1
|
Ji W, Byun WS, Lu W, Zhu X, Donovan KA, Dwyer BG, Che J, Yuan L, Abulaiti X, Corsello SM, Fischer ES, Zhang T, Gray NS. Proteomics-Based Discovery of First-in-Class Chemical Probes for Programmed Cell Death Protein 2 (PDCD2). Angew Chem Int Ed Engl 2023; 62:e202308292. [PMID: 37658265 PMCID: PMC10592021 DOI: 10.1002/anie.202308292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Chemical probes are essential tools for understanding biological systems and for credentialing potential biomedical targets. Programmed cell death 2 (PDCD2) is a member of the B-cell lymphoma 2 (Bcl-2) family of proteins, which are critical regulators of apoptosis. Here we report the discovery and characterization of 10 e, a first-in-class small molecule degrader of PDCD2. We discovered this PDCD2 degrader by serendipity using a chemical proteomics approach, in contrast to the conventional approach for making bivalent degraders starting from a known binding ligand targeting the protein of interest. Using 10 e as a pharmacological probe, we demonstrate that PDCD2 functions as a critical regulator of cell growth by modulating the progression of the cell cycle in T lymphoblasts. Our work provides a useful pharmacological probe for investigating PDCD2 function and highlights the use of chemical proteomics to discover selective small molecule degraders of unanticipated targets.
Collapse
Affiliation(s)
- Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Lingang Laboratory, Shanghai, 20031, China
| | - Xijun Zhu
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan G Dwyer
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linjie Yuan
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Xianmixinuer Abulaiti
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Steven M Corsello
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
PLGA-Lipid Hybrid Nanoparticles for Overcoming Paclitaxel Tolerance in Anoikis-Resistant Lung Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238295. [PMID: 36500387 PMCID: PMC9737185 DOI: 10.3390/molecules27238295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Drug resistance and metastasis are two major obstacles to cancer chemotherapy. During metastasis, cancer cells can survive as floating cells in the blood or lymphatic circulatory system, due to the acquisition of resistance to anoikis-a programmed cell death activated by loss of extracellular matrix attachment. The anoikis-resistant lung cancer cells also develop drug resistance. In this study, paclitaxel-encapsulated PLGA-lipid hybrid nanoparticles (PLHNPs) were formulated by nanoprecipitation combined with self-assembly. The paclitaxel-PLHNPs had an average particle size of 103.0 ± 1.6 nm and a zeta potential value of -52.9 mV with the monodisperse distribution. Cytotoxicity of the nanoparticles was evaluated in A549 human lung cancer cells cultivated as floating cells under non-adherent conditions, compared with A549 attached cells. The floating cells exhibited anoikis resistance as shown by a lack of caspase-3 activation, in contrast to floating normal epithelial cells. Paclitaxel tolerance was evident in floating cells which had an IC50 value of 418.56 nM, compared to an IC50 value of 7.88 nM for attached cells. Paclitaxel-PLHNPs significantly reduced the IC50 values in both attached cells (IC50 value of 0.11 nM, 71.6-fold decrease) and floating cells (IC50 value of 1.13 nM, 370.4-fold decrease). This report demonstrated the potential of PLHNPs to improve the efficacy of the chemotherapeutic drug paclitaxel, for eradicating anoikis-resistant lung cancer cells during metastasis.
Collapse
|
3
|
Bunnell BA, Martin EC, Matossian MD, Brock CK, Nguyen K, Collins-Burow B, Burow ME. The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer. Cancer Metastasis Rev 2022; 41:549-573. [PMID: 35999486 DOI: 10.1007/s10555-022-10063-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Margarite D Matossian
- Department of Microbiology, Immunology and Genetics, University of Chicago, IL, Chicago, USA
| | - Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bridgette Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
4
|
Barbosa G, Gelves LGV, Costa CMX, Franco LS, de Lima JAL, Aparecida-Silva C, Teixeira JD, Mermelstein CDS, Barreiro EJ, Lima LM. Discovery of Putative Dual Inhibitor of Tubulin and EGFR by Phenotypic Approach on LASSBio-1586 Homologs. Pharmaceuticals (Basel) 2022; 15:913. [PMID: 35893736 PMCID: PMC9394307 DOI: 10.3390/ph15080913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
Combretastatin A-4 (CA-4, 1) is an antimicrotubule agent used as a prototype for the design of several synthetic analogues with anti-tubulin activity, such as LASSBio-1586 (2). A series of branched and unbranched homologs of the lead-compound 2, and vinyl, ethinyl and benzyl analogues, were designed and synthesized. A comparison between the cytotoxic effect of these homologs and 2 on different human tumor cell lines was performed from a cell viability study using MTT with 48 h and 72 h incubations. In general, the compounds were less potent than CA-4, showing CC50 values ranging from 0.030 μM to 7.53 μM (MTT at 72 h) and 0.096 μM to 8.768 μM (MTT at 48 h). The antimitotic effect of the target compounds was demonstrated by cell cycle analysis through flow cytometry, and the cellular mechanism of cytotoxicity was determined by immunofluorescence. While the benzyl homolog 10 (LASSBio-2070) was shown to be a microtubule stabilizer, the lead-compound 2 (LASSBio-1586) and the methylated homolog 3 (LASSBio-1735) had microtubule destabilizing behavior. Molecular docking studies were performed on tubulin protein to investigate their binding mode on colchicine and taxane domain. Surprisingly, the benzyl homolog 10 was able to modulate EGFR phosphorylate activity in a phenotypic model. These data suggest LASSBio-2070 (10) as a putative dual inhibitor of tubulin and EGFR. Its binding mode with EGFR was determined by molecular docking and may be useful in lead-optimization initiatives.
