1
|
Zhang X, Yi X, Gao X, Li Y, Shen X. Liver-Targeted Nanoparticles Loaded with Cannabidiol Based on Redox Response for Effective Alleviation of Acute Liver Injury. Foods 2024; 13:2464. [PMID: 39123655 PMCID: PMC11311329 DOI: 10.3390/foods13152464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The purpose of this work was to construct liver-targeted nanoparticles based on the redox response to effectively deliver cannabidiol (CBD) for the prevention of acute liver injury (ALI). CBD-loaded nanoparticles (CBD NPs) with a particle size of 126.5 ± 1.56 nm were prepared using the polymer DA-PP-LA obtained by grafting pullulan polysaccharide with deoxycholic acid (DA) and α-lipoic acid (α-LA). CBD NPs showed typical redox-response release behavior. Interestingly, CBD NPs exhibited admirable liver targeting ability, significantly accumulated in the liver, and effectively promoted the internalization of CBD in liver cells, thus effectively reducing the H2O2-induced oxidative damage of HepG2 cells and avoiding apoptosis. More importantly, CBD NPs effectively prevented CCl4-induced ALI by protecting liver function, ameliorating oxidative stress levels, inhibiting the production of inflammatory factors, and protecting the liver from histological damage. This study provides a promising strategy for achieving targeted delivery of CBD NPs in the liver, thereby effectively preventing ALI.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yongcheng Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (X.Z.); (X.Y.); (X.G.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
2
|
Flores-Cortez D, Villalobos-Pacheco E, Ignacio-Punin C, Gutierrez-Guerra G, Tovar-Brandan J, Rodriguez-Tafur J. Hepatoprotective Effect of Cannabidiol on the Progression of Experimental Hepatic Cirrhosis in Rats. Cannabis Cannabinoid Res 2024. [PMID: 38885158 DOI: 10.1089/can.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Introduction: Liver cirrhosis is a condition characterized by the gradual replacement of normal liver tissue with scar tissue, ultimately leading to liver failure. This slow and progressive disease begins with a chronic inflammatory process induced by a noxious agent. In its advanced stages, the disease lacks effective therapies. Research has demonstrated the significant involvement of the endocannabinoid system in the pathogenesis of this disease. This study evaluated the hepatoprotective effect of cannabidiol (CBD) in the progression of experimental hepatic cirrhosis induced by thioacetamide (TAA) in rats. Methods: A randomized experimental design was employed using Holtzman rats. Hepatic cirrhosis was induced by intraperitoneal administration of TAA at a dose of 150 mg/kg for 6 weeks, with treatment initiated additionally. The groups were as follows: Group 1: TAA + vehicle; Group 2: TAA + CBD 2 mg/kg; Group 3: TAA + CBD 9 mg/kg; Group 4: TAA + CBD 18 mg/kg; Group 5: TAA + silymarin 50 mg/kg; and Group 6: Healthy control. Serum biochemical analysis (total bilirubin, direct bilirubin, ALT, AST, alkaline phosphatase, and albumin) and hepatic histopathological study were performed. The Knodell histological activity index (HAI) was determined, considering periportal necrosis, intralobular degeneration, portal inflammation, fibrosis, and focal necrosis. Results: All groups receiving TAA exhibited an elevation in AST levels; however, only those treated with CBD at doses of 2 mg/kg and 18 mg/kg did not experience significant changes compared to their baseline values (152.8 and 135.7 IU/L, respectively). Moreover, ALT levels in animals treated with CBD showed no significant variation compared to baseline. The HAI of hepatic tissue was notably lower in animals treated with CBD at doses of 9 and 18 mg/kg, scoring 3.0 and 3.25, respectively, in contrast to the TAA + vehicle group, which recorded a score of 7.00. Animals treated with CBD at 18 mg/kg showed a reduced degree of fibrosis and necrosis compared to those receiving TAA alone (p ≤ 0.05). Conclusion: Our findings demonstrate that cannabidiol exerts a hepatoprotective effect in the development of experimental hepatic cirrhosis induced in rats.
