1
|
Muefong CN, Sutherland JS. Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology. Front Immunol 2020; 11:962. [PMID: 32536917 PMCID: PMC7266980 DOI: 10.3389/fimmu.2020.00962] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Protective immunity to Mycobacterium tuberculosis (Mtb)—the causative agent of tuberculosis (TB)—is not fully understood but involves immune responses within the pulmonary airways which can lead to exacerbated inflammation and immune pathology. In humans, this inflammation results in lung damage; the extent of which depends on specific host pro-inflammatory processes. Neutrophils, though increasingly linked to the development of inflammatory disorders, have been less well studied in relation to TB-induced lung pathology. Neutrophils mode of action and their specialized functions can be directly linked to TB-specific lung tissue damage observed on patient chest X-rays at diagnosis and contribute to long-term pulmonary sequelae. This review discusses aspects of neutrophil activity associated with active TB, including the resulting inflammation and pulmonary impairment. It highlights the significance of neutrophil function on TB disease outcome and underlines the necessity of monitoring neutrophil function for better assessment of the immune response and severity of lung pathology associated with TB. Finally, we propose that some MMPs, ROS, MPO, S100A8/A9 and Glutathione are neutrophil-related inflammatory mediators with promising potential as targets for developing host-directed therapies for TB.
Collapse
Affiliation(s)
- Caleb N Muefong
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
2
|
Misiura M, Miltyk W. Proline-containing peptides-New insight and implications: A Review. Biofactors 2019; 45:857-866. [PMID: 31430415 DOI: 10.1002/biof.1554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The family of regulatory proline-containing peptides (PCPs), also known as glyprolines, exhibit significant biological activity. The group of glyprolines includes Gly-Pro (GP), Pro-Gly-Pro (PGP), cyclic Gly-Pro (cGP), as well as PGP derivatives, for example, N-acetylated PGP (N-a-PGP) and N-methylated PGP (N-m-PGP). PCPs are engaged in various biological processes including the proinflammatory neutrophil chemoattraction in lung diseases, inflammatory bowel diseases or ischemic stroke. Glyprolines have been also postulated to play an important role as atheroprotective and anticoagulant agents, exhibit neuroprotective effects in Parkinson's disease, as well as regulate insulin-like growth factor (IGF) homeostasis. It was also noticed that PCPs inhibit proliferation and migration of keratinocytes in wound healing, protection of the gastric mucosa and stimulation of its regeneration. The regulatory glyprolines are derived from endogenous and exogenous sources. Most PCPs are derived from collagen or diet protein degradation. Recently, great interest is concentrated on short proline-rich oligopeptides derived from IGF-1 degradation. The mechanism of PCPs biological activity is not fully explained. It involves receptor-mediated mechanisms, for example, N-a-PGP acts as CXCR1/2 receptor ligand, whereas cGP regulates IGF-1 bioavailability by modifying the IGF-1 binding to the IGF-1 binding protein-3. PGP has been observed to interact with collagen-specific receptors. The data suggest a promising role of PGP as a target of various diseases therapy. This review is focused on the effect of PCPs on metabolic processes in different tissues and the molecular mechanism of their action as an approach to pharmacotherapy of PCPs-dependent diseases.