Collapse
Affiliation(s)
- Gisele Barbosa
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luis Gabriel Valdivieso Gelves
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Caroline Marques Xavier Costa
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - João Alberto Lins de Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Cristiane Aparecida-Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - John Douglas Teixeira
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.D.T.); (C.d.S.M.)
| | - Claudia dos Santos Mermelstein
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.D.T.); (C.d.S.M.)
| | - Eliezer J. Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lidia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.B.); (L.G.V.G.); (C.M.X.C.); (L.S.F.); (J.A.L.d.L.); (C.A.-S.); (E.J.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
5
|
Liu T, Wen X, Zhao QJ, Bai Y, Tian QG. The Effect of Nano Albumin Combined with Paclitaxel on Drug Resistance of Breast Cancer Through Regulating ATP Binding Cassette Subfamily B Member 1 (ABCB1). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The paclitaxel is a common-used chemotherapy drug and its combination with nano albumin reduces drug side effect. However, whether nab-paclitaxel affects drug resistance of breast cancer remains unclear. This study intends to discuss the mechanism of drug resistance induced by nab-paclitaxel.
The drug resistance of MCF-7/nab-paclitaxel in MCF-7 cell and cell proliferation was detected by MTT along with analysis of ABCB1 expression, cell cycle, and apoptosis. There was stronger drug resistance of nab-paclitaxel in the MCF-7/nab-paclitaxel cell group through be adopted with different
concentration of nab-paclitaxel at the 0th hour, 24th hour and 48th hour. There was remarkable abnormal expression of the ABCB1 in the MCF-7/nab-paclitaxel cell group. The si-ABCB1 could release the quantity of the MCF-7/nab-paclitaxel cell blocked at S period. And the si-ABCB1 could reduce
the expression of cyclin D1 and CDK2 in the MCF-7/nab-paclitaxel cell notably. But the expression level of p21 was increased when there was high concentration of si-ABCB1. The si-ABCB1 could increase the quantity of the MCF-7/nab-paclitaxel cell at the later period of cell apoptosis notably.
The rat’s tumor growth was delayed obviously at the MCF-7/nabpaclitaxel cell group treated by si-ABCB1. But the inhibiting effect of the MCF-7/nab-paclitaxel cell on tumor growth was less. There was stronger drug resistance of cell for the nano albumin combined with paclitaxel. The function
of cell proliferation in breast cancer was restrained by the nano albumin combined with paclitaxel mainly through inducing the expression of ABCB1, adjusting the growth of cell cycle and the expression of P21/BCL-2 protein.
Collapse
Affiliation(s)
- Tao Liu
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Xiang Wen
- Department of Minimally Invasive Intervention, Baotou Tumor Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Qi-Jun Zhao
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Ying Bai
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| | - Qing-Gang Tian
- Department of Oncology, Baotou Fourth Hospital, Baotou, Inner Mongolia Autonomous Region, 014000, China
| |
Collapse
|
6
|
Ghafouri-Fard S, Hussen BM, Mohaqiq M, Shoorei H, Baniahmad A, Taheri M, Jamali E. Interplay Between Non-Coding RNAs and Programmed Cell Death Proteins. Front Oncol 2022; 12:808475. [PMID: 35402235 PMCID: PMC8983884 DOI: 10.3389/fonc.2022.808475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death (PDCD) family of proteins includes at least 12 members, function of seven of them being more investigated. These members are PDCD1, PDCD2, PDCD4, PDCD5, PDCD6, PDCD7 and PDCD10. Consistent with the important roles of these proteins in the regulation of apoptosis, dysregulation of PDCDs is associated with diverse disorders ranging from intervertebral disc degeneration, amyotrophic lateral sclerosis, immune thrombocytopenia, type 1 diabetes, congenital hypothyroidism, Alzheimer’s disease to different types of cancers. More recently, the interaction between non-coding RNAs and different members of PDCD family is being discovered. In the current study, we described the functional interactions between PDCDs and two classes of non-coding RNAs, namely microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miR-21 and miR-183 are two miRNAs whose interactions with PDCDs have been assessed in different contexts. The lncRNAs interaction with PDCDs is mainly assessed in the context of neoplasia indicating the role of MALAT1, MEG3, SNHG14 and LINC00473 in this process.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti Universality of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Toronto, ON, Canada
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti Universality of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Elena Jamali,
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti Universality of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Elena Jamali,
| |
Collapse
|
7
|
Ozfiliz Kilbas P, Sonmez O, Uysal-Onganer P, Coker Gurkan A, Obakan Yerlikaya P, Arisan ED. Specific c-Jun N-Terminal Kinase Inhibitor, JNK-IN-8 Suppresses Mesenchymal Profile of PTX-Resistant MCF-7 Cells through Modulating PI3K/Akt, MAPK and Wnt Signaling Pathways. BIOLOGY 2020; 9:E320. [PMID: 33019717 PMCID: PMC7599514 DOI: 10.3390/biology9100320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Paclitaxel (PTX) is a widely used chemotherapeutic agent in the treatment of breast cancer, and resistance to PTX is a common failure of breast cancer therapy. Therefore, understanding the effective molecular targets in PTX-resistance gains importance in identifying novel strategies in successful breast cancer therapy approaches. The aim of the study was to investigate the functional role of PTX resistance on MCF-7 cell survival and proliferation related to PI3K/Akt and MAPK pathways. The generated PTX-resistant (PTX-res) MCF-7 cells showed enhanced cell survival, proliferation, and colony formation potential with decreased cell death compared to wt MCF-7 cells. PTX-res MCF-7 cells exhibited increased motility profile with EMT, PI3K/Akt, and MAPK pathway induction. According to the significant SAPK/JNK activation in PTX-res MCF-7 cells, specific c-Jun N-terminal kinase inhibitor, JNK-IN-8 is shown to suppress the migration potential of cells. Treatment of JNK inhibitor suppressed the p38 and SAPK/JNK and Vimentin expression. However, the JNK inhibitor further downregulated Wnt signaling members in PTX-res MCF-7 cells. Therefore, the JNK inhibitor JNK-IN-8 might be used as a potential therapy model to reverse PTX-resistance related to Wnt signaling.