Collapse
Affiliation(s)
- Daisy Flores-Cortez
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| | - Eduardo Villalobos-Pacheco
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| | - Cecilia Ignacio-Punin
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| | | | - Javier Tovar-Brandan
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| | - Juan Rodriguez-Tafur
- Pharmacology Laboratory, Faculty of Human Medicine, Universidad Nacional Mayor de San Marcos-UNMSM, Lima, Peru
- Research Group in Basic and Clinical Pharmacology of Drugs and Natural Products (FARMANAT)
| |
Collapse
|
3
|
Chen S, Kim JK. The Role of Cannabidiol in Liver Disease: A Systemic Review. Int J Mol Sci 2024; 25:2370. [PMID: 38397045 PMCID: PMC10888697 DOI: 10.3390/ijms25042370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive phytocannabinoid abundant in Cannabis sativa, has gained considerable attention for its anti-inflammatory, antioxidant, analgesic, and neuroprotective properties. It exhibits the potential to prevent or slow the progression of various diseases, ranging from malignant tumors and viral infections to neurodegenerative disorders and ischemic diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, and viral hepatitis stand as prominent causes of morbidity and mortality in chronic liver diseases globally. The literature has substantiated CBD's potential therapeutic effects across diverse liver diseases in in vivo and in vitro models. However, the precise mechanism of action remains elusive, and an absence of evidence hinders its translation into clinical practice. This comprehensive review emphasizes the wealth of data linking CBD to liver diseases. Importantly, we delve into a detailed discussion of the receptors through which CBD might exert its effects, including cannabinoid receptors, CB1 and CB2, peroxisome proliferator-activated receptors (PPARs), G protein-coupled receptor 55 (GPR55), transient receptor potential channels (TRPs), and their intricate connections with liver diseases. In conclusion, we address new questions that warrant further investigation in this evolving field.
Collapse
Affiliation(s)
- Si Chen
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Jeon-Kyung Kim
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| |
Collapse
|
4
|
O’Sullivan SE, Jensen SS, Kolli AR, Nikolajsen GN, Bruun HZ, Hoeng J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals (Basel) 2024; 17:244. [PMID: 38399459 PMCID: PMC10892205 DOI: 10.3390/ph17020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The poor physicochemical properties of cannabidiol (CBD) hamper its clinical development. The aim of this review was to examine the literature to identify novel oral products and delivery strategies for CBD, while assessing their clinical implications and translatability. Evaluation of the published literature revealed that oral CBD strategies are primarily focused on lipid-based and emulsion solutions or encapsulations, which improve the overall pharmacokinetics (PK) of CBD. Some emulsion formulations demonstrate more rapid systemic delivery. Variability in the PK effects of different oral CBD products is apparent across species. Several novel administration routes exist for CBD delivery that may offer promise for specific indications. For example, intranasal administration and inhalation allow quick delivery of CBD to the plasma and the brain, whereas transdermal and transmucosal administration routes deliver CBD systemically more slowly. There are limited but promising data on novel delivery routes such as intramuscular and subcutaneous. Very limited data show that CBD is generally well distributed across tissues and that some CBD products enable increased delivery of CBD to different brain regions. However, evidence is limited regarding whether changes in CBD PK profiles and tissue distribution equate to superior therapeutic efficacy across indications and whether specific CBD products might be suited to particular indications.
Collapse
Affiliation(s)
| | - Sanne Skov Jensen
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Aditya Reddy Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland;
| | | | - Heidi Ziegler Bruun
- Fertin Pharma, Dandyvej 19, 7100 Vejle, Denmark; (S.S.J.); (G.N.N.); (H.Z.B.)
