoperative delirium of aged patients: A review. Medicine (Baltimore) 2024; 103:e38349. [PMID: 39259057 PMCID: PMC11142828 DOI: 10.1097/md.0000000000038349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 09/12/2024] Open
Abstract
The underlying mechanism of postoperative delirium (POD) in elderly people remains unclear. Perioperative hyperglycemia (POHG) is an independent risk indicator for POD, particularly in the elderly. Under cerebral desaturation (hypoxia) during general anesthesia, hypoxia-inducible factor (HIF) is neuroprotective during cerebral hypoxia via diverse pathways, like glucose metabolism and angiogenesis. Hyperglycemia can repress HIF expression and activity. On the other hand, POHG occurred among patients undergoing surgery. For surgical stress, hypothalamic-pituitary-adrenal activation and sympathoadrenal activation may increase endogenous glucose production via gluconeogenesis and glycogenolysis. Thus, under the setting of cerebral hypoxia during general anesthesia, we speculate that POHG prevents HIF-1α levels and function in the brain of aged patients, thus exacerbating the hypoxic response of HIF-1 and potentially contributing to POD. This paper sketches the underlying mechanisms of HIF in POD in elderly patients and offers novel insights into targets for preventing or treating POD in the same way as POHG.
Collapse
Affiliation(s)
- Yutong Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Bing Ji
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Pain Management, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
2
|
Shirai Y, Suwa T, Kobayashi M, Koyasu S, Harada H. DDX5 enhances HIF-1 activity by promoting the interaction of HIF-1α with HIF-1β and recruiting the resulting heterodimer to its target gene loci. Biol Cell 2024; 116:e2300077. [PMID: 38031929 DOI: 10.1111/boc.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND INFORMATION Cancer cells acquire malignant characteristics and therapy resistance by employing the hypoxia-inducible factor 1 (HIF-1)-dependent adaptive response to hypoxic microenvironment in solid tumors. Since the underlying molecular mechanisms remain unclear, difficulties are associated with establishing effective therapeutic strategies. RESULTS We herein identified DEAD-box helicase 5 (DDX5) as a novel activator of HIF-1 and found that it enhanced the heterodimer formation of HIF-1α and HIF-1β and facilitated the recruitment of the resulting HIF-1 to its recognition sequence, hypoxia-response element (HRE), leading to the expression of a subset of cancer-related genes under hypoxia. CONCLUSIONS This study reveals that the regulation of HIF-1 recruitment to HRE is an important regulatory step in the control of HIF-1 activity. SIGNIFICANCE The present study provides novel insights for the development of strategies to inhibit the HIF-1-dependent expression of cancer-related genes.
Collapse
Affiliation(s)
- Yukari Shirai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tatsuya Suwa
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Shen H, Yang J, Chen X, Gao Y, He B. Role of hypoxia-inducible factor in postoperative delirium of aged patients: A review. Medicine (Baltimore) 2023; 102:e35441. [PMID: 37773821 PMCID: PMC10545271 DOI: 10.1097/md.0000000000035441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Postoperative delirium is common, especially in older patients. Delirium is associated with prolonged hospitalization, an increased risk of postoperative complications, and significant mortality. The mechanism of postoperative delirium is not yet clear. Cerebral desaturation occurred during the maintenance period of general anesthesia and was one of the independent risk factors for postoperative delirium, especially in the elderly. Hypoxia stimulates the expression of hypoxia-inducible factor-1 (HIF-1), which controls the hypoxic response. HIF-1 may have a protective role in regulating neuron apoptosis in neonatal hypoxia-ischemia brain damage and may promote the repair and rebuilding process in the brain that was damaged by hypoxia and ischemia. HIF-1 has a neuroprotective effect during cerebral hypoxia and controls the hypoxic response by regulating multiple pathways, such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. On the other hand, anesthetics have been reported to inhibit HIF activity in older patients. So, we speculate that HIF plays an important role in the pathophysiology of postoperative delirium in the elderly. The activity of HIF is reduced by anesthetics, leading to the inhibition of brain protection in a hypoxic state. This review summarizes the possible mechanism of HIF participating in postoperative delirium in elderly patients and provides ideas for finding targets to prevent or treat postoperative delirium in elderly patients.