Collapse
Affiliation(s)
- Pelin Ozfiliz Kilbas
- Department of Molecular Biology and Genetics, Istanbul Kultur University, 34158 Istanbul, Turkey; (P.O.K.); (O.S.); (A.C.G.); (P.O.Y.)
| | - Ozlem Sonmez
- Department of Molecular Biology and Genetics, Istanbul Kultur University, 34158 Istanbul, Turkey; (P.O.K.); (O.S.); (A.C.G.); (P.O.Y.)
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Ajda Coker Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, 34158 Istanbul, Turkey; (P.O.K.); (O.S.); (A.C.G.); (P.O.Y.)
| | - Pinar Obakan Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, 34158 Istanbul, Turkey; (P.O.K.); (O.S.); (A.C.G.); (P.O.Y.)
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey
| |
Collapse
|
8
|
Kazan HH, Urfali-Mamatoglu C, Yalcin GD, Bulut O, Sezer A, Banerjee S, Gunduz U. 15-LOX-1 has diverse roles in the resensitization of resistant cancer cell lines to doxorubicin. J Cell Physiol 2019; 235:4965-4978. [PMID: 31663148 DOI: 10.1002/jcp.29375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/07/2019] [Indexed: 11/10/2022]
Abstract
Lipoxygenases (LOXs) are a family of enzymes that can oxygenate polyunsaturated fatty acids. As a member of the family, 15-lipoxygenase-1 (15-LOX-1) specifically metabolizes arachidonic acid and linoleic acid. 15-LOX-1 can affect physiological and pathophysiological events via regulation of the protein-lipid interactome, alterations in intracellular redox state and production of lipid metabolites that are involved in the induction and resolution of inflammation. Although several studies have shown that 15-LOX-1 has an antitumorigenic role in many different cancer models, including breast cancer, the role of the protein in cancer drug resistance has not been established yet. In this study, we, for the first time, aimed to show the potential role of 15-LOX-1 in acquired doxorubicin (DOX) resistance in MCF7 and HeLa cancer cell lines. Our results show that ALOX15 was transcriptionally downregulated in DOX-resistant cells compared with their drug-sensitive counterparts. Moreover, overexpression of ALOX15 in the drug-resistant cells resulted in resensitization of those cells to DOX in a cell-dependent manner. 15-LOX-1 expression could induce apoptosis by activating PPARγ and enhance the accumulation of DOX in drug-resistant MCF7 cells by altering cellular motility properties, and membrane dynamics. However, HeLa DOX cells did not show any of these effects but were susceptible to cell death when treated with 13(S)-HODE. These results underline the role and importance of 15-LOX-1 in cancer drug resistance, and points to novel mechanisms as a therapeutic approach to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Hasan Huseyin Kazan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Gizem Damla Yalcin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Onur Bulut
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, Turkey.,Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, Konya, Turkey
| | - Abdullah Sezer
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ufuk Gunduz
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
9
|
Guan X, Lu J, Sun F, Li Q, Pang Y. The Molecular Evolution and Functional Divergence of Lamprey Programmed Cell Death Genes. Front Immunol 2019; 10:1382. [PMID: 31281315 PMCID: PMC6596451 DOI: 10.3389/fimmu.2019.01382] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
The programmed cell death (PDCD) family plays a significant role in the regulation of cell survival and apoptotic cell death. However, the evolution, distribution and role of the PDCD family in lampreys have not been revealed. Thus, we identified the PDCD gene family in the lamprey genome and classified the genes into five subfamilies based on orthologs of the genes, conserved synteny, functional domains, phylogenetic tree, and conserved motifs. The distribution of the lamprey PDCD family and the immune response of the PDCD family in lampreys stimulated by different pathogens were also demonstrated. In addition, we investigated the molecular function of lamprey PDCD2, PDCD5, and PDCD10. Our studies showed that the recombinant lamprey PDCD5 protein and transfection of the L-PDCD5 gene induced cell apoptosis, upregulated the expression of the associated X protein (BAX) and TP53 and downregulated the expression of B cell lymphoma 2 (BCL-2) independent of Caspase 3. In contrast, lamprey PDCD10 suppressed apoptosis in response to cis-diaminedichloro-platinum (II) stimuli. Our phylogenetic and functional data not only provide a better understanding of the evolution of lamprey PDCD genes but also reveal the conservation of PDCD genes in apoptosis. Overall, our results provide a novel perspective on lamprey immune regulation mediated by the PDCD family.