| | - Julia Hoeng
- Vectura Fertin Pharma, 4058 Basel, Switzerland;
| |
Collapse
|
5
|
Chu FX, Wang X, Li B, Xu LL, Di B. The NLRP3 inflammasome: a vital player in inflammation and mediating the anti-inflammatory effect of CBD. Inflamm Res 2024; 73:227-242. [PMID: 38191853 DOI: 10.1007/s00011-023-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The NLRP3 inflammasome is a vital player in the emergence of inflammation. The priming and activation of the NLRP3 inflammasome is a major trigger for inflammation which is a defense response against adverse stimuli. However, the excessive activation of the NLRP3 inflammasome can lead to the development of various inflammatory diseases. Cannabidiol, as the second-most abundant component in cannabis, has a variety of pharmacological properties, particularly anti-inflammation. Unlike tetrahydrocannabinol, cannabidiol has a lower affinity for cannabinoid receptors, which may be the reason why it is not psychoactive. Notably, the mechanism by which cannabidiol exerts its anti-inflammatory effect is still unclear. METHODS We have performed a literature review based on published original and review articles encompassing the NLRP3 inflammasome and cannabidiol in inflammation from central databases, including PubMed and Web of Science. RESULTS AND CONCLUSIONS In this review, we first summarize the composition and activation process of the NLRP3 inflammasome. Then, we list possible molecular mechanisms of action of cannabidiol. Next, we explain the role of the NLRP3 inflammasome and the anti-inflammatory effect of cannabidiol in inflammatory disorders. Finally, we emphasize the capacity of cannabidiol to suppress inflammation by blocking the NLRP3 signaling pathway, which indicates that cannabidiol is a quite promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Feng-Xin Chu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Li
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Li Xu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Bin Di
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Nakatake R, Schulz M, Kalvelage C, Benstoem C, Tolba RH. Effects of iNOS in Hepatic Warm Ischaemia and Reperfusion Models in Mice and Rats: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms231911916. [PMID: 36233220 PMCID: PMC9569681 DOI: 10.3390/ijms231911916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/09/2022] Open
Abstract
Warm ischaemia is usually induced by the Pringle manoeuver (PM) during hepatectomy. Currently, there is no widely accepted standard protocol to minimise ischaemia-related injury, so reducing ischaemia-reperfusion damage is an active area of research. This systematic review and meta-analysis focused on inducible nitric oxide synthase (iNOS) as an early inflammatory response to hepatic ischaemia reperfusion injury (HIRI) in mouse- and rat-liver models. A systematic search of studies was performed within three databases. Studies meeting the inclusion criteria were subjected to qualitative and quantitative synthesis of results. We performed a meta-analysis of studies grouped by different HIRI models and ischaemia times. Additionally, we investigated a possible correlation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) regulation with iNOS expression. Of 124 included studies, 49 were eligible for the meta-analysis, revealing that iNOS was upregulated in almost all HIRIs. We were able to show an increase of iNOS regardless of ischemia or reperfusion time. Additionally, we found no direct associations of eNOS or NO with iNOS. A sex gap of primarily male experimental animals used was observed, leading to a higher risk of outcomes not being translatable to humans of all sexes.
Collapse
Affiliation(s)
- Richi Nakatake
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, 52074 Aachen, Germany
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Mareike Schulz
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Christina Kalvelage
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Carina Benstoem
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
7
|
Henry N, Fraser JF, Chappell J, Langley T, Roberts JM. Cannabidiol’s Multifactorial Mechanisms Has Therapeutic Potential for Aneurysmal Subarachnoid Hemorrhage: a Review. Transl Stroke Res 2022; 14:283-296. [PMID: 36109476 PMCID: PMC10160197 DOI: 10.1007/s12975-022-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
AbstractSubarachnoid hemorrhage (SAH) is a major health burden that accounts for approximately 5% of all strokes. The most common cause of a non-traumatic SAH is the rupture of a cerebral aneurysm. The most common symptom associated with SAH is a headache, often described as “the worst headache of my life.” Delayed cerebral ischemia (DCI) is a major factor associated with patient mortality following SAH and is often associated with SAH-induced cerebral vasospasm (CV). Cannabidiol (CBD) is emerging as a potential drug for many therapeutic purposes, including epilepsy, anxiety, and pain relief. We aim to review the potential use of CBD as a treatment option for post-SAH critically ill patients. Through a literature review, we evaluated the known pharmacology and physiological effects of CBD and correlated those with the pathophysiological outcomes associated with cerebral vasospasm following subarachnoid hemorrhage. Although overlap exists, data were formatted into three major categories: anti-inflammatory, vascular, and neuroprotective effects. Based on the amount of information known about the actions of CBD, we hypothesize the anti-inflammatory effects are likely to be the most promising therapeutic mechanism. However, its cardiovascular effects through calcium regulation and its neuroprotective effects against cell death, excitotoxicity, and oxidative stress are all plausible mechanisms by which post-SAH critically ill patients may benefit from both early and late intervention with CBD. More research is needed to better understand if and how CBD might affect neurological and vascular functions in the brain following injury such as subarachnoid hemorrhage.