Collapse
Affiliation(s)
- Hu Shen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyin Yang
- Department of ICU, Chengdu Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Xu Chen
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Gao
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Dai W, Li Y, Sun W, Ji M, Bao R, Chen J, Xu S, Dai Y, Chen Y, Liu W, Ge C, Sun W, Mo W, Guo C, Xu X. Silencing of OGDHL promotes liver cancer metastasis by enhancing hypoxia inducible factor 1 α protein stability. Cancer Sci 2022; 114:1309-1323. [PMID: 36000493 PMCID: PMC10067421 DOI: 10.1111/cas.15540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases associated with a high rate of mortality. Frequent intrahepatic spread, extrahepatic metastasis, and tumor invasiveness are the main factors responsible for the poor prognosis of patients with HCC. Hypoxia-inducible factor 1 (HIF-1) has been verified to play a critical role in the metastasis of HCC. HIFs are also known to be modulated by small molecular metabolites, thus highlighting the need to understand the complexity of their cellular regulation in tumor metastasis. In this study, lower expression levels of oxoglutarate dehydrogenase-like (OGDHL) were strongly correlated with aggressive clinicopathologic characteristics, such as metastasis and invasion in three independent cohorts featuring a total of 281 postoperative HCC patients. The aberrant expression of OGDHL reduced cell invasiveness and migration in vitro and HCC metastasis in vivo, whereas the silencing of OGDHL promoted these processes in HCC cells. The pro-metastatic role of OGDHL downregulation is most likely attributed to its upregulation of HIF-1α transactivation activity and the protein stabilization by promoting the accumulation of L-2-HG to prevent the activity of HIF-1α prolyl hydroxylases, which subsequently causes an epithelial-mesenchymal transition process in HCC cells. These results demonstrate that OGDHL is a dominant factor that modulates the metastasis of HCC.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yueyue Li
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Ji
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Renjun Bao
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China.,Suzhou Medical College of Soochow University, Suzhou, China
| | - Jianqing Chen
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Shuqi Xu
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Ying Dai
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Chen
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjing Liu
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Chao Ge
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Sun
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Akki R, Siracusa R, Cordaro M, Remigante A, Morabito R, Errami M, Marino A. Adaptation to oxidative stress at cellular and tissue level. Arch Physiol Biochem 2022; 128:521-531. [PMID: 31835914 DOI: 10.1080/13813455.2019.1702059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several in vitro and in vivo investigations have already proved that cells and tissues, when pre-exposed to low oxidative stress by different stimuli such as chemical, physical agents and environmental factors, display more resistance against subsequent stronger ischaemic injuries, resulting in an adaptive response known as ischaemic preconditioning (IPC). The aim of this review is to report the most recent knowledge about the complex adaptive mechanisms, including signalling transduction pathways, antioxidant systems, apoptotic and inflammation pathways, underlying cell protection against oxidative damage. In addition, an update about in vivo adaptation strategies in response to ischaemic/reperfusion episodes and brain trauma is also given.