Collapse
Affiliation(s)
- Xin Guan
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jiali Lu
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Feng Sun
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
10
|
Kars MD, Yıldırım G. Determination of the target proteins in chemotherapy resistant breast cancer stem cell-like cells by protein array. Eur J Pharmacol 2019; 848:23-29. [DOI: 10.1016/j.ejphar.2019.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
|
11
|
Liu H, Wang M, Liang N, Guan L. PDCD2 sensitizes HepG2 cells to sorafenib by suppressing epithelial‑mesenchymal transition. Mol Med Rep 2019; 19:2173-2179. [PMID: 30664177 PMCID: PMC6390009 DOI: 10.3892/mmr.2019.9860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has an established role in the acquisition of therapeutic resistance. Programmed cell death domain 2 (PDCD2) is involved in the progression of multiple types of cancer. However, its mechanism underlying chemoresistance in liver cancer has not been elucidated. In the present study, it was demonstrated that the sorafenib-resistant HepG2 cell line exhibited EMT and multidrug resistance (MDR) phenotypes, and reduced expression of PDCD2, by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and Cell Counting Kit-8. Annexin V/fluorescein isothiocyanate and cell migration assays further demonstrated that PDCD2 effectively promoted sorafenib-induced cell apoptosis and reduced cell metastasis. Mechanistically, PDCD2 inhibited the expression of Vimentin and increased the expression of E-cadherin in a Snail-dependent manner by RT-qPCR and western blot analysis. In conclusion, the present study elucidated for the first time, to the best of our knowledge, that PDCD2 sensitizes sorafenib-resistant HepG2 cells to sorafenib by the downregulation of EMT. PDCD2 may serve as a potential therapeutic target in the treatment of sorafenib-resistant liver cancer.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Hepatobiliary‑Pancreatic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Min Wang
- Department of Pathology, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Na Liang
- Office of Surgical Nursing, Changchun Medical College, Changchun, Jilin 130000, P.R. China
| | - Lianyue Guan
- Department of Hepatobiliary‑Pancreatic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
12
|
Huang P, Li F, Li L, You Y, Luo S, Dong Z, Gao Q, Wu S, Brünner N, Stenvang J. lncRNA profile study reveals the mRNAs and lncRNAs associated with docetaxel resistance in breast cancer cells. Sci Rep 2018; 8:17970. [PMID: 30568280 PMCID: PMC6299474 DOI: 10.1038/s41598-018-36231-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Resistance to adjuvant systemic treatment, including taxanes (docetaxel and paclitaxel) is a major clinical problem for breast cancer patients. lncRNAs (long non-coding RNAs) are non-coding transcripts, which have recently emerged as important players in a variety of biological processes, including cancer development and chemotherapy resistance. However, the contribution of lncRNAs to docetaxel resistance in breast cancer and the relationship between lncRNAs and taxane-resistance genes are still unclear. Here, we performed comprehensive RNA sequencing and analyses on two docetaxel-resistant breast cancer cell lines (MCF7-RES and MDA-RES) and their docetaxel-sensitive parental cell lines. We identified protein coding genes and pathways that may contribute to docetaxel resistance. More importantly, we identified lncRNAs that were consistently up-regulated or down-regulated in both the MCF7-RES and MDA-RES cells. The co-expression network and location analyses pinpointed four overexpressed lncRNAs located within or near the ABCB1 (ATP-binding cassette subfamily B member 1) locus, which might up-regulate the expression of ABCB1. We also identified the lncRNA EPB41L4A-AS2 (EPB41L4A Antisense RNA 2) as a potential biomarker for docetaxel sensitivity. These findings have improved our understanding of the mechanisms underlying docetaxel resistance in breast cancer and have provided potential biomarkers to predict the response to docetaxel in breast cancer patients.
Collapse
Affiliation(s)
- Peide Huang
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fengyu Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lin Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuling You
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Shizhi Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China.
| | - Nils Brünner
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - Jan Stenvang
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
13
|
Compound A attenuates toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8. BMC Cancer 2018; 18:231. [PMID: 29486738 PMCID: PMC5830047 DOI: 10.1186/s12885-018-4155-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Background Paclitaxel (PTX) is a potent anti-cancer drug commonly used for the treatment of advanced breast cancer (BCA) and melanoma. Toll-like receptor 4 (TLR4) promotes the production of pro-inflammatory cytokines associated with cancer chemoresistance. This study aims to explore the effect of TLR4 in PTX resistance in triple-negative BCA and advanced melanoma and the effect of compound A (CpdA) to attenuate this resistance. Methods BCA and melanoma cell lines were checked for the response to PTX by cytotoxic assay. The response to PTX of TLR4-transient knockdown cells by siRNA transfection was evaluated compared to the control cells. Levels of pro-inflammatory cytokines, IL-6 and IL-8, and anti-apoptotic protein, XIAP were measured by real-time PCR whereas the secreted IL-8 was quantitated by ELISA in TLR4-transient knockdown cancer cells with or without CpdA treatment. The apoptotic cells after adding PTX alone or in combination with CpdA were detected by caspase-3/7 assay. Results PTX could markedly induce TLR4 expression in both MDA-MB-231 BCA and MDA-MB-435 melanoma cell lines having a basal level of TLR4 whereas no significant induction in TLR4-transient knockdown cells occurred. The siTLR4-treated BCA cells revealed more dead cells after PTX treatment than that of mock control cells. IL-6, IL-8 and XIAP showed increased expressions in PTX-treated cells and this over-production effect was inhibited in TLR4-transient knockdown cells. Apoptotic cells were detected higher when PTX and CpdA were combined than PTX treatment alone. Isobologram exhibited the synergistic effect of CpdA and PTX. CpdA could significantly decrease expressions of IL-6, XIAP and IL-8, as well as excreted IL-8 levels together with reduced cancer viability after PTX treatment. Conclusions The acquired TLR4-mediated PTX resistance in BCA and melanoma is explained partly by the paracrine effect of IL-6 and IL-8 released into the tumor microenvironment and over-production of anti-apoptotic protein, XIAP, in BCA cells and importantly CpdA could reduce this effect and sensitize PTX-induced apoptosis in a synergistic manner. In conclusion, the possible impact of TLR4-dependent signaling pathway in PTX resistance in BCA and melanoma is proposed and using PTX in combination with CpdA may attenuate TLR4-mediated PTX resistance in the treatment of the patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4155-6) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Urfali-Mamatoglu C, Kazan HH, Gündüz U. Dual function of programmed cell death 10 (PDCD10) in drug resistance. Biomed Pharmacother 2018; 101:129-136. [PMID: 29482058 DOI: 10.1016/j.biopha.2018.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022] Open
Abstract
Drug resistance, a major challenge in cancer chemotherapy, is a result of several mechanistic alterations including resistance to apoptosis. Apoptosis is a well-controlled cell death mechanism which is regulated by several signaling pathways. Alterations in structure, function, and expression pattern of the proteins involved in the regulation of apoptosis have been linked to drug resistance. Programmed Cell Death 10 (PDCD10) protein is recently associated with the regulation of cell survival and apoptosis. However, the role of PDCD10 in drug resistance has not been clearly established. Here, we aimed to figure out the role of PDCD10 in resistance to anti-cancer agents in different cell lines. We found that PDCD10 expression was cell- and anti-cancer agent-specific; down-regulated in doxorubicin- and docetaxel-resistant MCF7 cells while up-regulated in doxorubicin-resistant HeLa cells. Down-regulation of PDCD10 expression by siRNA in parental MCF7 cells increased the resistance while it increased sensitivity in doxorubicin-resistant HeLa cells. Similarly, over-expression of PDCD10 in parental HeLa cells increased the resistance to doxorubicin while it re-sensitized doxorubicin-resistant MCF7 cells. Moreover, the alterations in PDCD10 expression led to changes in caspase 3/7 activity and the levels of apoptosis-related genes. Our results point out a possible dual role of PDCD10 in drug resistance for the first time in the literature and emphasize PDCD10 as a novel target for reversal of drug resistance in cancer.
