1
|
Kutryb-Zając B, Kawecka A, Nasadiuk K, Braczko A, Stawarska K, Caiazzo E, Koszałka P, Cicala C. Drugs targeting adenosine signaling pathways: A current view. Biomed Pharmacother 2023; 165:115184. [PMID: 37506580 DOI: 10.1016/j.biopha.2023.115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Adenosine is an endogenous nucleoside that regulates many physiological and pathological processes. It is derived from either the intracellular or extracellular dephosphorylation of adenosine triphosphate and interacts with cell-surface G-protein-coupled receptors. Adenosine plays a substantial role in protecting against cell damage in areas of increased tissue metabolism and preventing organ dysfunction in pathological states. Targeting adenosine metabolism and receptor signaling may be an effective therapeutic approach for human diseases, including cardiovascular and central nervous system disorders, rheumatoid arthritis, asthma, renal diseases, and cancer. Several lines of evidence have shown that many drugs exert their beneficial effects by modulating adenosine signaling pathways but this knowledge urgently needs to be summarized, and most importantly, actualized. The present review collects pharmaceuticals and pharmacological or diagnostic tools that target adenosine signaling in their primary or secondary mode of action. We overviewed FDA-approved drugs as well as those currently being studied in clinical trials. Among them are already used in clinic A2A adenosine receptor modulators like istradefylline or regadenoson, but also plenty of anti-platelet, anti-inflammatory, or immunosuppressive, and anti-cancer drugs. On the other hand, we investigated dozens of specific adenosine pathway regulators that are tested in clinical trials to treat human infectious and noninfectious diseases. In conclusion, targeting purinergic signaling represents a great therapeutic challenge. The actual knowledge of the involvement of adenosinergic signaling as part of the mechanism of action of old drugs has open a path not only for drug-repurposing but also for new therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Khrystyna Nasadiuk
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| | - Patrycja Koszałka
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| |
Collapse
|
2
|
Agostini SBN, Malta IHS, Rodrigues RF, Freitas JTJ, Lino MEDS, Dos Santos RS, Elisei LS, Moraes TR, Giusto LADR, de Oliveira MK, Bassi da Silva J, Bruschi ML, Santos AMD, Nogueira DA, Novaes RD, Pereira GR, Galdino G, Carvalho FC. Preclinical evaluation of methotrexate-loaded polyelectrolyte complexes and thermosensitive hydrogels as treatment for rheumatoid arthritis. Eur J Pharm Sci 2021; 163:105856. [PMID: 33882329 DOI: 10.1016/j.ejps.2021.105856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022]
Abstract
This work proposes new methotrexate (MTX) loaded drug delivery systems (DDS) to treat rheumatoid arthritis via the intra-articular route: a poloxamer based thermosensitive hydrogel (MTX-HG), oligochitosan and hypromellose phthalate-based polyelectrolyte complexes (MTX-PEC) and their association (MTX-PEC-HG). MTX-PEC showed 470 ± 166 nm particle size, 0.298 ± 0.108 polydispersity index, +26 ± 2 mV and 74.3 ± 5.8% MTX efficiency entrapment and particle formation was confirmed by infrared spectroscopy and thermal analysis. MTX-HG and MTX-PEC-HG gelled at 36.7°C. MTX drug release profile was prolonged for MTX-HG and MTX-PEC-HG, and faster for MTX-PEC and free MTX. The in vivo effect of the MTX-DDSs systems was evaluated in induced arthritis rats as single intra-articular dose. The assessed parameters were the mechanical nociceptive threshold, the plasmatic IL-1β level and histological analysis of the tibiofemoral joint. MTX-HG and MTX-PEC-HG performance were similar to free MTX and worse than oral MTX, used as positive control. All DDSs showed some irritative effect, for which further studies are required. MTX-PEC was the best treatment on recovering cartilage damage and decreasing allodynia. Thus, MTX-PEC demonstrated potential to treat rheumatoid arthritis, with the possibility of decreasing the systemic exposure to the drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Merelym Ketterym de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Ciências Fisiológicas, Universidade Federal de Alfenas, Brazil
