1
|
Collins JM, Hyland NP, Clarke G, Fitzgerald P, Julio-Pieper M, Bulmer DC, Dinan TG, Cryan JF, O'Mahony SM. Beta 3-adrenoceptor agonism ameliorates early-life stress-induced visceral hypersensitivity in male rats. J Neurochem 2024; 168:3813-3826. [PMID: 36906887 DOI: 10.1111/jnc.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Visceral hypersensitivity, a hallmark of disorders of the gut-brain axis, is associated with exposure to early-life stress (ELS). Activation of neuronal β3-adrenoceptors (AR) has been shown to alter central and peripheral levels of tryptophan and reduce visceral hypersensitivity. In this study, we aimed to determine the potential of a β3-AR agonist in reducing ELS-induced visceral hypersensitivity and possible underlying mechanisms. Here, ELS was induced using the maternal separation (MS) model, where Sprague Dawley rat pups were separated from their mother in early life (postnatal day 2-12). Visceral hypersensitivity was confirmed in adult offspring using colorectal distension (CRD). CL-316243, a β3-AR agonist, was administered to determine anti-nociceptive effects against CRD. Distension-induced enteric neuronal activation as well as colonic secretomotor function were assessed. Tryptophan metabolism was determined both centrally and peripherally. For the first time, we showed that CL-316243 significantly ameliorated MS-induced visceral hypersensitivity. Furthermore, MS altered plasma tryptophan metabolism and colonic adrenergic tone, while CL-316243 reduced both central and peripheral levels of tryptophan and affected secretomotor activity in the presence of tetrodotoxin. This study supports the beneficial role of CL-316243 in reducing ELS-induced visceral hypersensitivity, and suggests that targeting the β3-AR can significantly influence gut-brain axis activity through modulation of enteric neuronal activation, tryptophan metabolism, and colonic secretomotor activity which may synergistically contribute to offsetting the effects of ELS.
Collapse
Affiliation(s)
- James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | | | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Decraecker L, Boeckxstaens G, Denadai-Souza A. Inhibition of Serine Proteases as a Novel Therapeutic Strategy for Abdominal Pain in IBS. Front Physiol 2022; 13:880422. [PMID: 35665224 PMCID: PMC9161638 DOI: 10.3389/fphys.2022.880422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Serine proteases are heavily present in the gastrointestinal tract where they are essential in numerous physiological processes. An imbalance in the proteolytic activity is a central mechanism underlying abdominal pain in irritable bowel syndrome (IBS). Therefore, protease inhibitors are emerging as a promising therapeutic tool to manage abdominal pain in this functional gastrointestinal disorder. With this review, we provide an up-to-date overview of the implications of serine proteases in the development of abdominal pain in IBS, along with a critical assessment of the current developments and prospects of protease inhibitors as a therapeutic tool. In particular, we highlight the current knowledge gap concerning the identity of dysregulated serine proteases that are released by the rectal mucosa of IBS patients. Finally, we suggest a workflow with state-of-the-art techniques that will help address the knowledge gap, guiding future research towards the development of more effective and selective protease inhibitors to manage abdominal pain in IBS.
Collapse
|
3
|
Lactobacillus rhamnosus GG soluble mediators ameliorate early life stress-induced visceral hypersensitivity and changes in spinal cord gene expression. Neuronal Signal 2020; 4:NS20200007. [PMID: 33343931 PMCID: PMC7726314 DOI: 10.1042/ns20200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Visceral hypersensitivity is a hallmark of many functional and stress-related gastrointestinal disorders, and there is growing evidence that the gut microbiota may play a role in its pathophysiology. It has previously been shown that early life stress-induced visceral sensitivity is reduced by various probiotic strains of bacteria (including Lactobacillus rhamnosus GG (LGG)) alone or in combination with prebiotic fibres in rat models. However, the exact mechanisms underpinning such effects remain unresolved. Here, we investigated if soluble mediators derived from LGG can mimic the bacteria's effects on visceral hypersensitivity and the microbiota-gut-brain axis. Rats were exposed to maternal separation (MS) from postnatal days 2-12. From weaning onwards both non-separated (NS) and MS offspring were provided drinking water with or without supplementation of standardized preparations of the LGG soluble mediators (LSM). Our results show that MS led to increased visceral sensitivity and exaggerated corticosterone plasma levels following restraint stress in adulthood, and both of these effects were ameliorated through LSM supplementation. Differential regulation of various genes in the spinal cord of MS versus NS rats was observed, 41 of which were reversed by LSM supplementation. At the microbiota composition level MS led to changes in beta diversity and abundance of specific bacteria including parabacteroides, which were ameliorated by LSM. These findings support probiotic soluble mediators as potential interventions in the reduction of symptoms of visceral hypersensitivity.