Collapse
Affiliation(s)
- Magdalena Misiura
- Department of Pharmaceutical Analysis and Bioanalysis, Medical University of Bialystok, Białystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis and Bioanalysis, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
3
|
Sharma NS, Lal CV, Li JD, Lou XY, Viera L, Abdallah T, King RW, Sethi J, Kanagarajah P, Restrepo-Jaramillo R, Sales-Conniff A, Wei S, Jackson PL, Blalock JE, Gaggar A, Xu X. The neutrophil chemoattractant peptide proline-glycine-proline is associated with acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2018; 315:L653-L661. [PMID: 30091378 PMCID: PMC6295514 DOI: 10.1152/ajplung.00308.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by unrelenting polymorphonuclear neutrophil (PMN) inflammation and vascular permeability. The matrikine proline-glycine-proline (PGP) and acetylated PGP (Ac-PGP) have been shown to induce PMN inflammation and endothelial permeability in vitro and in vivo. In this study, we investigated the presence and role of airway PGP peptides in acute lung injury (ALI)/ARDS. Pseudomonas aeruginosa-derived lipopolysaccharide (LPS) was instilled intratracheally in mice to induce ALI, and increased Ac-PGP with neutrophil inflammation was noted. The PGP inhibitory peptide, arginine-threonine-arginine (RTR), was administered (it) 30 min before or 6 h after LPS injection. Lung injury was evaluated by detecting neutrophil infiltration and permeability changes in the lung. Pre- and posttreatment with RTR significantly inhibited LPS-induced ALI by attenuating lung neutrophil infiltration, pulmonary permeability, and parenchymal inflammation. To evaluate the role of PGP levels in ARDS, minibronchoalveolar lavage was collected from nine ARDS, four cardiogenic edema, and five nonlung disease ventilated patients. PGP levels were measured and correlated with Acute Physiology and Chronic Health Evaluation (APACHE) score, P a O 2 to F I O 2 (P/F), and ventilator days. PGP levels in subjects with ARDS were significantly higher than cardiogenic edema and nonlung disease ventilated patients. Preliminary examination in both ARDS and non-ARDS populations demonstrated PGP levels significantly correlated with P/F ratio, APACHE score, and duration on ventilator. These results demonstrate an increased burden of PGP peptides in ARDS and suggest the need for future studies in ARDS cohorts to examine correlation with key clinical parameters.
Collapse
Affiliation(s)
- Nirmal S Sharma
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital , Tampa, Florida
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Charitharth Vivek Lal
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jin-Dong Li
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Xiang-Yang Lou
- Biostatistics Program, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Liliana Viera
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Tarek Abdallah
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert W King
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jaskaran Sethi
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Prashanth Kanagarajah
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | | | - Amanda Sales-Conniff
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Patricia L Jackson
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - J Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
4
|
Patel DF, Snelgrove RJ. The multifaceted roles of the matrikine Pro-Gly-Pro in pulmonary health and disease. Eur Respir Rev 2018; 27:180017. [PMID: 29950303 PMCID: PMC9488800 DOI: 10.1183/16000617.0017-2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Matrikines are bioactive fragments of the extracellular matrix (ECM) that are fundamental in regulating a diverse array of physiological processes. The tripeptide Proline-Glycine-Proline (PGP) is a collagen-derived matrikine that has classically been described as a neutrophil chemoattractant. In this article, we describe our current understanding of the pathways that generate, degrade and modify PGP to dictate its bioavailability and stability. Additionally, we discuss our expanding appreciation of the capacity of PGP to regulate diverse cell types and biological processes, independent of its activity on neutrophils, including a putative role in wound repair. We argue that PGP functions as a primitive and conserved damage-associated molecular pattern, which is generated during infection or injury and subsequently acts to shape ensuing inflammatory and repair processes. As a fragment of the ECM that accumulates at the epicentre of the action, PGP is perfectly positioned to focus neutrophils to the exact site required and direct a localised repair response. However, it is essential that PGP is efficiently degraded, as if this matrikine is allowed to persist then pathology can ensue. Accordingly, we discuss how this pathway is subverted in chronic lung diseases giving rise to persistent inflammation and pathological tissue remodelling.