Collapse
Affiliation(s)
| | - Hasan Hüseyin Kazan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ufuk Gündüz
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
15
|
Olazarán FE, García-Pérez CA, Bandyopadhyay D, Balderas-Rentería I, Reyes-Figueroa AD, Henschke L, Rivera G. Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors. J Mol Model 2017; 23:85. [PMID: 28214932 DOI: 10.1007/s00894-017-3256-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Collapse
Affiliation(s)
- Fabian E Olazarán
- Facultad de Ciencias Químicas. Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 64451, México
| | - Carlos A García-Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa, Tamualipas, Mexico, 88710
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA
| | - Isaias Balderas-Rentería
- Facultad de Ciencias Químicas. Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 64451, México
| | - Angel D Reyes-Figueroa
- Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Monterrey, Apodaca, Nuevo León, 66600, México
| | - Lars Henschke
- Department of Biology, University of Konstanz, Universitätsstraβe 10, 78457, Konstanz, Germany
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro, s/n, Esq. Elías Piña, Reynosa, Tamualipas, Mexico, 88710.
| |
Collapse
|
16
|
Abstract
Development of novel drug-delivery systems aims to specifically deliver anticancer drugs to tumor tissues and improve the efficiency of chemotherapy, while minimizing side effects of drugs on healthy tissues and organs. However, drug-delivery systems are confronted by membrane barriers and multiple drug resistance in cancer cells. In recent years, the obtained results indicate an important role of lipids, proteins and carbohydrates in apoptosis, drug transport and the process of cellular uptake of nanoparticles via endocytosis. This article discusses the hypothesis of the relationship between cell membrane structure and nanoparticles in cancer cells.
Collapse
|
17
|
Yang JZ, Ma SR, Rong XL, Zhu MJ, Ji QY, Meng LJ, Gao YY, Yang YD, Wang Y. Characterization of multidrug-resistant osteosarcoma sublines and the molecular mechanisms of resistance. Mol Med Rep 2016; 14:3269-76. [DOI: 10.3892/mmr.2016.5590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 07/08/2016] [Indexed: 11/06/2022] Open
|
18
|
Lin X, Yu T, Zhang L, Chen S, Chen X, Liao Y, Long D, Shen F. Silencing Op18/stathmin by RNA Interference Promotes the Sensitivity of Nasopharyngeal Carcinoma Cells to Taxol and High-Grade Differentiation of Xenografted Tumours in Nude Mice. Basic Clin Pharmacol Toxicol 2016; 119:611-620. [DOI: 10.1111/bcpt.12633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Xuechi Lin
- Department of Medical Laboratory; Changsha Medical University; Changsha China
- Department of Anatomy, Histology and Embryology; Institute of Neuroscience; Changsha Medical University; Changsha China
| | - Ting Yu
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Lingxi Zhang
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Sangyan Chen
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Xian Chen
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Ying Liao
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Dan Long
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Fang Shen
- Department of Medical Laboratory; Changsha Medical University; Changsha China
- Department of Clinical Laboratory; the First Affiliated Hospital of Hunan Normal University; Changsha Hunan China
| |
Collapse
|
19
|
Acquisition of docetaxel resistance in breast cancer cells reveals upregulation of ABCB1 expression as a key mediator of resistance accompanied by discrete upregulation of other specific genes and pathways. Tumour Biol 2015; 36:4327-38. [DOI: 10.1007/s13277-015-3072-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/08/2015] [Indexed: 12/12/2022] Open
|
20
|
Pavlíková N, Bartoňová I, Balušíková K, Kopperova D, Halada P, Kovář J. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel. Exp Cell Res 2014; 333:1-10. [PMID: 25557873 DOI: 10.1016/j.yexcr.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Resistance of cancer cells to chemotherapeutic agents is one of the main causes of treatment failure. In order to detect proteins potentially involved in the mechanism of resistance to taxanes, we assessed differences in protein expression in MCF-7 breast cancer cells that are sensitive to paclitaxel and in the same cells with acquired resistance to paclitaxel (established in our lab). Proteins were separated using two-dimensional electrophoresis. Changes in their expression were determined and proteins with altered expression were identified using mass spectrometry. Changes in their expression were confirmed using western blot analysis. With these techniques, we found three proteins expressed differently in resistant MCF-7 cells, i.e., thyroid hormone-interacting protein 6 (TRIP6; upregulated to 650%), heat shock protein 27 (HSP27; downregulated to 50%) and cathepsin D (downregulated to 28%). Silencing of TRIP6 expression by specific siRNA leads to decreased number of grown resistant MCF-7 cells. In the present study we have pointed at some new directions in the studies of the mechanism of resistance to paclitaxel in breast cancer cells.