| | - Jéssica Bassi da Silva
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Marcos Luciano Bruschi
- Laboratório de Pesquisa e Desenvolvimento de Sistemas de Liberação de Fármacos, Departamento de Farmácia, Universidade Estadual de Maringá, Brazil
| | - Aline Martins Dos Santos
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Julio de Mesquita Filho". UNESP, Araraquara, Brazil
| | | | - Rômulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Brazil
| | - Gislaine Ribeiro Pereira
- Escola de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil
| | - Giovane Galdino
- Instituto de Ciência da Motricidade, Universidade Federal de Alfenas, Brazil
| | - Flávia Chiva Carvalho
- Escola de Farmácia, Departamento de Fármacos e Alimentos, Universidade Federal de Alfenas, Brazil
| |
Collapse
|
3
|
Nimesulide increases the aldehyde oxidase activity of humans and rats. Acta Pharmacol Sin 2020; 41:843-851. [PMID: 31913347 PMCID: PMC7471466 DOI: 10.1038/s41401-019-0336-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/18/2019] [Indexed: 11/09/2022] Open
Abstract
An increasing number of drugs are metabolized by aldehyde oxidase (AOX), but AOX-mediated drug interactions are seldom reported due to the lack of appropriate inhibitors and inducers. A recent study reported that nimesulide (NIM) could increase the liver injury risk of methotrexate. The latter was mainly metabolized by AOX to form hepatotoxic 7-hydroxymethotrexate (7-OH MTX). Thus, we speculated that NIM could induce AOX. In this study, we investigated the potential induction of AOX activity by NIM using methotrexate as the probe substrate. Treatment of primary human and rat hepatocytes with NIM (20 μM) for 24 h caused a 2.0- and 3.1-fold, respectively, increase in 7-OH MTX formation. Oral administration of NIM (100 mg·kg−1·d−1, for 5 days) to rats significantly increased the systematic exposure (6.5-fold), liver distribution (2.5-fold), and excretion (5.2-fold for urinary excretion and 2.1-fold for fecal excretion) of 7-OH MTX. The 7-OH MTX formation in liver cytosol from rats pretreated with 20, 50, and 100 mg·kg−1·d−1 NIM for 5 days increased by 1.9-, 3.2-, and 3.7-fold, respectively, compared with that of rats pretreated with the vehicle. We revealed that the elevation of AOX activity was accompanied by an increase in AOX1 protein levels but not the corresponding mRNA levels. Collectively, our results demonstrate for the first time that NIM can increase the AOX activity of humans and rats, and may raise concerns regarding the risk of drug interactions between NIM and AOX substrates in clinical practice.
Collapse
|
4
|
Yang C, Daoping Z, Xiaoping X, Jing L, Chenglong Z. Magnesium oil enriched transdermal nanogel of methotrexate for improved arthritic joint mobility, repair, and reduced inflammation. J Microencapsul 2019; 37:77-90. [PMID: 31795796 DOI: 10.1080/02652048.2019.1694086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Aim: Methotrexate (Mtx) is prescribed to reduce pain and inflammation in arthritis patients; however, improved repair and mobility of joints still are the major concerns. Magnesium oil (MO) improves joint mobility and repair; therefore, MO-assisted transdermal delivery of Mtx was aimed.Methods: MO integrated Mtx nanoemulsion (Mtx-MONE) was prepared with uniform size (175 ± 35.4 nm), pH (6.15 ± 0.3) near to skin pH, and high entrapment efficiency (65 ± 8.6%). Mtx-MONE was transformed to nanogel (Mtx-MONEG) with semisolid consistency (43,408 ± 77.72 cP) and good spreadability (3.63 ± 0.033 mJ).Results: Mtx-MONEG showed significant reduction in oedema, arthritic scores, level of inflammatory cytokines, and improved walking as compared to diseased control. MO offered additional improvements in joints, mobility, and repair.Conclusion: Transdermal delivery of Mtx has been successfully achieved by Mtx-MONEG. Tremendous recovery from inflammation, improved joints mobility and repair, and reduced pain strongly support the use of MO as an adjutant of Mtx for improved transdermal application.