Collapse
Affiliation(s)
- Dhiren F Patel
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert J Snelgrove
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
5
|
Koymans KJ, Bisschop A, Vughs MM, van Kessel KPM, de Haas CJC, van Strijp JAG. Staphylococcal Superantigen-Like Protein 1 and 5 (SSL1 & SSL5) Limit Neutrophil Chemotaxis and Migration through MMP-Inhibition. Int J Mol Sci 2016; 17:E1072. [PMID: 27399672 PMCID: PMC4964448 DOI: 10.3390/ijms17071072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases that degrade components of the extracellular matrix, but also modulate inflammation. During bacterial infections, MMPs are important in the recruitment and migration of inflammatory cells. Besides facilitating cell migration by degrading extracellular matrix components, they potentiate the action of several inflammatory molecules, including cytokines, chemokines, and antimicrobial peptides. Staphylococcus aureus secretes an arsenal of immune evasion molecules that interfere with immune cell functioning and hamper proper immune responses. An earlier study identified staphylococcal superantigen-like protein 5 (SSL5) as an MMP9 inhibitor. Since multiple MMPs are involved in neutrophil recruitment, we set up an in-depth search for additional MMP inhibitors by testing a panel of over 70 secreted staphylococcal proteins on the inhibition of the two main neutrophil MMPs: MMP8 (neutrophil collagenase) and MMP9 (neutrophil gelatinase B). We identified SSL1 and SSL5 as potent inhibitors of both neutrophil MMPs and show that they are actually broad range MMP inhibitors. SSL1 and SSL5 prevent MMP-induced cleavage and potentiation of IL-8 and inhibit the migration of neutrophils through collagen. Thus, through MMP-inhibition, SSL1 and SSL5 interfere with neutrophil activation, chemotaxis, and migration, all vital neutrophil functions in bacterial clearance. Studies on MMP-SSL interactions can have therapeutic potential and SSL based derivatives might prove useful in treatment of cancer and destructive inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Mignon M Vughs
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
6
|
Hill JW, Nemoto EM. Matrix-derived inflammatory mediator N-acetyl proline-glycine-proline is neurotoxic and upregulated in brain after ischemic stroke. J Neuroinflammation 2015; 12:214. [PMID: 26588897 PMCID: PMC4654865 DOI: 10.1186/s12974-015-0428-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/06/2015] [Indexed: 12/03/2022] Open
Abstract
Background N-acetyl proline-glycine-proline (ac-PGP) is a matrix-derived chemokine produced through the proteolytic destruction of collagen by matrix metalloproteinases (MMPs). While upregulation and activation of MMPs and concomitant degradation of the extracellular matrix are known to be associated with neurological injury in ischemic stroke, the production of ac-PGP in stroke brain and its effects on neurons have not been investigated. Findings We examined the effects of ac-PGP on primary cortical neurons and found that it binds neuronal CXCR2 receptors, activates extracellular signal-regulated kinase 1/2 (ERK1/2), and induces apoptosis associated with caspase-3 cleavage in a dose-dependent manner. After transient ischemic stroke in rats, ac-PGP was significantly upregulated in infarcted brain tissue. Conclusions The production of ac-PGP in brain in ischemia/reperfusion injury and its propensity to induce apoptosis in neurons may link MMP-mediated destruction of the extracellular matrix and opening of the blood-brain barrier to progressive neurodegeneration associated with the initiation and propagation of inflammation. Ac-PGP may be a novel neurotoxic inflammatory mediator involved in sustained inflammation and neurodegeneration in stroke and other neurological disorders associated with activation of MMPs.
Collapse
Affiliation(s)
- Jeff W Hill
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Edwin M Nemoto
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
7
|
Dabo AJ, Cummins N, Eden E, Geraghty P. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus. PLoS One 2015; 10:e0135970. [PMID: 26284919 PMCID: PMC4540458 DOI: 10.1371/journal.pone.0135970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023] Open
Abstract
Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR.