Collapse
Affiliation(s)
- Nela Pavlíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Irena Bartoňová
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Kopperova
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kovář
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
21
|
Uziel O, Yosef N, Sharan R, Ruppin E, Kupiec M, Kushnir M, Beery E, Cohen-Diker T, Nordenberg J, Lahav M. The effects of telomere shortening on cancer cells: a network model of proteomic and microRNA analysis. Genomics 2014; 105:5-16. [PMID: 25451739 DOI: 10.1016/j.ygeno.2014.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 10/08/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
Abstract
Previously, we have shown that shortening of telomeres by telomerase inhibition sensitized cancer cells to cisplatinum, slowed their migration, increased DNA damage and impaired DNA repair. The mechanism behind these effects is not fully characterized. Its clarification could facilitate novel therapeutics development and may obviate the time consuming process of telomere shortening achieved by telomerase inhibition. Here we aimed to decipher the microRNA and proteomic profiling of cancer cells with shortened telomeres and identify the key mediators in telomere shortening-induced damage to those cells. Of 870 identified proteins, 98 were differentially expressed in shortened-telomere cells. 47 microRNAs were differentially expressed in these cells; some are implicated in growth arrest or act as oncogene repressors. The obtained data was used for a network construction, which provided us with nodal candidates that may mediate the shortened-telomere dependent features. These proteins' expression was experimentally validated, supporting their potential central role in this system.
Collapse
Affiliation(s)
- O Uziel
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel.
| | - N Yosef
- School of Computer Science, Tel Aviv University, Israel
| | - R Sharan
- School of Computer Science, Tel Aviv University, Israel
| | - E Ruppin
- School of Computer Science, Tel Aviv University, Israel
| | - M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Israel
| | | | - E Beery
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - T Cohen-Diker
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - J Nordenberg
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| | - M Lahav
- FMRC, RMC, Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
22
|
Strong AL, Strong TA, Rhodes LV, Semon JA, Zhang X, Shi Z, Zhang S, Gimble JM, Burow ME, Bunnell BA. Obesity associated alterations in the biology of adipose stem cells mediate enhanced tumorigenesis by estrogen dependent pathways. Breast Cancer Res 2014; 15:R102. [PMID: 24176089 PMCID: PMC3978929 DOI: 10.1186/bcr3569] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction Obesity has been associated with increased incidence and mortality of breast cancer. While the precise correlation between obesity and breast cancer remains to be determined, recent studies suggest that adipose tissue and adipose stem cells (ASCs) influence breast cancer tumorigenesis and tumor progression. Methods Breast cancer cells lines were co-cultured with ASCs (n = 24), categorized based on tissue site of origin and body mass index (BMI), and assessed for enhanced proliferation, alterations in gene expression profile with PCR arrays, and enhanced tumorigenesis in immunocompromised mice. The gene expression profile of ASCs was assess with PCR arrays and qRT-PCR and confirmed with Western blot analysis. Inhibitory studies were conducted by delivering estrogen antagonist ICI182,780, leptin neutralizing antibody, or aromatase inhibitor letrozole and assessing breast cancer cell proliferation. To assess the role of leptin in human breast cancers, Oncomine and Kaplan Meier plot analyses were conducted. Results ASCs derived from the abdominal subcutaneous adipose tissue of obese subjects (BMI > 30) enhanced breast cancer cell proliferation in vitro and tumorigenicity in vivo. These findings were correlated with changes in the gene expression profile of breast cancer cells after co-culturing with ASCs, particularly in estrogen receptor-alpha (ESR1) and progesterone receptor (PGR) expression. Analysis of the gene expression profile of the four groups of ASCs revealed obesity induced alterations in several key genes, including leptin (LEP). Blocking estrogen signaling with ICI182,780, leptin neutralizing antibody, or letrozole diminished the impact of ASCs derived from obese subjects. Women diagnosed with estrogen receptor/progesterone receptor positive (ER+/PR+) breast cancers that also expressed high levels of leptin had poorer prognosis than women with low leptin expression. Conclusion ASCs isolated from the abdomen of obese subjects demonstrated increased expression of leptin, through estrogen stimulation, which increased breast cancer cell proliferation. The results from this study demonstrate that abdominal obesity induces significant changes in the biological properties of ASCs and that these alterations enhance ER+/PR+ breast cancer tumorigenesis through estrogen dependent pathways.
Collapse
|
23
|
PAVLIKOVA NELA, BARTONOVA IRENA, DINCAKOVA LUCIA, HALADA PETR, KOVAR JAN. Differentially expressed proteins in human breast cancer cells sensitive and resistant to paclitaxel. Int J Oncol 2014; 45:822-30. [DOI: 10.3892/ijo.2014.2484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 11/05/2022] Open
|
24
|
Exploring a natural MDR reversal agent: potential of medicinal food supplement Nerium oleander leaf distillate. Asian Pac J Trop Biomed 2013; 3:644-9; discussion 648-9. [PMID: 23905023 DOI: 10.1016/s2221-1691(13)60130-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/18/2013] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To investigate the molecular effects of Nerium oleander leaf distillate on paclitaxel and vincristine resistant (MCF-7/Pac and MCF-7/Vinc) cells and sensitive (MCF-7/S) cell lines. METHODS Nerium oleander (N. oleander) leaf extract was obtained by hydrodistillation method. The toxicological effects of N. oleander distillate, previously suggested as medicinal food supplement, on drug resistant cells were evaluated by XTT tests. MDR modulation potential of the plant material was evaluated by flow cytometry and fluorescent microscopy. Paclitaxel and vincristine were applied to the sublines in combination with N. oleander distillate. RESULTS Fractional inhibitory indices show that N. oleander distillate did not increase the antiproliferative effects of anticancer drugs. N. oleander treatment in to MCF-7/Pac and MCF-7/Vinc did not inhibit P-gp activity and MDR1 gene expression level. CONCLUSIONS As a result it may be suggested that although N. oleander distillate has some medicinal effects as food supplement it may not be suitable as an MDR modulator for drug resistant breast cancer cells.