Collapse
|
4
|
Eldahan KC, Williams HC, Cox DH, Gollihue JL, Patel SP, Rabchevsky AG. Paradoxical effects of continuous high dose gabapentin treatment on autonomic dysreflexia after complete spinal cord injury. Exp Neurol 2020; 323:113083. [DOI: 10.1016/j.expneurol.2019.113083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
|
5
|
Buckley MM, O'Brien R, Buckley JM, O'Malley D. GHSR-1 agonist sensitizes rat colonic intrinsic and extrinsic neurons to exendin-4: A role in the manifestation of postprandial gastrointestinal symptoms in irritable bowel syndrome? Neurogastroenterol Motil 2019; 31:e13684. [PMID: 31311066 DOI: 10.1111/nmo.13684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with irritable bowel syndrome (IBS) may experience postprandial symptom exacerbation. Nutrients stimulate intestinal release of glucagon-like peptide 1 (GLP-1), an incretin hormone with known gastrointestinal effects. However, prior to the postprandial rise in GLP-1, levels of the hunger hormone, ghrelin, peak. The aims of this study were to determine if ghrelin sensitizes colonic intrinsic and extrinsic neurons to the stimulatory actions of a GLP-1 receptor agonist, and if this differs in a rat model of IBS. METHODS Calcium imaging of enteric neurons was compared between Sprague Dawley and Wistar Kyoto rats. Colonic contractile activity and vagal nerve recordings were also compared between strains. KEY RESULTS Circulating GLP-1 concentrations differ between IBS subtypes. Mechanistically, we have provided evidence that calcium responses evoked by exendin-4, a GLP-1 receptor agonist, are potentiated by a ghrelin receptor (GHSR-1) agonist, in both submucosal and myenteric neurons. Although basal patterns of colonic contractility varied between Sprague Dawley and Wister Kyoto rats, the capacity of exendin-4 to alter smooth muscle function was modified by a GHSR-1 agonist in both strains. Gut-brain signaling via GLP-1-mediated activation of vagal afferents was also potentiated by the GHSR-1 agonist. CONCLUSIONS & INFERENCES These findings support a temporal interaction between ghrelin and GLP-1, where the preprandial peak in ghrelin may temporarily sensitize colonic intrinsic and extrinsic neurons to the neurostimulatory actions of GLP-1. While the sensitizing effects of the GHSR-1 agonist were identified in both rat strains, in the rat model of IBS, underlying contractile activity was aberrant.
Collapse
Affiliation(s)
- Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Julliette M Buckley
- Department of Surgery, University College Cork, Cork, and Mater Private Hospital, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Abstract
Preclinical research remains an important tool for discovery and validation of novel therapeutics for gastrointestinal disorders. While in vitro assays can be used to verify receptor-ligand interactions and test for structural activity of new compounds, only whole-animal studies can demonstrate drug efficacy within the gastrointestinal system. Most major gastrointestinal disorders have been modeled in animals; however the translational relevance of each model is not equal. The purpose of this chapter is to provide a critical evaluation of common animal models that are being used to develop pharmaceuticals for gastrointestinal disorders. For brevity, the models are presented for upper gastrointestinal disorders involving the esophagus, stomach, and small intestine and lower gastrointestinal disorders that focus on the colon. Particular emphasis is used to explain the face and construct validity of each model, and the limitations of each model, including data interpretation, are highlighted. This chapter does not evaluate models that rely on surgical or other non-pharmacological interventions for treatment.