Collapse
Affiliation(s)
- Chen Yang
- Department of Orthopaedics, Gong'an County People's Hospital, Gong'an County, China
| | - Zhu Daoping
- Department of Orthopaedics, Gong'an County People's Hospital, Gong'an County, China
| | - Xiong Xiaoping
- Department of Orthopaedics, Gong'an County People's Hospital, Gong'an County, China
| | - Liu Jing
- Department of Orthopaedics, Gong'an County People's Hospital, Gong'an County, China
| | - Zhang Chenglong
- Department of Orthopaedics, Gong'an County People's Hospital, Gong'an County, China
| |
Collapse
|
5
|
Caiazzo E, Ialenti A, Cicala C. The relatively selective cyclooxygenase-2 inhibitor nimesulide: What's going on? Eur J Pharmacol 2019; 848:105-111. [PMID: 30689999 DOI: 10.1016/j.ejphar.2019.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Nimesulide is a relatively selective cyclooxygenase (COX)-2 inhibitor, non-steroidal anti-inflammatory drug; it has been discovered in 1971 and firstly commercialized in Italy in 1985. There is much evidence that the pharmacological profile of nimesulide is peculiar and not shared with the other COX-2 selective inhibitors, suggesting that other molecular mechanisms besides inhibition of COX-2 derived prostaglandins are involved. Similarly, experimental data suggest that the gastrointestinal safety of nimesulide cannot be ascribed only to a COX-1 sparing effect. On the inflammatory process, the efficacy of nimesulide is dependent upon a wide spectrum of actions, due to the combination of effects on immune and non-immune cells. Early data demonstrated a central role for cyclic AMP (cAMP) in the anti-inflammatory effect of nimesulide; more recently, we have shown the involvement of the pathway ecto-5'-nucleotidase/adenosine A2A receptor. To date, the molecular mechanism(s) that confers uniqueness to nimesulide have not yet been defined. To go inside the mechanism of action of an existing drug, such as nimesulide, would be helpful to refine its therapeutic use but also to identify new targets for novel therapeutic anti-inflammatory approach. Here, we focus on accumulated evidence for a peculiar pharmacological profile of nimesulide.
Collapse
Affiliation(s)
- Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
6
|
Wang Y, Liu Z, Li T, Chen L, Lyu J, Li C, Lin Y, Hao N, Zhou M, Zhong Z. Enhanced Therapeutic Effect of RGD-Modified Polymeric Micelles Loaded With Low-Dose Methotrexate and Nimesulide on Rheumatoid Arthritis. Theranostics 2019; 9:708-720. [PMID: 30809303 PMCID: PMC6376478 DOI: 10.7150/thno.30418] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/24/2018] [Indexed: 01/15/2023] Open
Abstract
Angiogenesis plays an essential role in the progression of rheumatoid arthritis (RA). RGD peptide shows high affinity and selectivity for integrin αvβ3, which is one of the most extensively examined target of angiogenesis. Nimesulide could improve the anti-rheumatic profile of methotrexate. But the clinical application was limited due to water-insolubility of both methotrexate and nimesulide and lacking targeting ability. Therefore, this study aimed to design a targeted drug delivery system of micelles mediated by RGD plus the passive targeting of micelles to solve the application problems of methotrexate and nimesulide (M/N), and thus enhance their combined therapeutic effect on RA. Methods: RGD was conjugated with NHS-PEG-PLA to form RGD-PEG-PLA for the preparation of RGD-modified drug-loaded micelles (R-M/N-PMs). The size and zeta potential of micelles were measured by dynamic light scattering. Morphology was detected by transmission electron microscopy. The inhibition effect of R-M/N-PMs on angiogenesis was assessed by the chick chorioallantoic membrane assay. The real-time fluorescence imaging analysis was conducted to examine the in vivo distribution of the fluorescence-labeled R-M/N-PMs. Rats arthritis model induced by Freund's adjuvant was used to evaluate the in vivo anti-inflammatory efficacy of R-M/N-PMs. Results: The in vitro study indicated successful development of R-M/N-PMs. R-M/N-PMs could markedly suppress the angiogenesis of chick embryos. The fluorescence-labeled R-M/N-PMs mainly accumulated in arthritic joints. RGD enhanced the targeting ability of micelles and thus promoted retention of micelles in arthritic joints. Moreover, R-M/N-PMs significantly alleviated the joint swelling while reducing bone erosion and serum levels of inflammatory cytokines. It helped to recover the bone microstructure of arthritic rats. Conclusion: Our results confirmed that the targeted delivery of the combination of a low dose of methotrexate and nimesulide mediated by RGD-modified polymeric micelles could enhance the therapeutic effect on rheumatoid arthritis. These findings provide a promising potential for the clinical therapy of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yunlong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong 637000, China