Collapse
Affiliation(s)
- Rachid Akki
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mohammed Errami
- Department of Biology, Faculty of Science, University of Abdelmalek Essaadi, Tetouan, Morocco
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Uba T, Matsuo Y, Sumi C, Shoji T, Nishi K, Kusunoki M, Harada H, Kimura H, Bono H, Hirota K. Polysulfide inhibits hypoxia-elicited hypoxia-inducible factor activation in a mitochondria-dependent manner. Mitochondrion 2021; 59:255-266. [PMID: 34133955 DOI: 10.1016/j.mito.2021.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
In cellular signaling, the diverse physiological actions of biological gases, including O2, CO, NO, and H2S, have attracted much interest. Hypoxia-inducible factors (HIFs), including HIF-1 and HIF-2, are transcription factors that respond to reduced intracellular O2 availability. Polysulfides are substances containing varying numbers of sulfur atoms (H2Sn) that are generated endogenously from H2S by 3-mercaptopyruvate sulfurtransferase in the presence of O2, and regulate ion channels, specific tumor suppressors, and protein kinases. However, the effect of polysulfides on HIF activation in hypoxic mammalian cells is largely unknown. Here, we have investigated the effect of polysulfide on cells in vitro. In established cell lines, polysulfide donors reversibly reduced cellular O2 consumption and inhibited hypoxia-induced HIF-1α protein accumulation and the expression of genes downstream of HIFs; however, these effects were not observed in anoxia. In Von Hippel-Lindau tumor suppressor (VHL)- and mitochondria-deficient cells, polysulfides did not affect HIF-1α protein synthesis but destabilized it in a VHL- and mitochondria-dependent manner. For the first time, we show that polysulfides modulate intracellular O2 homeostasis and regulate HIF activation and subsequent hypoxia-induced gene expression in a VHL- and mitochondria-dependent manner.
Collapse
Affiliation(s)
- Takeo Uba
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan; Department of Anesthesiology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Chisato Sumi
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Tomohiro Shoji
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan; Department of Anesthesiology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Kenichiro Nishi
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Munenori Kusunoki
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Science, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan.
| |
Collapse
|
7
|
Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine. J Anesth 2021; 35:741-756. [PMID: 34003375 PMCID: PMC8128984 DOI: 10.1007/s00540-021-02940-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
A critical goal of patient management for anesthesiologists and intensivists is to maintain oxygen homeostasis in patients admitted to operation theaters and intensive care units. For this purpose, it is imperative to understand the strategies of the body against oxygen imbalance—especially oxygen deficiency (hypoxia). Adaptation to hypoxia and maintenance of oxygen homeostasis involve a wide range of responses that occur at different organizational levels in the body. These responses are greatly influenced by perioperative patient management including factors such as perioperative drugs. Herein, the influence of perioperative patient management on the body's response to oxygen imbalance was reviewed with a special emphasis on hypoxia-inducible factors (HIFs), transcription factors whose activity are regulated by the perturbation of oxygen metabolism. The 2019 Nobel Prize in Physiology or Medicine was awarded to three researchers who made outstanding achievements in this field. While previous studies have reported the effect of perioperatively used drugs on hypoxia-induced gene expression mediated by HIFs, this review focused on effects of subacute or chronic hypoxia changes in gene expression that are mediated by the transcriptional regulator HIFs. The clinical implications and perspectives of these findings also will be discussed. Understanding the basic biology of the transcription factor HIF can be informative for us since anesthesiologists manage patients during the perioperative period facing the imbalances the oxygen metabolism in organ and tissue. The clinical implications of hypoxia-dependent signaling in critical illness, including Coronavirus disease (COVID-19), in which disturbances in oxygen metabolism play a major role in its pathogenesis will also be discussed.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan.
| |
Collapse
|
8
|
Cigarette Smoke Extract Activates Hypoxia-Inducible Factors in a Reactive Oxygen Species-Dependent Manner in Stroma Cells from Human Endometrium. Antioxidants (Basel) 2021; 10:antiox10010048. [PMID: 33401600 PMCID: PMC7823731 DOI: 10.3390/antiox10010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking (CS) is a major contributing factor in the development of a large number of fatal and debilitating disorders, including degenerative diseases and cancers. Smoking and passive smoking also affect the establishment and maintenance of pregnancy. However, to the best of our knowledge, the effects of smoking on the human endometrium remain poorly understood. In this study, we investigated the regulatory mechanism underlying CS-induced hypoxia-inducible factor (HIF)-1α activation using primary human endometrial stromal cells and an immortalized cell line (KC02-44D). We found that the CS extract (CSE) increased reactive oxygen species levels and stimulated HIF-1α protein stabilization in endometrial stromal cells, and that CS-induced HIF-1α-dependent gene expression under non-hypoxic conditions in a concentration- and time-dependent manner. Additionally, we revealed the upregulated expression of a hypoxia-induced gene set following the CSE treatment, even under normoxic conditions. These results indicated that HIF-1α might play an important role in CS-exposure-induced cellular stress, inflammation, and endometrial remodeling.