Collapse
|
8
|
Parlar A, Arslan SO, Yumrutas O, Elibol E, Yalcin A, Uckardes F, Aydin H, Dogan MF, Kayhan Kustepe E, Ozer MK. Effects of cannabinoid receptor 2 synthetic agonist, AM1241, on bleomycin induced pulmonary fibrosis. Biotech Histochem 2020; 96:48-59. [PMID: 33325762 DOI: 10.1080/10520295.2020.1758343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Bleomycin (BLM) is a chemotherapeutic agent that can cause pulmonary fibrosis. Little is known about the possible protective role of the CB2 receptor agonist, AM1241. We investigated the effects of CB2 receptor activation by AM1241 on BLM induced lung fibrosis in a rat model. BLM was administered via the trachea. Adult female Wistar rats were divided into five groups: saline (control group), BLM (BLM group), CB2 agonist (AM1241) + BLM (BLMA group), CB2 antagonist (AM630) and CB2 agonist (AM1241) + BLM (BLMA + A group), and vehicle (dimethylsulfoxide) + BLM (BLM + vehicle group). Hydroxyproline, collagen type 1, total protein, glutathione (GSH), malondialdehyde (MDA), interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels were measured in lung fibrosis and control tissue using standard methods. We investigated the histopathology of lung tissue to determine the extent of fibrosis. We found significantly higher levels of hydroxyproline, TNF-α, IL-6 and total protein in the BLM group compared to the BLMA group. The level of GSH also was higher in the BLMA group compared to the BLM group. Inflammation and fibrotic changes were significantly reduced in the BLMA group. Our findings suggest that CB2 receptor activation provided protection against BLM induced pulmonary fibrosis by suppressing oxidative stress and increasing cytokines.
Collapse
Affiliation(s)
- Ali Parlar
- Faculty of Medicine, Department of Pharmacology, University of Adıyaman , Adıyaman, Turkey
| | - Seyfullah Oktay Arslan
- Pharmacology Department, Faculty of Medicine, Yıldırım Beyazıt University , Ankara, Turkey
| | - Onder Yumrutas
- Faculty of Medicine, Department of Medical Biology, University of Adıyaman , Adıyaman, Turkey
| | - Ebru Elibol
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Alper Yalcin
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Fatih Uckardes
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, University of Adıyaman , Adıyaman, Turkey
| | - Hasan Aydin
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, University of Adıyaman , Adıyaman, Turkey
| | - Muhammed Fatih Dogan
- Pharmacology Department, Faculty of Medicine, Yıldırım Beyazıt University , Ankara, Turkey
| | - Elif Kayhan Kustepe
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Mehmet Kaya Ozer
- Faculty of Medicine, Department of Pharmacology, University of Adıyaman , Adıyaman, Turkey
| |
Collapse
|
9
|
The Effects of Cannabidiol, a Non-Intoxicating Compound of Cannabis, on the Cardiovascular System in Health and Disease. Int J Mol Sci 2020; 21:ijms21186740. [PMID: 32937917 PMCID: PMC7554803 DOI: 10.3390/ijms21186740] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating and generally well-tolerated constituent of cannabis which exhibits potential beneficial properties in a wide range of diseases, including cardiovascular disorders. Due to its complex mechanism of action, CBD may affect the cardiovascular system in different ways. Thus, we reviewed the influence of CBD on this system in health and disease to determine the potential risk of cardiovascular side effects during CBD use for medical and wellness purposes and to elucidate its therapeutic potential in cardiovascular diseases. Administration of CBD to healthy volunteers or animals usually does not markedly affect hemodynamic parameters. Although CBD has been found to exhibit vasodilatory and antioxidant properties in hypertension, it has not affected blood pressure in hypertensive animals. Hypotensive action of CBD has been mainly revealed under stress conditions. Many positive effects of CBD have been observed in experimental models of heart diseases (myocardial infarction, cardiomyopathy, myocarditis), stroke, neonatal hypoxic ischemic encephalopathy, sepsis-related encephalitis, cardiovascular complications of diabetes, and ischemia/reperfusion injures of liver and kidneys. In these pathological conditions CBD decreased organ damage and dysfunction, oxidative and nitrative stress, inflammatory processes and apoptosis, among others. Nevertheless, further clinical research is needed to recommend the use of CBD in the treatment of cardiovascular diseases.