Collapse
|
25
|
De U, Chun P, Choi WS, Lee BM, Kim ND, Moon HR, Jung JH, Kim HS. A novel anthracene derivative, MHY412, induces apoptosis in doxorubicin-resistant MCF-7/Adr human breast cancer cells through cell cycle arrest and downregulation of P-glycoprotein expression. Int J Oncol 2013; 44:167-76. [PMID: 24190517 DOI: 10.3892/ijo.2013.2160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
Abstract
New potential chemotherapeutic strategies are required to overcome multidrug resistance (MDR) in cancer. This study investigated the anticancer effect of a novel anthracene derivative MHY412 on doxorubicin-resistant human breast cancer (MCF-7/Adr) cells. We measured cell viability and the expression of apoptosis-related genes; in addition, the antitumor activity of MHY412 was confirmed using an in vivo tumor xenograft model. MHY412 significantly inhibited the proliferation of MCF-7/Adr and MCF-7 cells in a concentration-dependent manner. Notably, the half-maximal inhibitory concentration (IC50) values of MHY412 in MCF-7/Adr (0.15 µM) and MCF-7 (0.26 µM) cells were lower than those of doxorubicin (MCF-7/Adr, 13.6 µM and MCF-7, 1.26 µM) after treatment for 48 h. MHY412 at low concentrations induced S phase arrest, but at high concentrations, the number of MCF-7/Adr cells in the sub-G1 phase significantly increased. MHY412-induced sub-G1 phase arrest was associated with inhibition of cyclin, cyclin-dependent kinase 2 (CDK2) and p21 expression in MCF-7/Adr cells. MHY412 markedly reduced P-glycoprotein (P-gp) expression and increased apoptotic cell death in MCF-7/Adr cells. Cleavage of poly-ADP ribose polymerase, reduced Bcl-2 expression, and increased in cytochrome c release in MCF-7/Adr cells confirmed the above results. In addition, MHY412 markedly inhibited tumor growth in a tumor xenograft model of MCF-7/Adr cells. Our data suggest that MHY412 exerts antitumor effects by selectively modulating the genes related to cell cycle arrest and apoptosis. In particular, MHY412 is a new candidate agent for the treatment of Bcl-2 overexpressed doxorubicin-resistant human breast cancer.
Collapse
Affiliation(s)
- Umasankar De
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Coyne CP, Jones T, Bear R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C 4- amide)-[anti-HER2/ neu] in Combination with Griseofulvin against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3). Med Chem 2013. [PMID: 26225219 PMCID: PMC4516389 DOI: 10.4172/2161-0444.1000141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated and in this form it competitively inhibits cytidine incorporation into DNA strands. Diphosphorylated gemcitabine irreversibly inhibits ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic, gemcitabine decreases neoplastic cell proliferation and induces apoptosis which accounts for its effectiveness in the clinical treatment of several leukemia and carcinoma cell types. A brief plasma half-life due to rapid deamination, chemotherapeuticresistance and sequelae restricts gemcitabine utility in clinical oncology. Selective “targeted” gemcitabine delivery represents a molecular strategy for prolonging its plasma half-life and minimizing innocent tissue/organ exposure. Methods A previously described organic chemistry scheme was applied to synthesize a UV-photoactivated gemcitabine intermediate for production of gemcitabine-(C4-amide)-[anti-HER2/neu]. Immunodetection analysis (Western-blot) was applied to detect the presence of any degradative fragmentation or polymerization. Detection of retained binding-avidity for gemcitabine-(C4-amide)-[anti-HER2/neu] was determined by cell-ELISA using populations of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) that highly over-express the HER2/neu trophic membrane receptor. Anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-HER2/neu] and the tubulin/microtubule inhibitor, griseofulvin was established against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Related investigations evaluated the potential for gemcitabine-(C4-amide)-[anti-HER2/neu] in dual combination with griseofulvin to evoke increased levels of anti-neoplastic cytotoxicity compared to gemcitabine-(C4-amide)-[anti-HER2/neu]. Results Covalent gemcitabine-(C4-amide)-[anti-HER2/neu] immunochemotherapeutic and griseofulvin exerted anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Covalent gemcitabine-(C4-amide)-[anti-HER2/neu] immunochemotherapeutic or gemcitabine in dual combination with griseofulvin created increased levels of anti-neoplastic cytotoxicity that were greater than was attainable with gemcitabine-(C4-amide)-[anti-HER2/neu] or gemcitabine alone. Conclusion Gemcitabine-(C4-amide)-[anti-HER2/neu] in dual combination with griseofulvin can produce enhanced levels of anti-neoplastic cytotoxicity and potentially provide a basis for treatment regimens with a wider margin-of-safety. Such benefits would be possible through the collective properties of; [i] selective “targeted” gemcitabine delivery; [ii] relatively lower toxicity of griseofulvin compared to many if not most conventional chemotherapeutics; [iii] reduced total dosage requirements faciliated by additive or synergistic anti-cancer properties; and [iv] differences in sequelae for gemcitabine-(C4-amide)-[anti-HER2/neu] compared to griseofulvin functioning as a tubulin/microtubule inhibitor.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ryan Bear
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
27
|
Melguizo C, Prados J, Luque R, Ortiz R, Caba O, Álvarez PJ, Gonzalez B, Aranega A. Modulation of MDR1 and MRP3 gene expression in lung cancer cells after paclitaxel and carboplatin exposure. Int J Mol Sci 2012; 13:16624-35. [PMID: 23443122 PMCID: PMC3546711 DOI: 10.3390/ijms131216624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 01/13/2023] Open
Abstract
Carboplatin-paclitaxel is a reference regimen in the treatment of locally advanced or disseminated non-small cell lung cancer (NSCLC). This paper discusses the multidrug resistance developed with this drug combination, which is one of the major obstacles to successful treatment. In order to understand and overcome the drug resistance pattern of NSCLC after carboplatin plus paclitaxel exposure, levels of mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance-associated protein 3 (MRP3) were investigated in primary NSCLC cell lines (A-549 and A-427) and a metastasis-derived NSCLC cell line (NODO). Our results showed that exposure of the three NSCLC lines to plasma concentrations of paclitaxel (5 μM) produced an increase in MDR1 expression, while MRP3 showed no alteration in expression. By contrast, the same cells exposed to carboplatin plasma concentrations (30 μM) showed overexpression of MRP3. In these cells, MDR1 showed no expression changes. Interestingly, the combination of both paclitaxel and carboplatin caused increased expression of the MDR1 drug resistance gene rather than the individual treatments. These results suggest that carboplatin and paclitaxel may induce drug resistance mediated by MDR1 and MRP3, which may be enhanced by the simultaneous use of both drugs.
