1
|
Kappa opioid receptor modulation of endometriosis pain in mice. Neuropharmacology 2021; 195:108677. [PMID: 34153313 DOI: 10.1016/j.neuropharm.2021.108677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 12/30/2022]
Abstract
The kappa opioid receptor is a constituent of the endogenous opioid analgesia system widely expressed in somatosensory nervous pathways and also in endometrial tissues. This work investigates the possible involvement of kappa opioid receptor on the nociceptive, behavioral and histopathological manifestations of endometriosis in a murine model. Female mice receiving endometrial implants develop a persistent mechanical hypersensitivity in the pelvic area that is stronger during the estrus phase of the estrous cycle. The kappa opioid receptor agonist U50,488H produces a dose-dependent relief of this mechanical hypersensitivity, regardless of the cycle phase. Repeated exposure to a low dose of U50,488H (1 mg/kg/day s.c. for one month) provides sustained relief of mechanical hypersensitivity, without tolerance development or sedative side effects. Interestingly, this treatment also inhibits a decreased rearing behavior associated with spontaneous pain or discomfort in endometriosis mice. This KOR-mediated pain relief does not prevent the anxiety-like behavior or the cognitive impairment exhibited by endometriosis mice, and the growth of endometriotic cysts is also unaltered. These data provide evidence of strong pain-relieving properties of kappa opioid receptor stimulation in female mice with endometriosis pain. The persistence of affective and cognitive manifestations suggests that these comorbidities are independent of pelvic pain and simultaneous treatment of these comorbidities may be necessary for successful management of endometriosis.
Collapse
|
2
|
Kasala S, Briyal S, Prazad P, Ranjan AK, Stefanov G, Donovan R, Gulati A. Exposure to Morphine and Caffeine Induces Apoptosis and Mitochondrial Dysfunction in a Neonatal Rat Brain. Front Pediatr 2020; 8:593. [PMID: 33042927 PMCID: PMC7530195 DOI: 10.3389/fped.2020.00593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Preterm infants experience rapid brain growth during early post-natal life making them vulnerable to drugs acting on central nervous system. Morphine is administered to premature neonates for pain control and caffeine for apnea of prematurity. Simultaneous use of morphine and caffeine is common in the neonatal intensive care unit. Prior studies have shown acute neurotoxicity with this combination, however, little information is available on the mechanisms mediating the neurotoxic effects. The objective of this study was to determine the effects of morphine and caffeine, independently and in combination on mitochondrial dysfunction (Drp1 and Mfn2), neural apoptosis (Bcl-2, Bax, and cell damage) and endothelin (ET) receptors (ETA and ETB) in neonatal rat brain. Methods: Male and female rat pups were grouped separately and were divided into four different subgroups on the basis of treatments-saline (Control), morphine (MOR), caffeine (CAFF), and morphine + caffeine (M+C) treatment. Pups in MOR group were injected with 2 mg/kg morphine, CAFF group received 100 mg/kg caffeine, and M+C group received both morphine (2 mg/kg) and caffeine (100 mg/kg), subcutaneously on postnatal days (PND) 3-6. Pups were euthanized at PND 7, 14, or 28. Brains were isolated and analyzed for mitochondrial dysfunction, apoptosis markers, cell damage, and ET receptor expression via immunofluorescence and western blot analyses. Results: M+C showed a significantly higher expression of Bax compared to CAFF or MOR alone at PND 7, 14, 28 in female pups (p < 0.05) and at PND 7, 14 in male pups (p < 0.05). Significantly (p < 0.05) increased expression of Drp1, Bax, and suppressed expression of Mfn2, Bcl-2 at PND 7, 14, 28 in all the treatment groups compared to the control was observed in both genders. No significant difference in the expression of ETA and ETB receptors in male or female pups was seen at PND 7, 14, and 28. Conclusion: Concurrent use of morphine and caffeine during the first week of life increases apoptosis and cell damage in the developing brain compared to individual use of caffeine and morphine.