Collapse
|
7
|
Fuentes IM, Walker NK, Pierce AN, Holt BR, Di Silvestro ER, Christianson JA. Neonatal maternal separation increases susceptibility to experimental colitis and acute stress exposure in male mice. IBRO Rep 2016; 1:10-18. [PMID: 28164167 PMCID: PMC5289700 DOI: 10.1016/j.ibror.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Experiencing early life stress can result in maladjusted stress response via dysregulation of the hypothalamic-pituitary-adrenal axis and serves as a risk factor for developing chronic pelvic pain disorders. We investigated whether neonatal maternal separation (NMS) would increase susceptibility to experimental colitis or exposure to acute or chronic stress. Male mice underwent NMS from postnatal day 1-21 and as adults were assessed for open field behavior, hindpaw sensitivity, and visceromotor response (VMR) to colorectal distension (CRD). VMR was also measured before and after treatment with intracolonic trinitrobenzene sulfonic acid (TNBS) or exposure to acute or chronic water avoidance stress (WAS). Myeloperoxidase (MPO) activity, proinflammatory gene and corticotropin-releasing factor (CRF) receptor expression were measured in distal colon. Baseline VMR was not affected by NMS, but undergoing CRD increased anxiety-like behaviors and mechanical hindpaw sensitivity of NMS mice. Treatment with TNBS dose-dependently decreased body weight and survival only in NMS mice. Following TNBS treatment, IL-6 and artemin mRNA levels were decreased in the distal colon of NMS mice, despite increased MPO activity. A single WAS exposure increased VMR during CRD in NMS mice and increased IL-6 mRNA and CRF2 protein levels in the distal colon of naïve mice, whereas CRF2 protein levels were heightened in NMS colon both at baseline and post-WAS exposure. Taken together, these results suggest that NMS in mice disrupts inflammatory- and stress-induced gene expression in the colon, potentially contributing towards an exaggerated response to specific stressors later in life.
Collapse
Affiliation(s)
- Isabella M Fuentes
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Natalie K Walker
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Angela N Pierce
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Briana R Holt
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Elizabeth R Di Silvestro
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
8
|
Zhang YB, Guo ZD, Li MY, Fong P, Zhang JG, Zhang CW, Gong KR, Yang MF, Niu JZ, Ji XM, Lv GW. Gabapentin Effects on PKC-ERK1/2 Signaling in the Spinal Cord of Rats with Formalin-Induced Visceral Inflammatory Pain. PLoS One 2015; 10:e0141142. [PMID: 26512901 PMCID: PMC4626203 DOI: 10.1371/journal.pone.0141142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
Currently, the clinical management of visceral pain remains unsatisfactory for many patients suffering from this disease. While preliminary animal studies have suggested the effectiveness of gabapentin in successfully treating visceral pain, the mechanism underlying its analgesic effect remains unclear. Evidence from other studies has demonstrated the involvement of protein kinase C (PKC) and extracellular signal-regulated kinase1/2 (ERK1/2) in the pathogenesis of visceral inflammatory pain. In this study, we tested the hypothesis that gabapentin produces analgesia for visceral inflammatory pain through its inhibitory effect on the PKC-ERK1/2 signaling pathway. Intracolonic injections of formalin were performed in rats to produce colitis pain. Our results showed that visceral pain behaviors in these rats decreased after intraperitoneal injection of gabapentin. These behaviors were also reduced by intrathecal injections of the PKC inhibitor, H-7, and the ERK1/2 inhibitor, PD98059. Neuronal firing of wide dynamic range neurons in L6–S1 of the rat spinal cord dorsal horn were significantly increased after intracolonic injection of formalin. This increased firing rate was inhibited by intraperitoneal injection of gabapentin and both the individual and combined intrathecal application of H-7 and PD98059. Western blot analysis also revealed that PKC membrane translocation and ERK1/2 phosphorylation increased significantly following formalin injection, confirming the recruitment of PKC and ERK1/2 during visceral inflammatory pain. These effects were also significantly reduced by intraperitoneal injection of gabapentin. Therefore, we concluded that the analgesic effect of gabapentin on visceral inflammatory pain is mediated through suppression of PKC and ERK1/2 signaling pathways. Furthermore, we found that the PKC inhibitor, H-7, significantly diminished ERK1/2 phosphorylation levels, implicating the involvement of PKC and ERK1/2 in the same signaling pathway. Thus, our results suggest a novel mechanism of gabapentin-mediated analgesia for visceral inflammatory pain through a PKC-ERK1/2 signaling pathway that may be a future therapeutic target for the treatment of visceral inflammatory pain.