Collapse
Affiliation(s)
- Abdoulaye J. Dabo
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
| | - Neville Cummins
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
| | - Edward Eden
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
| | - Patrick Geraghty
- Mount Sinai St. Luke’s Medical Center, Mount Sinai Health System, Division of Pulmonary, Critical Care and Sleep Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ryu JK, Cho T, Choi HB, Jantaratnotai N, McLarnon JG. Pharmacological antagonism of interleukin-8 receptor CXCR2 inhibits inflammatory reactivity and is neuroprotective in an animal model of Alzheimer's disease. J Neuroinflammation 2015; 12:144. [PMID: 26255110 PMCID: PMC4529987 DOI: 10.1186/s12974-015-0339-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022] Open
Abstract
Background The chemokine interleukin-8 (IL-8) and its receptor CXCR2 contribute to chemotactic responses in Alzheimer’s disease (AD); however, properties of the ligand and receptor have not been characterized in animal models of disease. The primary aim of our study was to examine effects of pharmacological antagonism of CXCR2 as a strategy to inhibit receptor-mediated inflammatory reactivity and enhance neuronal viability in animals receiving intrahippocampal injection of amyloid-beta (Aβ1–42). Methods In vivo studies used an animal model of Alzheimer’s disease incorporating injection of full-length Aβ1–42 into rat hippocampus. Immunohistochemical staining of rat brain was used to measure microgliosis, astrogliosis, neuronal viability, and oxidative stress. Western blot and Reverse Transcription PCR (RT-PCR) were used to determine levels of CXCR2 in animal tissue with the latter also used to determine expression of pro-inflammatory mediators. Immunostaining of human AD and non-demented (ND) tissue was also undertaken. Results We initially determined that in the human brain, AD relative to ND tissue exhibited marked increases in expression of CXCR2 with cell-specific receptor expression prominent in microglia. In Aβ1–42-injected rat brain, CXCR2 and IL-8 showed time-dependent increases in expression, concomitant with enhanced gliosis, relative to controls phosphate-buffered saline (PBS) or reverse peptide Aβ42–1 injection. Administration of the competitive CXCR2 antagonist SB332235 to peptide-injected rats significantly reduced expression of CXCR2 and microgliosis, with astrogliosis unchanged. Double staining studies demonstrated localization of CXCR2 and microglial immunoreactivity nearby deposits of Aβ1–42 with SB332235 effective in inhibiting receptor expression and microgliosis. The numbers of neurons in granule cell layer (GCL) were reduced in rats receiving Aβ1–42, compared with PBS, with administration of SB332235 to peptide-injected animals conferring neuroprotection. Oxidative stress was indicated in the animal model since both 4-hydroxynonenal (4-HNE) and hydroethidine (HEt) were markedly elevated in Aβ1–42 vs PBS-injected rat brain and diminished with SB332235 treatment. Conclusion Overall, the findings suggest critical roles for CXCR2-dependent inflammatory responses in an AD animal model with pharmacological modulation of the receptor effective in inhibiting inflammatory reactivity and conferring neuroprotection against oxidative damage.
Collapse
Affiliation(s)
- Jae K Ryu
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Science Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - T Cho
- Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada.
| | - Hyun B Choi
- Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada.
| | - N Jantaratnotai
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - James G McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Science Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
9
|
Abdul Roda M, Fernstrand AM, Redegeld FA, Blalock JE, Gaggar A, Folkerts G. The matrikine PGP as a potential biomarker in COPD. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1095-101. [PMID: 26033353 DOI: 10.1152/ajplung.00040.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/06/2015] [Indexed: 12/16/2022] Open
Abstract
The lack of a well-characterized biomarker for the diagnosis of chronic obstructive pulmonary disease (COPD) has increased interest toward finding one, because this would provide potential insight into disease pathogenesis and progression. Since persistent neutrophilia is an important hallmark in COPD Pro-Gly-Pro (PGP), an extracellular matrix-derived neutrophil chemoattractant, has been suggested to be a potential biomarker in COPD. The purpose of this review is to critically examine both biological and clinical data related to the role of PGP in COPD, with particular focus on its role as a clinical biomarker and potential therapeutic target in disease. The data provided in this review will offer insight into the potential use of PGP as end point for future clinical studies in COPD lung disease. Following PGP levels during disease might serve as a guide for the progression of lung disorders.
Collapse
Affiliation(s)
- Mojtaba Abdul Roda
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| | - Amanda M Fernstrand
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| | - J Edwin Blalock
- Department of Medicine and Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amit Gaggar
- Department of Medicine and Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands; and
| |
Collapse
|
10
|
Hahn CS, Scott DW, Xu X, Roda MA, Payne GA, Wells JM, Viera L, Winstead CJ, Bratcher P, Sparidans RW, Redegeld FA, Jackson PL, Folkerts G, Blalock JE, Patel RP, Gaggar A. The matrikine N-α-PGP couples extracellular matrix fragmentation to endothelial permeability. SCIENCE ADVANCES 2015; 1:e1500175. [PMID: 26229981 PMCID: PMC4517288 DOI: 10.1126/sciadv.1500175] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
The compartmentalization and transport of proteins and solutes across the endothelium is a critical biologic function altered during inflammation and disease, leading to pathology in multiple disorders. The impact of tissue damage and subsequent extracellular matrix (ECM) fragmentation in regulating this process is unknown. We demonstrate that the collagen-derived matrikine acetylated proline-glycine-proline (N-α-PGP) serves as a critical regulator of endothelial permeability. N-α-PGP activates human endothelial cells via CXC-chemokine receptor 2 (CXCR2), triggering monolayer permeability through a discrete intracellular signaling pathway. In vivo, N-α-PGP induces local vascular leak after subcutaneous administration and pulmonary vascular permeability after systemic administration. Furthermore, neutralization of N-α-PGP attenuates lipopolysaccharide-induced lung leak. Finally, we demonstrate that plasma from patients with acute respiratory distress syndrome (ARDS) induces VE-cadherin phosphorylation in human endothelial cells, and this activation is attenuated by N-α-PGP blockade with a concomitant improvement in endothelial monolayer impedance. These results identify N-α-PGP as a novel ECM-derived matrikine regulating paracellular permeability during inflammatory disease and demonstrate the potential to target this ligand in various disorders characterized by excessive matrix turnover and vascular leak such as ARDS.