| | - Zhongbing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ting Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lin Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jiayao Lyu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Na Hao
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Meiling Zhou
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Li XY, Li H, Zhang Y, Gao S, Dong CP, Wu GF. Development of Albumin Coupled, Cholesterol Stabilized, Lipid Nanoemulsion of Methotrexate, and TNF-α Inhibitor for Improved In Vivo Efficacy Against Rheumatoid Arthritis. AAPS PharmSciTech 2017; 18:2774-2782. [PMID: 28361455 DOI: 10.1208/s12249-017-0762-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 11/30/2022] Open
Abstract
Methotrexate (MTX; an anti-folate) and etanercept (ET; a TNF-α inhibitor) are used against arthritis; however, limitations like short biological half-life, low cutaneous absorption, and acidic instability limit their clinical relevance. Therefore, the aim of the investigation was to develop albumin coupled lipid nanoemulsion of MTX and ET for improved efficacy by virtue of their controlled release and specificity at the arthritic site. This emulsion was prepared by high-speed homogenization and stabilized using cholesterol. Lipid nanoemulsion of MTX and ET (MTX+ET-LNE) was coupled with albumin (MTX+ET-ALNE). MTX+ET-ALNE was characterized on the basis of particle size (410 ± 25.4 nm), PDI (0.160), and zeta potential (+38.6 ± 5.6 mV) and evaluated for pH (6.15), drug content (97.7 ± 2.17%), entrapment efficiency (76 ± 4.6%), in vitro release, and in vitro cytotoxicity. About 82.6 ± 9.60% release of MTX+ET was observed in 24 h from the developed MTX+ET-ALNE which may help maintain therapeutic level of drugs in blood at least for one day. No toxicity was observed when Raw 264.7 cells were treated with MTX+ET-ALNE, and no causalities of mice were observed at experimental in vivo dose (10 mg/kg BW) of MTX+ET in MTX+ET-ALNE-treated group. MTX+ET-ALNE treatment has alleviated arthritic scores and inflammatory cytokines level in a very significant manner when compared with MTX+ET-LNE and MTX+ET solutions. MTX+ET-ALNE-treated group restored histological alterations (cartilage/bone erosion, inflammatory cell infiltration, synovial hyperplasia, and narrower joint space) as observed in diseased treated groups. In conclusion, MTX+ET-ALNE can be opted as efficacious and clinically pertinent option to the current medication systems of arthritis.
Collapse
|
8
|
Caiazzo E, Maione F, Morello S, Lapucci A, Paccosi S, Steckel B, Lavecchia A, Parenti A, Iuvone T, Schrader J, Ialenti A, Cicala C. Adenosine signalling mediates the anti-inflammatory effects of the COX-2 inhibitor nimesulide. Biochem Pharmacol 2016; 112:72-81. [PMID: 27188793 DOI: 10.1016/j.bcp.2016.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
Abstract
Extracellular adenosine formation from ATP is controlled by ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) and ecto-5'-nucleotidase (e-5NT/CD73); the latter converts AMP to adenosine and inorganic phosphate, representing the rate limiting step controlling the ratio between extracellular ATP and adenosine. Evidence that cellular expression and activity of CD39 and CD73 may be subject to changes under pathophysiological conditions has identified this pathway as an endogenous modulator in several diseases and was shown to be involved in the molecular mechanism of drugs, such as methotrexate, salicylates , interferon-β. We evaluated whether CD73/adenosine/A2A signalling pathway is involved in nimesulide anti-inflammatory effect, in vivo and in vitro. We found that the adenosine A2A agonist, 4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680, 2mg/kg ip.), inhibited carrageenan-induced rat paw oedema and the effect was reversed by co-administration of the A2A antagonist -(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385; 3mg/kg i.p.). Nimesulide (5mg/kg i.p.) anti-inflammatory effect was inhibited by pre-treatment with ZM241385 (3mg/kg i.p.) and by local administration of the CD73 inhibitor, adenosine 5'-(α,β-methylene)diphosphate (APCP; 400μg/paw). Furthermore, we found increased activity of 5'-nucleotidase/CD73 in paws and plasma of nimesulide treated rats, 4h following oedema induction. In vitro, the inhibitory effect of nimesulide on nitrite and prostaglandin E2 production by lipopolysaccharide-activated J774 cell line was reversed by ZM241385 and APCP. Furthermore, nimesulide increased CD73 activity in J774 macrophages while it did not inhibit nitrite accumulation by lipopolysaccharide-activated SiRNA CD73 silenced J774 macrophages. Our data demonstrate that the anti-inflammatory effect of nimesulide in part is mediated by CD73-derived adenosine acting on A2A receptors.