Collapse
Affiliation(s)
- Yan-bo Zhang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
- * E-mail:
| | - Zheng-dong Guo
- Department of Endocrinology, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Mei-yi Li
- Department of Neurology, Shandong Taishan Chronic Disease Hospital, Taian, China
| | - Peter Fong
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States of America
| | - Ji-guo Zhang
- Department of Pharmacology, College of Pharmacy, Taishan Medical University, Taian, China
| | - Can-wen Zhang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Ke-rui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Ming-feng Yang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Jing-zhong Niu
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Xun-ming Ji
- Hypoxia Medical Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo-wei Lv
- Hypoxia Medical Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
10
|
Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015; 53:139-59. [PMID: 25857253 DOI: 10.1016/j.neubiorev.2015.03.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 02/02/2015] [Accepted: 03/28/2015] [Indexed: 02/07/2023]
Abstract
Major depression and chronic pain are significant health problems that seriously impact the quality of life of affected individuals. These diseases that individually are difficult to treat often co-exist, thereby compounding the patient's disability and impairment as well as the challenge of successful treatment. The development of efficacious treatments for these comorbid disorders requires a more comprehensive understanding of their linked associations through common neuromodulators, such as tumor necrosis factor-α (TNFα), and various neurotransmitters, as well as common neuroanatomical pathways and structures, including the hippocampal brain region. This review discusses the interaction between depression and chronic pain, emphasizing the fundamental role of the hippocampus in the development and maintenance of both disorders. The focus of this review addresses the hypothesis that hippocampal expressed TNFα serves as a therapeutic target for management of chronic pain and major depressive disorder (MDD).
Collapse
Affiliation(s)
- Victoria Fasick
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | | | - Shabnam Samankan
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Nader D Nader
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; Department of Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; NanoAxis, LLC, Clarence, NY 14031, United States; Program for Neuroscience, School of Medicine and Biomedical Science, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
11
|
Pescatori M, Podzemny V, Pescatori LC, Dore MP, Bassotti G. The PNEI holistic approach in coloproctology. Tech Coloproctol 2015; 19:269-73. [PMID: 25820513 DOI: 10.1007/s10151-015-1277-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 01/27/2015] [Indexed: 12/17/2022]
Abstract
The psycho-neuroendocrine-immune approach relies on the concept of considering diseases from a holistic point of view: the various components (psyche, nervous system, endocrine system, and immune system) control the diseased organ/apparatus and in turn are influenced by a feedback mechanism. In this article, we will consider the psycho-neuroendocrine-immune approach to coloproctological disorders, by providing clinical cases and discussing them in light of this approach.
Collapse
Affiliation(s)
- M Pescatori
- Coloproctology Unit, Parioli Clinic, Rome, Italy,
| | | | | | | | | |
Collapse
|
12
|
Hyland NP, O'Mahony SM, O'Malley D, O'Mahony CM, Dinan TG, Cryan JF. Early-life stress selectively affects gastrointestinal but not behavioral responses in a genetic model of brain-gut axis dysfunction. Neurogastroenterol Motil 2015; 27:105-13. [PMID: 25443141 DOI: 10.1111/nmo.12486] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/15/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Early-life stress and a genetic predisposition to display an anxiety- and depressive-like phenotype are associated with behavioral and gastrointestinal (GI) dysfunction. Animals exposed to early-life stress, and those genetically predisposed to display anxiety or depressive behaviors, have proven useful tools in which to study stress-related GI disorders, such as irritable bowel syndrome (IBS). IBS is a heterogeneous disorder, and likely a consequence of both genetic and environmental factors. However, the combined effects of early-life stress and a genetic predisposition to display anxiety- and depression-like behaviors on GI function have not been investigated. METHODS We assessed the effect of maternal separation (MS) on behavioral and GI responses in WKY animals relative to a normo-anxious reference strain. KEY RESULTS Both non-separated (NS) WKY and WKY-MS animals displayed anxiety-like responses in the open-field test and depressive-like behaviors in the forced swim test relative to Sprague-Dawley rats. However, MS had no further influence on anxiety- and depressive-like behaviors exhibited by this stress-prone rat strain. Similarly, corticosterone levels measured after the OFT were insensitive to MS in WKY animals. However, WKY-MS displayed significantly increased colonic visceral hypersensitivity, fecal output, and altered colonic cholinergic sensitivity. CONCLUSIONS & INFERENCES Our data suggest that early-life stress, on the background of a genetic predisposition to display an anxiety- and depressive-like phenotype, selectively influences GI function rather than stress-related behaviors. Thus, our findings highlight the importance of genetic predisposition on the outcome of early-life adversity on GI function.