Collapse
Affiliation(s)
- Cornelia S. Hahn
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David W. Scott
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mojtaba Abdul Roda
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Gregory A. Payne
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J. Michael Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Liliana Viera
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Colleen J. Winstead
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Preston Bratcher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rolf W. Sparidans
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Frank A. Redegeld
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Patricia L. Jackson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gert Folkerts
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - J. Edwin Blalock
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL 35233, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Koelink PJ, Overbeek SA, Braber S, Morgan ME, Henricks PAJ, Roda MA, Verspaget HW, Wolfkamp SC, te Velde AA, Jones CW, Jackson PL, Blalock JE, Sparidans RW, Kruijtzer JAW, Garssen J, Folkerts G, Kraneveld AD. Collagen degradation and neutrophilic infiltration: a vicious circle in inflammatory bowel disease. Gut 2014; 63:578-87. [PMID: 23525573 PMCID: PMC3963538 DOI: 10.1136/gutjnl-2012-303252] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Proline-glycine-proline (PGP) has been shown to have chemotactic effects on neutrophils via CXCR2 in several lung diseases. PGP is derived from collagen by the combined action of matrix metalloproteinase (MMP) 8 and/or MMP9 and prolyl endopeptidase (PE). We investigated the role of PGP in inflammatory bowel disease (IBD). DESIGN In intestinal tissue from patients with IBD and mice with dextran sodium sulfate (DSS)-induced colitis, MMP8, MMP9 and PE were evaluated by ELISA, immunoblot and immunohistochemistry. Peripheral blood polymorphonuclear cell (PMN) supernatants were also analysed accordingly and incubated with collagen to assess PGP generation ex vivo. PGP levels were measured by mass spectrometry, and PGP neutralisation was achieved with a PGP antagonist and PGP antibodies. RESULTS In the intestine of patients with IBD, MMP8 and MMP9 levels were elevated, while PE was expressed at similar levels to control tissue. PGP levels were increased in intestinal tissue of patients with IBD. Similar results were obtained in intestine from DSS-treated mice. PMN supernatants from patients with IBD were far more capable of generating PGP from collagen ex vivo than healthy controls. Furthermore, PGP neutralisation during DSS-induced colitis led to a significant reduction in neutrophil infiltration in the intestine. CONCLUSIONS The proteolytic cascade that generates PGP from collagen, as well as the tripeptide itself, is present in the intestine of patients with IBD and mice with DSS-induced colitis. PGP neutralisation in DSS-treated mice showed the importance of PGP-guided neutrophilic infiltration in the intestine and indicates a vicious circle in neutrophilic inflammation in IBD.
Collapse
Affiliation(s)
- Pim J Koelink
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Saskia A Overbeek
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mary E Morgan
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mojtaba Abdul Roda
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hein W Verspaget
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Simone C Wolfkamp
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anje A te Velde
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Caleb W Jones
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama,USA
| | - Patricia L Jackson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and the Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine and the Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rolf W Sparidans
- Division of Pharmacoepidemiology & Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - John A W Kruijtzer
- Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Abstract
The mechanisms that regulate 3-dimensional (3D) neutrophil chemotaxis are poorly understood. In this issue of Blood, Afonso et al demonstrate that the collagen receptor Discoidin domain receptor 2 (DDR2) promotes neutrophil chemotaxis in 3D by triggering matrix metalloproteinase (MMP) activity and the generation of chemotactic collagen peptides.