Collapse
|
10
|
McCartney D, Benson MJ, Desbrow B, Irwin C, Suraev A, McGregor IS. Cannabidiol and Sports Performance: a Narrative Review of Relevant Evidence and Recommendations for Future Research. SPORTS MEDICINE - OPEN 2020; 6:27. [PMID: 32632671 PMCID: PMC7338332 DOI: 10.1186/s40798-020-00251-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid derived from Cannabis sativa. CBD initially drew scientific interest due to its anticonvulsant properties but increasing evidence of other therapeutic effects has attracted the attention of additional clinical and non-clinical populations, including athletes. Unlike the intoxicating cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), CBD is no longer prohibited by the World Anti-Doping Agency and appears to be safe and well-tolerated in humans. It has also become readily available in many countries with the introduction of over-the-counter "nutraceutical" products. The aim of this narrative review was to explore various physiological and psychological effects of CBD that may be relevant to the sport and/or exercise context and to identify key areas for future research. As direct studies of CBD and sports performance are is currently lacking, evidence for this narrative review was sourced from preclinical studies and a limited number of clinical trials in non-athlete populations. Preclinical studies have observed robust anti-inflammatory, neuroprotective and analgesic effects of CBD in animal models. Preliminary preclinical evidence also suggests that CBD may protect against gastrointestinal damage associated with inflammation and promote healing of traumatic skeletal injuries. However, further research is required to confirm these observations. Early stage clinical studies suggest that CBD may be anxiolytic in "stress-inducing" situations and in individuals with anxiety disorders. While some case reports indicate that CBD improves sleep, robust evidence is currently lacking. Cognitive function and thermoregulation appear to be unaffected by CBD while effects on food intake, metabolic function, cardiovascular function, and infection require further study. CBD may exert a number of physiological, biochemical, and psychological effects with the potential to benefit athletes. However, well controlled, studies in athlete populations are required before definitive conclusions can be reached regarding the utility of CBD in supporting athletic performance.
Collapse
Affiliation(s)
- Danielle McCartney
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia.
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia.
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia.
| | - Melissa J Benson
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Ben Desbrow
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher Irwin
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Anastasia Suraev
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Iain S McGregor
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Walker LA, Koturbash I, Kingston R, ElSohly MA, Yates CR, Gurley BJ, Khan I. Cannabidiol (CBD) in Dietary Supplements: Perspectives on Science, Safety, and Potential Regulatory Approaches. J Diet Suppl 2020; 17:493-502. [PMID: 32543246 DOI: 10.1080/19390211.2020.1777244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proliferation in the last few years of cannabidiol (CBD)-containing products in the U.S. markets has been greatly accelerated by changes in the regulatory environment, and by perceptions of their health benefits and presumed safety. The result has been aggressive marketing of many types of products, some of dubious quality, making or implying drug-type claims. The recent approval by the U.S. Food and Drug Administration (FDA) of CBD in the form of Epidiolex®, further complicates the regulatory picture. In addition, a number of studies suggest that, at least at high doses, there may be serious adverse effects or drug interactions associated with CBD. At present, CBD-containing products do not meet the strict definition of dietary supplements, but the FDA is continuing to consider some framework under which they might be allowed. Meanwhile, FDA has adopted a "risk-based" enforcement policy. Possible approaches to a new framework for regulation of CBD products as dietary supplements are discussed here, including expanded research emphasis, a robust corporate stewardship program, and a rigorous adverse event reporting program.
Collapse
Affiliation(s)
- Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Igor Koturbash
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rick Kingston
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA.,SafetyCall International, Minneapolis, MN, USA.,Division of Professional Education, University of Minnesota School of Pharmacy, Minneapolis, MN, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA.,ElSohly Laboratories, Inc., Oxford, MS, USA
| | - Charles Ryan Yates
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Ikhlas Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
12
|
Karoly HC, Mueller RL, Bidwell LC, Hutchison KE. Cannabinoids and the Microbiota-Gut-Brain Axis: Emerging Effects of Cannabidiol and Potential Applications to Alcohol Use Disorders. Alcohol Clin Exp Res 2019; 44:340-353. [PMID: 31803950 DOI: 10.1111/acer.14256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) has emerged in recent years as a potential treatment target for alcohol use disorders (AUD). In particular, the nonpsychoactive cannabinoid cannabidiol (CBD) has shown preclinical promise in ameliorating numerous clinical symptoms of AUD. There are several proposed mechanism(s) through which cannabinoids (and CBD in particular) may confer beneficial effects in the context of AUD. First, CBD may directly impact specific brain mechanisms underlying AUD to influence alcohol consumption and the clinical features of AUD. Second, CBD may influence AUD symptoms through its actions across the digestive, immune, and central nervous systems, collectively known as the microbiota-gut-brain axis (MGBA). Notably, emerging work suggests that alcohol and cannabinoids exert opposing effects on the MGBA. Alcohol is linked to immune dysfunction (e.g., chronic systemic inflammation in the brain and periphery) as well as disturbances in gut microbial species (microbiota) and increased intestinal permeability. These MGBA disruptions have been associated with AUD symptoms such as craving and impaired cognitive control. Conversely, existing preclinical data suggest that cannabinoids may confer beneficial effects on the gastrointestinal and immune system, such as reducing intestinal permeability, regulating gut bacteria, and reducing inflammation. Thus, cannabinoids may exert AUD harm-reduction effects, at least in part, through their beneficial actions across the MGBA. This review will provide a brief introduction to the ECS and the MGBA, discuss the effects of cannabinoids (particularly CBD) and alcohol in the brain, gut, and immune system (i.e., across the MGBA), and put forth a theoretical framework to inform future research questions.