Collapse
Affiliation(s)
- N P Hyland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
13
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|
14
|
O'Mahony SM, Felice VD, Nally K, Savignac HM, Claesson MJ, Scully P, Woznicki J, Hyland NP, Shanahan F, Quigley EM, Marchesi JR, O'Toole PW, Dinan TG, Cryan JF. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience 2014; 277:885-901. [PMID: 25088912 DOI: 10.1016/j.neuroscience.2014.07.054] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 02/08/2023]
Abstract
Disruption of bacterial colonization during the early postnatal period is increasingly being linked to adverse health outcomes. Indeed, there is a growing appreciation that the gut microbiota plays a role in neurodevelopment. However, there is a paucity of information on the consequences of early-life manipulations of the gut microbiota on behavior. To this end we administered an antibiotic (vancomycin) from postnatal days 4-13 to male rat pups and assessed behavioral and physiological measures across all aspects of the brain-gut axis. In addition, we sought to confirm and expand the effects of early-life antibiotic treatment using a different antibiotic strategy (a cocktail of pimaricin, bacitracin, neomycin; orally) during the same time period in both female and male rat pups. Vancomycin significantly altered the microbiota, which was restored to control levels by 8 weeks of age. Notably, vancomycin-treated animals displayed visceral hypersensitivity in adulthood without any significant effect on anxiety responses as assessed in the elevated plus maze or open field tests. Moreover, cognitive performance in the Morris water maze was not affected by early-life dysbiosis. Immune and stress-related physiological responses were equally unaffected. The early-life antibiotic-induced visceral hypersensitivity was also observed in male rats given the antibiotic cocktail. Both treatments did not alter visceral pain perception in female rats. Changes in visceral pain perception in males were paralleled by distinct decreases in the transient receptor potential cation channel subfamily V member 1, the α-2A adrenergic receptor and cholecystokinin B receptor. In conclusion, a temporary disruption of the gut microbiota in early-life results in very specific and long-lasting changes in visceral sensitivity in male rats, a hallmark of stress-related functional disorders of the brain-gut axis such as irritable bowel disorder.
Collapse
Affiliation(s)
- S M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - V D Felice
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - K Nally
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Biochemistry, University College Cork, Cork, Ireland
| | - H M Savignac
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - M J Claesson
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland
| | - P Scully
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - J Woznicki
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - N P Hyland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - F Shanahan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Medicine, University College Cork, Cork, Ireland
| | - E M Quigley
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - J R Marchesi
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - P W O'Toole
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland
| | - T G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - J F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
15
|
Zhang MM, Liu SB, Chen T, Koga K, Zhang T, Li YQ, Zhuo M. Effects of NB001 and gabapentin on irritable bowel syndrome-induced behavioral anxiety and spontaneous pain. Mol Brain 2014; 7:47. [PMID: 24935250 PMCID: PMC4071154 DOI: 10.1186/1756-6606-7-47] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is characterized by recurrent abdominal discomfort, spontaneous pain, colorectal hypersensitivity and bowel dysfunction. Patients with IBS also suffer from emotional anxiety and depression. However, few animal studies have investigated IBS-induced spontaneous pain and behavioral anxiety. In this study, we assessed spontaneous pain and anxiety behaviors in an adult mouse model of IBS induced by zymosan administration. By using Fos protein as a marker, we found that sensory and emotion related brain regions were activated at day 7 after the treatment with zymosan; these regions include the prefrontal cortex, anterior cingulate cortex, insular cortex and amygdala. Behaviorally, zymosan administration triggered spontaneous pain (decreased spontaneous activities in the open field test) and increased anxiety-like behaviors in three different tests (the open field, elevated plus maze and light/dark box tests). Intraperitoneal injection of NB001, an adenylyl cyclase 1 (AC1) inhibitor, reduced spontaneous pain but had no significant effect on behavioral anxiety. In contrast, gabapentin reduced both spontaneous pain and behavioral anxiety. These results indicate that NB001 and gabapentin may inhibit spontaneous pain and anxiety-like behaviors through different mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun-Qing Li
- Department of Anatomy, Histology, Embryology & K, K, Leung Brain Research Centre, The Fourth Military Medical University, Xian, Shanxi 710032, China.