Collapse
|
9
|
Shah S, Hariharan U, Bhargava A. Recent trends in anaesthesia and analgesia for breast cancer surgery. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2018. [DOI: 10.1016/j.tacc.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Kobayashi M, Morinibu A, Koyasu S, Goto Y, Hiraoka M, Harada H. A circadian clock gene, PER2, activates HIF-1 as an effector molecule for recruitment of HIF-1α to promoter regions of its downstream genes. FEBS J 2017; 284:3804-3816. [PMID: 28963769 DOI: 10.1111/febs.14280] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/29/2017] [Accepted: 09/25/2017] [Indexed: 12/23/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor functioning in cellular adaptive responses to hypoxia. Recent studies have suggested that HIF-1 activity is upregulated by one of the important circadian clock genes, period circadian clock 2 (PER2); however, its underlying mechanism remains unclear. Here, we show that PER2 functions as an effector protein for the recruitment of HIF-1α to its cognate enhancer sequence, the hypoxia-response element (HRE). We found that the forced expression of PER2 enhanced HIF-1 activity without influencing expression levels of the regulatory subunit of HIF-1, HIF-1α, at either mRNA or protein levels. A series of coimmunoprecipitation-based experiments revealed that PER2 interacted with HIF-1α and facilitated the recruitment of HIF-1α to HRE derived from vascular endothelial growth factor (VEGF) promoter. The PER2-mediated activation of HIF-1 was observed only when the asparagine residue at position 803 of HIF-1α (HIF-1α N803) was kept unhydroxylated by hypoxic stimulation, by introducing an N803A point mutation, or by an inhibitor of N803-dioxygenase, deferoxamine. However, the extent of PER-2-HIF-1α interaction was equivalent regardless of the N803 hydroxylation status. Taken together, these results suggest that, with the help of an unknown sensor molecule for the N803 hydroxylation status, PER2 functions as an effector molecule for the recruitment of HIF-1 to promoter regions of its downstream genes. Our findings reveal a novel regulatory step in the activation of HIF-1, which can be targeted to develop therapeutic strategies against HIF-1-related diseases, such as cancers.
Collapse
Affiliation(s)
- Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Japan
| | - Akiyo Morinibu
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Yoko Goto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Japan.,Japan Red Cross Society Wakayama Medical Center, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
11
|
Borisova YG, Raskil’dina GZ, Zlotskii SS. Synthesis of novel spirocyclopropylmalonates and barbiturates. DOKLADY CHEMISTRY 2017. [DOI: 10.1134/s0012500817090014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Nakashima R, Goto Y, Koyasu S, Kobayashi M, Morinibu A, Yoshimura M, Hiraoka M, Hammond EM, Harada H. UCHL1-HIF-1 axis-mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization. Sci Rep 2017; 7:6879. [PMID: 28761052 PMCID: PMC5537219 DOI: 10.1038/s41598-017-06605-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/15/2017] [Indexed: 01/24/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) has been recognized as an important mediator of the reprogramming of carbohydrate metabolic pathways from oxidative phosphorylation to accelerated glycolysis. Although this reprogramming has been associated with the antioxidant and radioresistant properties of cancer cells, gene networks triggering the HIF-1-mediated reprogramming and molecular mechanisms linking the reprogramming with radioresistance remain to be determined. Here, we show that Ubiquitin C-terminal hydrolase-L1 (UCHL1), which we previously identified as a novel HIF-1 activator, increased the radioresistance of cancer cells by producing an antioxidant, reduced glutathione (GSH), through HIF-1-mediated metabolic reprogramming. A luciferase assay to monitor HIF-1 activity demonstrated that the overexpression of UCHL1, but not its deubiquitination activity-deficient mutant (UCHL1 C90S), upregulated HIF-1 activity by stabilizing the regulatory subunit of HIF-1 (HIF-1α) in a murine breast cancer cell line, EMT6. UCHL1 overexpression induced the reprogramming of carbohydrate metabolism and increased NADPH levels in a pentose phosphate pathway (PPP)-dependent manner. The UCHL1-mediated reprogramming elevated intracellular GSH levels, and consequently induced a radioresistant phenotype in a HIF-1-dependent manner. The pharmacological inhibition of PPP canceled the UCHL1-mediated radioresistance. These results collectively suggest that cancer cells acquire antioxidant and radioresistant phenotypes through UCHL1-HIF-1-mediated metabolic reprogramming including the activation of PPP and provide a rational basis for targeting this gene network for radiosensitization.