Collapse
|
13
|
Overbeek SA, Braber S, Koelink PJ, Henricks PAJ, Mortaz E, LoTam Loi AT, Jackson PL, Garssen J, Wagenaar GTM, Timens W, Koenderman L, Blalock JE, Kraneveld AD, Folkerts G. Cigarette smoke-induced collagen destruction; key to chronic neutrophilic airway inflammation? PLoS One 2013; 8:e55612. [PMID: 23383243 PMCID: PMC3561332 DOI: 10.1371/journal.pone.0055612] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 01/02/2013] [Indexed: 01/17/2023] Open
Abstract
Background Cigarette smoking induces inflammatory responses in all smokers and is the major risk factor for lung disease such as chronic obstructive pulmonary disease (COPD). In this progressive disease, chronic inflammation in the lung contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated Proline-Glycine-Proline (N-ac-PGP). The generation of this tripeptide is mediated by a multistep pathway involving matrix metalloproteases (MMPs) 8 and 9 and prolyl endopeptidase (PE). Here we investigated whether cigarette smoke extract (CSE) stimulates human PMNs to breakdown whole matrix collagen leading to the generation of the chemotactic collagen fragment N-ac-PGP. Methodology/Principal Findings Incubating PMNs with CSE led to the release of chemo-attractant CXCL8 and proteases MMP8 and MMP9. PMNs constitutively expressed PE activity as well as PE protein. Incubating CSE-primed PMNs with collagen resulted in collagen breakdown and in N-ac-PGP generation. Incubation of PMNs with the tripeptide N-ac-PGP resulted in the release of CXCL8, MMP8 and MMP9. Moreover, we tested whether PMNs from COPD patients are different from PMNs from healthy donors. Here we show that the intracellular basal PE activity of PMNs from COPD patients increased 25-fold compared to PMNs from healthy donors. Immunohistological staining of human lung tissue for PE showed that besides neutrophils, macrophages and epithelial cells express PE. Conclusions This study indicates that neutrophils activated by cigarette smoke extract can breakdown collagen into N-ac-PGP and that this collagen fragment itself can activate neutrophils, which may lead in vivo to a self-propagating cycle of neutrophil infiltration, chronic inflammation and lung emphysema. MMP-, PE- or PGP-inhibitors can serve as an attractive therapeutic target and may open new avenues towards effective treatment of COPD.
Collapse
Affiliation(s)
- Saskia A. Overbeek
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Pim J. Koelink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Esmaeil Mortaz
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Chronic Respiratory Disease Research center, National Research Institute of Tuberculosis and lung disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Adele T. LoTam Loi
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia L. Jackson
- Division of Pulmonary, Allergy and Critical Care Medicine and UAB Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Danone Research – Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Gerry T. M. Wagenaar
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Leo Koenderman
- Chronic Respiratory Disease Research center, National Research Institute of Tuberculosis and lung disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - J. Edwin Blalock
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Overbeek SA, Kleinjan M, Henricks PA, Kamp VM, Ricciardolo FL, Georgiou NA, Garssen J, Kraneveld AD, Folkerts G. Chemo-attractant N-acetyl proline–glycine–proline induces CD11b/CD18-dependent neutrophil adhesion. Biochim Biophys Acta Gen Subj 2013; 1830:2188-93. [DOI: 10.1016/j.bbagen.2012.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/12/2012] [Accepted: 09/28/2012] [Indexed: 11/17/2022]
|
15
|
Braber S, Thio M, Blokhuis BR, Henricks PAJ, Koelink PJ, Kormelink TG, Bezemer GFG, Kerstjens HAM, Postma DS, Garssen J, Kraneveld AD, Redegeld FA, Folkerts G. An Association between Neutrophils and Immunoglobulin Free Light Chains in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2012; 185:817-24. [DOI: 10.1164/rccm.201104-0761oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
16
|
Dumas E, Martel C, Neagoe PE, Bonnefoy A, Sirois MG. Angiopoietin-1 but not angiopoietin-2 promotes neutrophil viability: Role of interleukin-8 and platelet-activating factor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:358-67. [DOI: 10.1016/j.bbamcr.2011.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 01/15/2023]
|
17
|
ten Hoeve AL, Roda MA, Redegeld F, Folkerts G, Blalock JE, Gaggar A. Proline-glycine-proline as a potential biomarker in chronic obstructive pulmonary disease and cystic fibrosis. TANAFFOS 2012; 11:12-5. [PMID: 25191408 PMCID: PMC4153190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The present review discusses the role of tri-peptide Proline -Glycine -Proline (PGP) as a potential player, biomarker and therapeutic target in this process.