Collapse
Affiliation(s)
| | - Francesco Maione
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Antonio Lavecchia
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Teresa Iuvone
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Armando Ialenti
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
9
|
Thornton CC, Al-Rashed F, Calay D, Birdsey GM, Bauer A, Mylroie H, Morley BJ, Randi AM, Haskard DO, Boyle JJ, Mason JC. Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann Rheum Dis 2016; 75:439-48. [PMID: 25575725 PMCID: PMC4752671 DOI: 10.1136/annrheumdis-2014-206305] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/03/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Abstract
AIMS Premature cardiovascular events complicate chronic inflammatory conditions. Low-dose weekly methotrexate (MTX), the most widely used disease-modifying drug for rheumatoid arthritis (RA), reduces disease-associated cardiovascular mortality. MTX increases intracellular accumulation of adenosine monophosphate (AMP) and 5-aminoimidazole-4-carboxamide ribonucleotide which activates AMP-activated protein kinase (AMPK). We hypothesised that MTX specifically protects the vascular endothelium against inflammatory injury via induction of AMPK-regulated protective genes. METHODS/RESULTS In the (NZW×BXSB)F1 murine model of inflammatory vasculopathy, MTX 1 mg/kg/week significantly reduced intramyocardial vasculopathy and attenuated end-organ damage. Studies of human umbilical vein endothelial cells (HUVEC) and arterial endothelial cells (HAEC) showed that therapeutically relevant concentrations of MTX phosphorylate AMPKα(Thr172), and induce cytoprotective genes including manganese superoxide dismutase (MnSOD) and haem oxygenase-1 (HO-1). These responses were preserved when HUVECs were pretreated with tumour necrosis factor-α to mimic dysfunctional endothelium. Furthermore, MTX protected against glucose deprivation-induced endothelial apoptosis. Mechanistically, MTX treatment led to cyclic AMP response element-binding protein (CREB)(Ser133) phosphorylation, while AMPK depletion attenuated this response and the induction of MnSOD and HO-1. CREB siRNA inhibited upregulation of both cytoprotective genes by MTX, while chromatin immunoprecipitation demonstrated CREB binding to the MnSOD promoter in MTX-treated EC. Likewise, treatment of (NZW×BXSB)F1 mice with MTX enhanced AMPKα(Thr172) phosphorylation and MnSOD, and reduced aortic intercellular adhesion molecule-1 expression. CONCLUSIONS These data suggest that MTX therapeutically conditions vascular endothelium via activation of AMPK-CREB. We propose that this mechanism contributes to the protection against cardiovascular events seen in patients with RA treated with MTX.
Collapse
Affiliation(s)
- C C Thornton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK
| | - F Al-Rashed
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK King Fahad Cardiac Centre, King Saud University, Riyadh, Saudi Arabia
| | - D Calay
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK
| | - G M Birdsey
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK
| | - A Bauer
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK
| | - H Mylroie
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK
| | | | - A M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK
| | - D O Haskard
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK
| | - J J Boyle
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK
| | - J C Mason
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
10
|
Yamasaki SC, Mendes MT, Alponti RF, Silveira PF. Efficacy of parenteral administration of bee venom in experimental arthritis in the rat: a comparison with methotrexate. Toxicon 2015; 98:75-88. [PMID: 25727381 DOI: 10.1016/j.toxicon.2015.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/13/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
Abstract
The use of bee venom (BV) to treat inflammation and pain in arthritis has become increasingly common. This study aimed to compare the effects of BV and methotrexate (MTX), the most used disease-modifying anti-rheumatic drug, in arthritic rats. Edema, erythema, cyanosis, hyperalgesia, reduction of the body mass gain, high circulating tumor necrosis factor alpha (TNF-α) and anti-type II collagen antibodies (AACII), and altered activity of basic (APB) and neutral (APN) aminopeptidases and dipeptidyl peptidase IV (DPPIV) are present in arthritic rats. MTX and/or BV do not affect AACII in healthy or arthritic individuals, but restores TNF-α to normal levels in arthritic rats. BV restores body mass gain to normal levels and MTX ameliorates body mass gain. BV contains DPPIV. BV restores APN in synovial fluid (SF) and in soluble fraction (S) from synovial tissue (ST), and DPPIV in solubilized membrane-bound fraction (M) from peripheral blood mononuclear cells (PBMCs). MTX restores APN of SF, as well as ameliorates APB of S-PBMCs, APN of S-ST and DPPIV of M-PBMCs. The combination therapy does not overcome the effects of BV or MTX alone on the peptidase activities. Edema is ameliorated by MTX or BV alone. MTX, but not BV, is effective in reducing hyperalgesia. Data show that anti-arthritic effects of BV at non-acupoints are not negligible when compared with MTX.