Collapse
Affiliation(s)
- Sweatha Kasala
- Division of Neonatology, Department of Pediatrics, Advocate Children's Hospital, Park Ridge, IL, United States
| | - Seema Briyal
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Preetha Prazad
- Division of Neonatology, Department of Pediatrics, Advocate Children's Hospital, Park Ridge, IL, United States
| | - Amaresh K Ranjan
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Gospodin Stefanov
- Division of Neonatology, Department of Pediatrics, Advocate Children's Hospital, Park Ridge, IL, United States
| | - Ramona Donovan
- Advocate Aurora Research Institute, Park Ridge, IL, United States
| | - Anil Gulati
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States.,Pharmazz Inc. Research and Development, Willowbrook, IL, United States
| |
Collapse
|
3
|
Blockade of endothelin receptors reduces tumor-induced ongoing pain and evoked hypersensitivity in a rat model of facial carcinoma induced pain. Eur J Pharmacol 2018; 818:132-140. [DOI: 10.1016/j.ejphar.2017.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
|
4
|
Attenuation of opioid tolerance by ET B receptor agonist, IRL-1620, is independent of an accompanied decrease in nerve growth factor in mice. Heliyon 2017. [PMID: 28626808 PMCID: PMC5466593 DOI: 10.1016/j.heliyon.2017.e00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM ETA receptor antagonists reverse opioid tolerance but the involvement of ETB receptors is unknown. In morphine or oxycodone tolerant mice we investigated (1) the effect of ETB receptor agonist, IRL-1620, on analgesic tolerance; (2) changes in expression of the brain ETA and ETB receptors; and (3) alterations in the brain VEGF, NGF, PI3K and notch-1 expression. MAIN METHODS Body weight, body temperature, and tail-flick latency were assessed before and after a challenge dose of morphine or oxycodone in vehicle or IRL-1620 treated mice. Expression studies were carried out using Western blots. KEY FINDINGS Tail flick latency to a challenge dose of opioid was significantly increased by IRL-1620 from 39% to 100% in morphine tolerant and from 8% to 83% in oxycodone tolerant mice. Morphine or oxycodone did not alter ETA or ETB receptor expression. IRL-1620 had no effect on ETA however it increased (61%) expression of ETB receptors. IRL-1620-induced increase in ETB receptor expression was attenuated by morphine (39.8%) and oxycodone (51.8%). VEGF expression was not affected by morphine or oxycodone and was unaltered by IRL-1620. However, NGF and PI3K expression was decreased (P < 0.001) by morphine and oxycodone and was unaffected by IRL-1620. Notch-1 expression was not altered by morphine, oxycodone or IRL-1620. SIGNIFICANCE ETB receptor agonist, IRL-1620, restored analgesic tolerance to morphine and oxycodone, but it did not affect morphine and oxycodone induced decrease in NGF/PI3K expression. It is concluded that IRL-1620 attenuates opioid tolerance without the involvement of NGF/PI3K pathway.
Collapse
|
5
|
Suku E, Giorgetti A. Common evolutionary binding mode of rhodopsin-like GPCRs: Insights from structural bioinformatics. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
6
|
Bhalla S, Andurkar SV, Gulati A. Neurobiology of opioid withdrawal: Role of the endothelin system. Life Sci 2016; 159:34-42. [DOI: 10.1016/j.lfs.2016.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 02/04/2023]
|
7
|
Bhalla S, Pais G, Tapia M, Gulati A. Endothelin ETA receptor antagonist reverses naloxone-precipitated opioid withdrawal in mice. Can J Physiol Pharmacol 2015; 93:935-44. [PMID: 26440527 DOI: 10.1139/cjpp-2015-0022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Long-term use of opioids for pain management results in rapid development of tolerance and dependence leading to severe withdrawal symptoms. We have previously demonstrated that endothelin-A (ETA) receptor antagonists potentiate opioid analgesia and eliminate analgesic tolerance. This study was designed to investigate the involvement of central ET mechanisms in opioid withdrawal. The effect of intracerebroventricular administration of ETA receptor antagonist BQ123 on morphine and oxycodone withdrawal was determined in male Swiss Webster mice. Opioid tolerance was induced and withdrawal was precipitated by the opioid antagonist naloxone. Expression of ETA and ETB receptors, nerve growth factor (NGF), and vascular endothelial growth factor was determined in the brain using Western blotting. BQ123 pretreatment reversed hypothermia and weight loss during withdrawal. BQ123 also reduced wet shakes, rearing behavior, and jumping behavior. No changes in expression of vascular endothelial growth factor, ETA receptors, and ETB receptors were observed during withdrawal. NGF expression was unaffected in morphine withdrawal but significantly decreased during oxycodone withdrawal. A decrease in NGF expression in oxycodone- but not in morphine-treated mice could be due to mechanistic differences in oxycodone and morphine. It is concluded that ETA receptor antagonists attenuate opioid-induced withdrawal symptoms.