Collapse
Affiliation(s)
- Arne Lucas ten Hoeve
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mojtaba Abdul Roda
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Frank Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - James Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Overbeek SA, Braber S, Henricks PAJ, Kleinjan M, Kamp VM, Georgiou NA, Garssen J, Kraneveld AD, Folkerts G. Cigarette smoke induces β2-integrin-dependent neutrophil migration across human endothelium. Respir Res 2011; 12:75. [PMID: 21651795 PMCID: PMC3128861 DOI: 10.1186/1465-9921-12-75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cigarette smoking induces peripheral inflammatory responses in all smokers and is the major risk factor for neutrophilic lung disease such as chronic obstructive pulmonary disease. The aim of this study was to investigate the effect of cigarette smoke on neutrophil migration and on β2-integrin activation and function in neutrophilic transmigration through endothelium. METHODS AND RESULTS Utilizing freshly isolated human PMNs, the effect of cigarette smoke on migration and β2-integrin activation and function in neutrophilic transmigration was studied. In this report, we demonstrated that cigarette smoke extract (CSE) dose dependently induced migration of neutrophils in vitro. Moreover, CSE promoted neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that Mac-1 (CD11b/CD18) is responsible for the cigarette smoke-induced firm adhesion of neutrophils to fibrinogen. Furthermore, neutrophils transmigrated through endothelium by cigarette smoke due to the activation of β2-integrins, since pre-incubation of neutrophils with functional blocking antibodies against CD11b and CD18 attenuated this transmigration. CONCLUSION This is the first study to describe that cigarette smoke extract induces a direct migratory effect on neutrophils and that CSE is an activator of β2-integrins on the cell surface. Blocking this activation of β2-integrins might be an important target in cigarette smoke induced neutrophilic diseases.
Collapse
Affiliation(s)
- Saskia A Overbeek
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Targeting of a common receptor shared by CXCL8 and N-Ac-PGP as a therapeutic strategy to alleviate chronic neutrophilic lung diseases. Eur J Pharmacol 2011; 667:1-5. [PMID: 21669195 DOI: 10.1016/j.ejphar.2011.05.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/09/2011] [Accepted: 05/27/2011] [Indexed: 12/21/2022]
Abstract
Persistent neutrophilia is implicated in the pathology of several chronic lung diseases and consequently targeting the signals that drive the recruitment of these cells offers a plausible therapeutic strategy. The tripeptide Pro-Gly-Pro (PGP) is a neutrophil chemoattractant derived from extracellular matrix collagen and implicated in diseases such as COPD and cystic fibrosis. It was anticipated that PGP exerts its chemoatactic activity by mimicking key sequences found within classical neutrophil chemokines, such as CXCL8, and binding their receptors, CXCR1/2. Recently, however, the role of CXCR1/2 as the receptors for PGP has been questioned. In this issue of European Journal of Pharmacology, three studies address this controversy and demonstrate CXCR1/2 to be a common receptor for CXCL8 and PGP. Accordingly, these studies demonstrate the therapeutic potential of targeting this shared receptor to simultaneously alleviate neutrophilic inflammation driven by multiple neutrophil chemoattractants.
Collapse
|
20
|
Mortaz E, Masjedi MR, Barnes P. Identification of Novel Therapeutic Targets in COPD. TANAFFOS 2011; 10:9-14. [PMID: 25191356 PMCID: PMC4153138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Esmaeil Mortaz
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, The Netherlands,Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Masjedi
- Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peter Barnes
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
| |
Collapse
|