Collapse
Affiliation(s)
- Ryota Nakashima
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoko Goto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akiyo Morinibu
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ester M Hammond
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Hiroshi Harada
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
13
|
Yeom CJ, Zeng L, Goto Y, Morinibu A, Zhu Y, Shinomiya K, Kobayashi M, Itasaka S, Yoshimura M, Hur CG, Kakeya H, Hammond EM, Hiraoka M, Harada H. LY6E: a conductor of malignant tumor growth through modulation of the PTEN/PI3K/Akt/HIF-1 axis. Oncotarget 2016; 7:65837-65848. [PMID: 27589564 PMCID: PMC5323196 DOI: 10.18632/oncotarget.11670] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
Lymphocyte antigen 6 complex, locus E (LY6E) has been implicated in the malignant progression of various types of cancers; however, the underlying mechanism remains unclear. Here, we identified LY6E as an activator of HIF-1 and revealed their mechanistic and functional links in malignant tumor growth. The aberrant overexpression of LY6E increased HIF-1α gene expression principally at the transcription level. This, in turn, led to the expression of the pro-angiogenic factors, VEGFA and PDGFB, through decreases in the expression levels of PTEN mRNA and subsequent activation of the PI3K/Akt pathway. The LY6E-HIF-1 axis functioned to increase tumor blood vessel density and promoted tumor growth in immunodeficient mice. LY6E expression levels were significantly higher in human breast cancers than in normal breast tissues, and were strongly associated with the poor prognoses of various cancer patients. Our results characterized LY6E as a novel conductor of tumor growth through its modulation of the PTEN/PI3K/Akt/HIF-1 axis and demonstrated the validity of targeting this pathway for cancer therapy.
Collapse
MESH Headings
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Prognosis
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chan Joo Yeom
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Lihua Zeng
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Radiation Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yoko Goto
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akiyo Morinibu
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuxi Zhu
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Yuanjiagang, Yuzhong District, Chongqing 400016, China
| | - Kazumi Shinomiya
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Itasaka
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Cheol-Goo Hur
- Cancer Genomics Branch, Division of Convergence Technology, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Korea
| | - Hideaki Kakeya
- Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ester M. Hammond
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Hakubi Center, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Laboratory of Cancer Cell Biology, Radiation Biology Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Zeng L, Morinibu A, Kobayashi M, Zhu Y, Wang X, Goto Y, Yeom CJ, Zhao T, Hirota K, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hammond EM, Hiraoka M, Harada H. Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis. Oncogene 2015; 34:4758-66. [PMID: 25531325 DOI: 10.1038/onc.2014.411] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/20/2014] [Accepted: 10/20/2014] [Indexed: 12/28/2022]
Abstract
Cancer cells gain a growth advantage through the so-called Warburg effect by shifting glucose metabolism from oxidative phosphorylation to aerobic glycolysis. Hypoxia-inducible factor 1 (HIF-1) has been suggested to function in metabolic reprogramming; however, the underlying mechanism has not been fully elucidated. We found that the aberrant expression of wild-type isocitrate dehydrogenase 3α (IDH3α), a subunit of the IDH3 heterotetramer, decreased α-ketoglutarate levels and increased the stability and transactivation activity of HIF-1α in cancer cells. The silencing of IDH3α significantly delayed tumor growth by suppressing the HIF-1-mediated Warburg effect and angiogenesis. IDH3α expression was associated with the poor postoperative overall survival of lung and breast cancer patients. These results justify the exploitation of IDH3 as a novel target for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- L Zeng