| | | |
Collapse
|
16
|
Acute colitis induces neurokinin 1 receptor internalization in the rat lumbosacral spinal cord. PLoS One 2013; 8:e59234. [PMID: 23555638 PMCID: PMC3605455 DOI: 10.1371/journal.pone.0059234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Substance P (SP) and its receptor, the neurokinin 1 receptor (NK1R), play important roles in transmitting and regulating somatosensory nociceptive information. However, their roles in visceral nociceptive transmission and regulation remain to be elucidated. In the previous study, moderate SP immunoreactive (SP-ir) terminals and NK1R-ir neurons were observed in the dorsal commissural nucleus (DCN) of the lumbosacral spinal cord. Thus we hypothesized that the SP-NK1R system is involved in visceral pain transmission and control within the DCN. The acute visceral pain behaviors, the colon histological changes and the temporal and spatial changes of NK1R-ir structures and Fos expression in the neurons of the DCN were observed in rats following lower colon instillation with 5% formalin. The formalin instillation induced significant acute colitis as revealed by the histological changes in the colon. NK1R internalization in the DCN was obvious at 8 min. It reached a peak (75.3%) at 30 min, began to decrease at 90 min (58.1%) and finally reached the minimum (19.7%) at 3 h after instillation. Meanwhile, formalin instillation induced a biphasic visceral pain response as well as a strong expression of Fos protein in the nuclei of neurons in the DCN. Finally, intrathecal treatment with the NK1R antagonist L732138 attenuated the NK1R internalization, Fos expression and visceral nociceptive responses. The present results suggest that the visceral nociceptive information arising from inflamed pelvic organs, such as the lower colon, might be mediated by the NK1R-ir neurons in the DCN of the lumbosacral spinal cord.
Collapse
|
17
|
Relative potency of pregabalin, gabapentin, and morphine in a mouse model of visceral pain. Can J Anaesth 2012; 60:44-9. [PMID: 23132044 DOI: 10.1007/s12630-012-9813-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/16/2012] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Pregabalin is probably more effective than prototype gabapentin in different kinds of pain treatments. This study was performed to compare the potency of gabapentin, pregabalin, and morphine in a well-established model of visceral pain. METHODS The number of abdominal contractions was counted for 30 min in adult male mice that received different doses of pregabalin, gabapentin, morphine, or placebo intraperitoneally 30 min before receiving 0.6% acetic acid 10 mL·kg(-1).The antinociceptive effect of each drug dose was determined as a percentage of the reduction in the number of acetic acid-induced writhes. The effective doses, for 20%, 50%, and 80% response (ED(20), ED(50), and ED(80), respectively), of each drug were calculated using least squares linear regression analysis, and then dose-response curves were compared. RESULTS Pregabalin, gabapentin, and morphine produced a linear dose-dependent antinociceptive effect (coefficient of determination [r(2)] > 0.9). No difference was observed between slopes of dose-response curves. The ED(50) estimates (95% confidence interval) for pregabalin, gabapentin, and morphine were 17.1 (12.9 to 22.1) mg·kg(-1), 87.1 (45.8 to 129.8) mg·kg(-1), and 0.2 (0.1 to 0.3) mg·kg(-1), respectively. CONCLUSION In this animal model of visceral pain, all three drugs exhibited parallel dose-response curves. Pregabalin had five times the potency of gabapentin and 1/85(th) the potency of morphine. Similar potency ratios may apply in clinical practice. Despite some limitations of animal studies, this model could be useful for comparing new analgesics in visceral pain treatment.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Visceral pain represents a major clinical problem, yet far less is known about its mechanisms compared with somatic pains, for example, from cutaneous and muscular structures. RECENT FINDINGS In this review, we describe the neuroanatomical bases of visceral pain signalling in the peripheral and central nervous system, comparing to somatic pains and also the channels and receptors involved in these events. We include an overview of potential new targets in the context of mechanisms of visceral pain and hypersensitivity. SUMMARY This review should inform on the recognition of what occurs in patients with visceral pain, why comorbidities are common and how analgesic treatments work.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Department of Neuroscience, Physiology and Pharmacology University College London, London UK.
| | | |
Collapse
|