Collapse
Affiliation(s)
- Shaifali Bhalla
- a Department of Pharmaceutical Sciences, Chicago College of Pharmacy, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
| | - Gwendolyn Pais
- a Department of Pharmaceutical Sciences, Chicago College of Pharmacy, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
| | - Melissa Tapia
- b Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
| | - Anil Gulati
- a Department of Pharmaceutical Sciences, Chicago College of Pharmacy, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
| |
Collapse
|
8
|
Andurkar SV, Reniguntala MSJ, Gulati A, DeRuiter J. Synthesis and antinociceptive properties of N-phenyl-N-(1-(2-(thiophen-2-yl)ethyl)azepane-4-yl)propionamide in the mouse tail-flick and hot-plate tests. Bioorg Med Chem Lett 2014; 24:644-8. [DOI: 10.1016/j.bmcl.2013.11.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
9
|
Potentiation of oxycodone antinociception in mice by agmatine and BMS182874 via an imidazoline I2 receptor-mediated mechanism. Pharmacol Biochem Behav 2013; 103:550-60. [DOI: 10.1016/j.pbb.2012.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/11/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022]
|
10
|
Bhalla S, Andurkar SV, Gulati A. Involvement of α2-adrenoceptors, imidazoline, and endothelin-A receptors in the effect of agmatine on morphine and oxycodone-induced hypothermia in mice. Fundam Clin Pharmacol 2012; 27:498-509. [DOI: 10.1111/j.1472-8206.2012.01046.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Shaifali Bhalla
- Department of Pharmaceutical Sciences; Chicago College of Pharmacy; Midwestern University; 555 31st Street; Downers Grove; IL; 60515; USA
| | - Shridhar V. Andurkar
- Department of Pharmaceutical Sciences; Chicago College of Pharmacy; Midwestern University; 555 31st Street; Downers Grove; IL; 60515; USA
| | - Anil Gulati
- Department of Pharmaceutical Sciences; Chicago College of Pharmacy; Midwestern University; 555 31st Street; Downers Grove; IL; 60515; USA
| |
Collapse
|
11
|
Tramadol antinociception is potentiated by clonidine through α2-adrenergic and I2-imidazoline but not by endothelin ETA receptors in mice. Eur J Pharmacol 2012; 683:109-15. [DOI: 10.1016/j.ejphar.2012.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/29/2012] [Accepted: 03/07/2012] [Indexed: 11/17/2022]
|
12
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
13
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
14
|
Current world literature. Curr Opin Support Palliat Care 2011; 5:174-83. [PMID: 21521986 DOI: 10.1097/spc.0b013e3283473351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Bhalla S, Andurkar SV, Gulati A. Study of adrenergic, imidazoline, and endothelin receptors in clonidine-, morphine-, and oxycodone-induced changes in rat body temperature. Pharmacology 2011; 87:169-79. [PMID: 21389745 DOI: 10.1159/000324537] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 01/22/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The potentiation of morphine or oxycodone analgesia by endothelin-A (ET(A)) receptor antagonists and imidazoline/α(2)-adrenergic agonists is well documented. However, the effect of morphine or oxycodone in combination with an ET(A) receptor antagonist or an imidazoline/α(2) adrenergic agonist on body temperature is not known. The present study was carried out to study the role of ET(A) and imidazoline/α(2) adrenergic receptors in body temperature effects of morphine, oxycodone, and clonidine in rats. METHODS Body temperature was determined in male Sprague-Dawley rats treated with morphine, oxycodone, or