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
- Department of Radiation Medicine, Fourth Military Medical University, Shaanxi, China
| | - A Morinibu
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
| | - M Kobayashi
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
| | - Y Zhu
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - X Wang
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
- Department of Radiation Medicine, Fourth Military Medical University, Shaanxi, China
| | - Y Goto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
| | - C J Yeom
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
| | - T Zhao
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
- Department of Radiation Medicine, Fourth Military Medical University, Shaanxi, China
| | - K Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - K Shinomiya
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
| | - S Itasaka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - M Yoshimura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - G Guo
- Department of Radiation Medicine, Fourth Military Medical University, Shaanxi, China
| | - E M Hammond
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - M Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - H Harada
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
15
|
Iwasaki M, Edmondson M, Sakamoto A, Ma D. Anesthesia, surgical stress, and "long-term" outcomes. ACTA ACUST UNITED AC 2015; 53:99-104. [PMID: 26235899 DOI: 10.1016/j.aat.2015.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
Abstract
An increasing body of evidence shows that the choice of anesthetic can strongly influence more than simply the quality of anesthesia. Regional and general anesthesia have often been compared to ascertain whether one provides benefits through dampening the stress response or harms by accelerating cancer progression. Regional anesthesia offers considerable advantages, by suppressing cortisol and catecholamine levels and reducing muscle breakdown postoperatively. It also has less immunosuppressive effect and potentially reduces the proinflammatory cytokine response. As such, vital organ functions (e.g., brain and kidney) may be better preserved with regional anesthetics, however, further study is needed. Volatile general anesthetics appear to promote cancer malignancy in comparison to regional and intravenous general anesthetics, and reduce the body's ability to act against cancer cells by suppression of natural killer cell activity. There is not sufficient evidence to support an alteration of current clinical practice, however, further research into this area is warranted due to the potential implications elicited by current studies.
Collapse
Affiliation(s)
- Masae Iwasaki
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK; Department of Anaesthesiology, Nippon Medical School, Tokyo, Japan
| | - Matthew Edmondson
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | | | - Daqing Ma
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| |
Collapse
|
16
|
Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu A, Shinomiya K, Kobayashi M, Hirota K, Itasaka S, Yoshimura M, Tanimoto K, Torii M, Sowa T, Menju T, Sonobe M, Kakeya H, Toi M, Date H, Hammond EM, Hiraoka M, Harada H. UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nat Commun 2015; 6:6153. [PMID: 25615526 PMCID: PMC4317501 DOI: 10.1038/ncomms7153] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) plays a role in tumour metastases; however, the genes that activate HIF-1 and subsequently promote metastases have yet to be identified. Here we show that Ubiquitin C-terminal hydrolase-L1 (UCHL1) abrogates the von Hippel-Lindau-mediated ubiquitination of HIF-1α, the regulatory subunit of HIF-1, and consequently promotes metastasis. The aberrant overexpression of UCHL1 facilitates distant tumour metastases in a HIF-1-dependent manner in murine models of pulmonary metastasis. Meanwhile, blockade of the UCHL1-HIF-1 axis suppresses the formation of metastatic tumours. The expression levels of UCHL1 correlate with those of HIF-1α and are strongly associated with the poor prognosis of breast and lung cancer patients. These results indicate that UCHL1 promotes metastases as a deubiquitinating enzyme for HIF-1α, which justifies exploiting it as a prognostic marker and therapeutic target of cancers.