Collapse
Affiliation(s)
- Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Department of Anatomy and Human Embryology, School of Medicine, University of Granada, Granada E-18071, Spain; E-Mails: (C.M.); (P.J.Á.); (A.A.)
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Department of Anatomy and Human Embryology, School of Medicine, University of Granada, Granada E-18071, Spain; E-Mails: (C.M.); (P.J.Á.); (A.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-958-243534; Fax: +34-958-246296
| | - Raquel Luque
- Service of Medical Oncology, Virgen de las Nieves Hospital, Granada E-18012, Spain; E-Mails: (R.L.); (B.G.)
| | - Raúl Ortiz
- Department of Health Science, University of Jaén, Jaén E-23071, Spain; E-Mails: (R.O.); (O.C.)
| | - Octavio Caba
- Department of Health Science, University of Jaén, Jaén E-23071, Spain; E-Mails: (R.O.); (O.C.)
| | - Pablo J. Álvarez
- Institute of Biopathology and Regenerative Medicine (IBIMER), Department of Anatomy and Human Embryology, School of Medicine, University of Granada, Granada E-18071, Spain; E-Mails: (C.M.); (P.J.Á.); (A.A.)
| | - Beatriz Gonzalez
- Service of Medical Oncology, Virgen de las Nieves Hospital, Granada E-18012, Spain; E-Mails: (R.L.); (B.G.)
| | - Antonia Aranega
- Institute of Biopathology and Regenerative Medicine (IBIMER), Department of Anatomy and Human Embryology, School of Medicine, University of Granada, Granada E-18071, Spain; E-Mails: (C.M.); (P.J.Á.); (A.A.)
| |
Collapse
|
28
|
Coyne CP, Jones T, Bear R. Influence of Alternative Tubulin Inhibitors on the Potency of a Epirubicin-Immunochemotherapeutic Synthesized with an Ultra Violet Light-Activated Intermediate: Influence of incorporating an internal/integral disulfide bond structure and Alternative Tubulin/Microtubule Inhibitors on the Cytotoxic Anti-Neoplastic Potency of Epirubicin-(C 3-amide)-Anti-HER2/neu Synthesized Utilizing a UV-Photoactivated Anthracycline Intermediate. CANCER AND CLINICAL ONCOLOGY 2012. [PMID: 26225190 DOI: 10.5539/cco.v1n2p49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immunochemotherapeutics, epirubicin-(C3-amide)-SS-[anti-HER2/neu] with an internal disulfide bond, and epirubicin-(C3-amide)-[anti-HER2/neu] were synthesized utilizing succinimidyl 2-[(4,4'-azipentanamido) ethyl]-1,3'-dithioproprionate or succinimidyl 4,4-azipentanoate respectively. Western blot analysis was used to determine the presence of any immunoglobulin fragmentation or IgG-IgG polymerization. Retained HER2/neu binding characteristics of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] were validated by cell-ELISA using a mammary adenocarcinoma (SKBr-3) population that highly over-expresses trophic HER2/neu receptor complexes. Cytotoxic anti-neoplastic potency of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10-10 M and 10-6 M was determined by measuring the vitality/proliferation of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3 cell type). Cytotoxic anti-neoplastic potency of benzimidazoles (albendazole, flubendazole, membendazole) and griseofulvin were assessed between 0-to-2 μg/ml and 0-to-100 μg/ml respectively while mebendazole and griseofulvin were analyzed at fixed concentrations of 0.35 μg/ml and 35 g/ml respectively in dual combination with gradient concentrations of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency for epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was nearly identical at epirubicin-equivalent concentrations of 10-10 M and 10-6 M. The benzimadazoles also possessed cytotoxic anti-neoplastic activity with flubendazole and albendazole being the most and least potent respectively. Similarly, griseofulvin had cytotoxic anti-neoplastic activity and was more potent than methylselenocysteine. Both mebendazole and griseofulvin when applied in dual combination with either epirubicin-(C3-amide)-[anti-HER2/neu] or epirubicin-(C3-amide)-SS-[anti-HER2/neu] produced enhanced levels of cytotoxic anti-neoplatic potency.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, USA
| | - Ryan Bear
- College of Veterinary Medicine, Mississippi State University, USA
| |
Collapse
|
29
|
Lu F, Shen YY, Shen YQ, Hou JW, Wang ZM, Guo SR. Treatments of paclitaxel with poly(vinyl pyrrolidone) to improve drug release from poly(ɛ-caprolactone) matrix for film-based stent. Int J Pharm 2012; 434:161-8. [DOI: 10.1016/j.ijpharm.2012.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/28/2012] [Accepted: 05/19/2012] [Indexed: 10/28/2022]
|
30
|
Stepanenko AA, Kavsan VM. Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. ACTA ACUST UNITED AC 2012. [DOI: 10.7124/bc.000059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. A. Stepanenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - V. M. Kavsan
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|