clonidine. Yohimbine, idazoxan, and BMS182874 were used to determine the involvement of α(2)-adrenergic, imidazoline, and ET(A) receptors, respectively. KEY FINDINGS Morphine and oxycodone produced hyperthermia which was not affected by α(2)-adrenergic antagonist yohimbine, imidazoline/α(2)-adrenergic antagonist idazoxan, or ET(A) receptor antagonist BMS182874. Clonidine alone produced hypothermia that was comparable to the hypothermia observed with clonidine plus morphine or oxycodone. The hypothermic effect of clonidine was blocked by idazoxan and yohimbine. The blockade by idazoxan was more pronounced compared to yohimbine. Clonidine hypothermia was not affected by BMS182874. CONCLUSIONS This is the first report demonstrating that ET(A) receptors do not influence morphine- and oxycodone- induced hyperthermia or clonidine-induced hypothermia. Imidazoline receptors and α(2)-adrenergic receptors are involved in clonidine-induced hypothermia, but not in morphine- and oxycodone-induced hyperthermia.
Collapse
Affiliation(s)
- Shaifali Bhalla
- Department of Pharmaceutical Sciences, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA.
| | | | | |
Collapse
|
16
|
Bhalla S, Rapolaviciute V, Gulati A. Determination of α(2)-adrenoceptor and imidazoline receptor involvement in augmentation of morphine and oxycodone analgesia by agmatine and BMS182874. Eur J Pharmacol 2010; 651:109-21. [PMID: 21114998 DOI: 10.1016/j.ejphar.2010.10.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 11/15/2022]
Abstract
Studies have demonstrated that clonidine (α(2)-adrenoceptor and imidazoline receptor agonist) and BMS182874 (endothelin ET(A) receptor antagonist) potentiate morphine and oxycodone analgesia. Agmatine, an endogenous clonidine-like substance, enhances morphine analgesia. However, its effect on oxycodone analgesia and its interaction with endothelin ET(A) receptor antagonists are not known. The present study was performed to determine the effect of agmatine on morphine and oxycodone analgesia and the involvement of α(2)-adrenoceptors, imidazoline receptors, opioid receptors, and endothelin receptors. Antinociception at various time intervals was determined by the tail-flick latency method in mice. Agmatine produced dose-dependent increase in tail-flick latency, while BMS182874 did not produce any change over the 360-min observation period. Agmatine significantly potentiated morphine as well as oxycodone analgesia which was not altered by BMS182874. BMS182874 pretreatment did not increase the analgesic effect produced by agmatine alone. Agmatine-induced potentiation of morphine and oxycodone analgesia was blocked by idazoxan (imidazoline receptor/α(2)-adrenoceptor antagonist) and yohimbine (α(2)-adrenoceptor antagonist). BMS182874-induced potentiation of morphine or oxycodone analgesia was not affected by yohimbine. However, idazoxan blocked BMS182874-induced potentiation of oxycodone but not morphine analgesia. This is the first report demonstrating that agmatine potentiates not only morphine but also oxycodone analgesia in mice. Potentiation of morphine and oxycodone analgesia by agmatine appears to involve α(2)-adrenoceptors, imidazoline receptors, and opioid receptors. In addition, imidazoline receptors may be involved in BMS182874-induced potentiation of oxycodone but not morphine analgesia. It is concluded that agmatine may be used as an adjuvant in opiate analgesia.
Collapse
Affiliation(s)
- Shaifali Bhalla
- Department of Pharmaceutical Sciences, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA.
| | | | | |
Collapse
|