Collapse
Affiliation(s)
- Yoko Goto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto 606-8501, Japan
| | - Lihua Zeng
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto 606-8501, Japan
- Department of Radiation Medicine, Fourth Military Medical University, 17 Changle West Road, Shaanxi 710032, China
| | - Chan Joo Yeom
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto 606-8501, Japan
| | - Yuxi Zhu
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto 606-8501, Japan
- Department of Oncology, First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuanjiagang, Chongqing 400016, China
| | - Akiyo Morinibu
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto 606-8501, Japan
| | - Kazumi Shinomiya
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto 606-8501, Japan
| | - Kiichi Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Satoshi Itasaka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Keiji Tanimoto
- Department of Radiation Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8553, Japan
| | - Masae Torii
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Terumasa Sowa
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Makoto Sonobe
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Hideaki Kakeya
- Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Kyoto 606-8501, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Ester M. Hammond
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida Konoe-cho, Kyoto 606-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Saitama 332-0012, Japan
| |
Collapse
|
17
|
Bruells CS, Maes K, Rossaint R, Thomas D, Cielen N, Bleilevens C, Bergs I, Loetscher U, Dreier A, Gayan-Ramirez G, Behnke BJ, Weis J. Prolonged mechanical ventilation alters the expression pattern of angio-neogenetic factors in a pre-clinical rat model. PLoS One 2013; 8:e70524. [PMID: 23950950 PMCID: PMC3738548 DOI: 10.1371/journal.pone.0070524] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/19/2013] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Mechanical ventilation (MV) is a life saving intervention for patients with respiratory failure. Even after 6 hours of MV, diaphragm atrophy and dysfunction (collectively referred to as ventilator-induced diaphragmatic dysfunction, VIDD) occurs in concert with a blunted blood flow and oxygen delivery. The regulation of hypoxia sensitive factors (i.e. hypoxia inducible factor 1α, 2α (HIF-1α,-2α), vascular endothelial growth factor (VEGF)) and angio-neogenetic factors (angiopoietin 1-3, Ang) might contribute to reactive and compensatory alterations in diaphragm muscle. METHODS Male Wistar rats (n = 8) were ventilated for 24 hours or directly sacrificed (n = 8), diaphragm and mixed gastrocnemius muscle tissue was removed. Quantitative real time PCR and western blot analyses were performed to detect changes in angio-neogenetic factors and inflammatory markers. Tissues were stained using Isolectin (IB 4) to determine capillarity and calculate the capillary/fiber ratio. RESULTS MV resulted in up-regulation of Ang 2 and HIF-1α mRNA in both diaphragm and gastrocnemius, while VEGF mRNA was down-regulated in both tissues. HIF-2α mRNA was reduced in both tissues, while GLUT 4 mRNA was increased in gastrocnemius and reduced in diaphragm samples. Protein levels of VEGF, HIF-1α, -2α and 4 did not change significantly. Additionally, inflammatory cytokine mRNA (Interleukin (IL)-6, IL-1β and TNF α) were elevated in diaphragm tissue. CONCLUSION The results demonstrate that 24 hrs of MV and the associated limb disuse induce an up-regulation of angio-neogenetic factors that are connected to HIF-1α. Changes in HIF-1α expression may be due to several interactions occurring during MV.
Collapse
Affiliation(s)
- Christian S Bruells
- Department of Anesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kai S, Tanaka T, Daijo H, Harada H, Kishimoto S, Suzuki K, Takabuchi S, Takenaga K, Fukuda K, Hirota K. Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner. Antioxid Redox Signal 2012; 16:203-16. [PMID: 22004513 PMCID: PMC3234659 DOI: 10.1089/ars.2011.3882] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
AIMS In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H(2)S) is an endogenously synthesized gaseous molecule that acts as an important signaling molecule in the living body. Transcription factor hypoxia-inducible factor 1 (HIF-1) is known to respond to intracellular reduced oxygen (O(2)) availability, which is regulated by an elaborate balance between O(2) supply and demand. However, the effect of H(2)S on HIF-1 activity under hypoxic conditions is largely unknown in mammalian cells. In this study, we tried to elucidate the effect of H(2)S on hypoxia-induced HIF-1 activation adopting cultured cells and mice. RESULTS The H(2)S donors sodium hydrosulfide and sodium sulfide in pharmacological concentrations reversibly reduced cellular O(2) consumption and inhibited hypoxia- but not anoxia-induced HIF-1α protein accumulation and expression of genes downstream of HIF-1 in established cell lines. H(2)S did not affect HIF-1 activation induced by the HIF-α hydroxylases inhibitors desferrioxamine or CoCl(2). Experimental evidence adopting von Hippel-Lindau (VHL)- or mitochondria-deficient cells indicated that H(2)S did not affect neosynthesis of HIF-1α protein but destabilized HIF-1α in a VHL- and mitochondria-dependent manner. We also demonstrate that exogenously administered H(2)S inhibited HIF-1-dependent gene expression in mice. INNOVATION For the first time, we show that H(2)S modulates intracellular O(2) homeostasis and regulates activation of HIF-1 and the subsequent gene expression induced by hypoxia by using an in vitro system with established cell lines and an in vivo system in mice. CONCLUSIONS We demonstrate that H(2)S inhibits hypoxia-induced HIF-1 activation in a VHL- and mitochondria-dependent manner.