Collapse
Affiliation(s)
- Simone C Yamasaki
- Laboratory of Pharmacology, Unit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Av. Vital Brasil 1500 Vital Brasil, CEP 05503-900, Sao Paulo, SP, Brazil; Interdepartmental Biotechnology Program at Instituto Butantan and Universidade de Sao Paulo, Av. Prof. Lineu Prestes, Edifício ICB III, Cidade Universitária, CEP 05508-900, Sao Paulo, Brazil
| | - Mariana T Mendes
- Laboratory of Pharmacology, Unit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Av. Vital Brasil 1500 Vital Brasil, CEP 05503-900, Sao Paulo, SP, Brazil
| | - Rafaela F Alponti
- Laboratory of Pharmacology, Unit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Av. Vital Brasil 1500 Vital Brasil, CEP 05503-900, Sao Paulo, SP, Brazil
| | - Paulo F Silveira
- Laboratory of Pharmacology, Unit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Av. Vital Brasil 1500 Vital Brasil, CEP 05503-900, Sao Paulo, SP, Brazil.
| |
Collapse
|
11
|
Al-Abd AM, Al-Abbasi FA, Nofal SM, Khalifa AE, Williams RO, El-Eraky WI, Nagy AA, Abdel-Naim AB. Nimesulide improves the symptomatic and disease modifying effects of leflunomide in collagen induced arthritis. PLoS One 2014; 9:e111843. [PMID: 25375820 PMCID: PMC4222915 DOI: 10.1371/journal.pone.0111843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/08/2014] [Indexed: 11/21/2022] Open
Abstract
Nimesulide is a COX-2 inhibitor used for symptomatic relief of rheumatoid arthritis. Leflunomide is an anti-pyrimidine used to manage the progression of rheumatoid arthritis. Herein we studied the influence of nimesulide and leflunomide combination in terms of disease symptoms and progression using collagen-induced arthritis model in mice, as a model for rheumatoid arthritis. Collagen induced arthritis was induced by immunization with type II collagen. Assessment of joint stiffness and articular hyperalgesia were evaluated using a locomotor activity cage and the Hargreaves method, respectively. Disease progression was assessed via arthritic index scoring, X-ray imaging, myeloperoxidase enzyme activity and histopathologic examination. Nimesulide induced only transient symptomatic alleviation on the top of decreased leucocytic infiltration compared to arthritis group. However, nimesulide alone failed to induce any significant improvement in the radiological or pathological disease progression. Leflunomide alone moderately alleviates the symptoms of arthritis and moderately retarded the radiological and pathological disease progression. Combination of nimesulide and leflunomide significantly improved symptomatic (analgesia and joint stiffness) and arthritic disease progression (radiological, pathological and Myeloperoxidase enzyme activity) in collagen induced arthritis animal model.
Collapse
Affiliation(s)
- Ahmed M. Al-Abd
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa M. Nofal
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Amani E. Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Richard O. Williams
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Wafaa I. El-Eraky
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Ayman A. Nagy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Yuan H, Qian H, Liu S, Zhang X, Li S, Wang W, Li Z, Jia J, Zhao W. Therapeutic role of a vaccine targeting RANKL and TNF-α on collagen-induced arthritis. Biomaterials 2012; 33:8177-85. [DOI: 10.1016/j.biomaterials.2012.07.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/24/2012] [Indexed: 02/08/2023]
|