Collapse
Affiliation(s)
- Shinichi Kai
- Department of Anesthesia, Kyoto University Hospital, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tavare AN, Perry NJ, Benzonana LL, Takata M, Ma D. Cancer recurrence after surgery: Direct and indirect effects of anesthetic agents*. Int J Cancer 2011; 130:1237-50. [DOI: 10.1002/ijc.26448] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/02/2011] [Indexed: 11/11/2022]
|
20
|
Puri KDS, Sood S, Muthuraman A. Synthesis and evaluation of substituted 5-(3-chloro-2-oxo-4-phenylazetidin-1-ylamino)pyrimidine-2,4,6(1H,3H,5H)-triones against pentylenetetrazole-induced convulsant in mice. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9760-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Daijo H, Kai S, Tanaka T, Wakamatsu T, Kishimoto S, Suzuki K, Harada H, Takabuchi S, Adachi T, Fukuda K, Hirota K. Fentanyl activates hypoxia-inducible factor 1 in neuronal SH-SY5Y cells and mice under non-hypoxic conditions in a μ-opioid receptor-dependent manner. Eur J Pharmacol 2011; 667:144-52. [PMID: 21703258 DOI: 10.1016/j.ejphar.2011.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 04/20/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is the main transcription factor responsible for hypoxia-induced gene expression. Perioperative drugs including anesthetics have been reported to affect HIF-1 activity. However, the effect of fentanyl on HIF-1 activity is not well documented. In this study, we investigated the effect of fentanyl and other opioids on HIF-1 activity in human SH-SY5Y neuroblastoma cells, hepatoma Hep3B cells, lung adenocarcinoma A549 cells and mice. Cells were exposed to fentanyl, and HIF-1 protein expression was examined by Western blot analysis using anti-HIF-1α and β antibodies. HIF-1-dependent gene expression was investigated by semi-quantitative real-time reverse transcriptase (RT)-PCR (qRT-PCR) and luciferase assay. Furthermore, fentanyl was administered intraperitoneally and HIF-1-dependent gene expression was investigated by qRT-PCR in the brains and kidneys of mice. A 10-μM concentration of fentanyl and other opioids, including 1 μM morphine and 4 μM remifentanil, induced HIF-1α protein expression and HIF-1 target gene expression in an opioid receptor-dependent manner in SH-SY5Y cells with activity peaking at 24h. Fentanyl did not augment HIF-1α expression during hypoxia-induced induction. HIF-1α stabilization assays and experiments with cycloheximide revealed that fentanyl increased translation from HIF-1α mRNA but did not stabilize the HIF-1α protein. Furthermore, fentanyl induced HIF-1 target gene expression in the brains of mice but not in their kidneys in a naloxone-sensitive manner. In this report, we describe for the first time that fentanyl, both in vitro and in vivo, induces HIF-1 activation under non-hypoxic conditions, leading to increases in expression of genes associated with adaptation to hypoxia.
Collapse
Affiliation(s)
- Hiroki Daijo
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|