Collapse
Affiliation(s)
- Hollis C Karoly
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Raeghan L Mueller
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
13
|
Abstract
The recent legalization of recreational marijuana use in some parts of the world, the discovery of new indications for the clinical application of cannabis, and the acceptance of the use of cannabis in practice has been paralleled by extensive research on the active components of cannabis and the endocannabinoid system within the human body. In this review, we evaluate the available evidence on cannabis and its constituents and the application of this evidence in clinical practice, focusing particularly on the liver and liver diseases. Constituents of cannabis, such as cannabidiol and Δ-tetrahydrocannabinol, have shown anti-inflammatory, antioxidant, and hepatoprotective effects both in in vitro and clinical studies, and appear to have potential in the symptom management and treatment of various liver diseases that were previously considered difficult to manage conservatively. In addition, the manipulation of the inherent endocannabinoid response system has found favor in many clinical fields and has generated considerable research and clinical interest. Moreover, evidence with regard to the adverse effects of marijuana use in liver diseases is weak, which has led to raise a question on the prior rules, with regard to a denial of liver transplantation to marijuana users. All in all, the recent trends in research, clinical experiences, as well as the legislature, has opened up new avenues towards the widespread clinical application of cannabis and its derivatives as well as modifiers of the components of the endocannabinoid system. More research is required to fully exploit these new evidences.
Collapse
|
14
|
Citti C, Palazzoli F, Licata M, Vilella A, Leo G, Zoli M, Vandelli MA, Forni F, Pacchetti B, Cannazza G. Untargeted rat brain metabolomics after oral administration of a single high dose of cannabidiol. J Pharm Biomed Anal 2018; 161:1-11. [DOI: 10.1016/j.jpba.2018.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022]
|
15
|
Abstract
Nearly half of all states have legalized medical marijuana or recreational-use marijuana. As more states move toward legalization, the effects on injured patients must be evaluated. This study sought to determine effects of cannabis positivity at the time of severe injury on hospital outcomes compared with individuals negative for illicit substances and those who were users of other illicit substances. A Level I trauma center performed a retrospective chart review covering subjects over a 2-year period with toxicology performed and an Injury Severity Score (ISS) of more than 16. These individuals were divided into the negative and positive toxicology groups, further divided into the marijuana-only, other drugs-only, and mixed-use groups. Differences in presenting characteristics, hospital length of stay, intensive care unit (ICU) stays, ventilator days, and death were compared. A total of 8,441 subjects presented during the study period; 2,134 (25%) of these had toxicology performed; 843 (40%) had an ISS of more than 16, with 347 having negative tests (NEG); 70 (8.3%) substance users tested positive only for marijuana (MO), 323 (38.3%) for other drugs-only, excluding marijuana (OD), and 103 (12.2%) subjects showed positivity for mixed-use (MU). The ISS was similar for all groups. No differences were identified in Glasgow Coma Scale (GCS), ventilator days, blood administration, or ICU/hospital length of stay when comparing the MO group with the NEG group. Significant differences occurred between the OD group and the NEG/MO/MU groups for GCS, ICU length of stay, and hospital charges. Cannabis users suffering from severe injury demonstrated no detrimental outcomes in this study compared with nondrug users.
Collapse
|
16
|
Wang Y, Mukhopadhyay P, Cao Z, Wang H, Feng D, Haskó G, Mechoulam R, Gao B, Pacher P. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury. Sci Rep 2017; 7:12064. [PMID: 28935932 PMCID: PMC5608708 DOI: 10.1038/s41598-017-10924-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/17/2017] [Indexed: 01/22/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive component of marijuana, which has anti-inflammatory effects. It has also been approved by FDA for various orphan diseases for exploratory trials. Herein, we investigated the effects of CBD on liver injury induced by chronic plus binge alcohol feeding in mice. CBD or vehicle was administered daily throughout the alcohol feeding study. At the conclusion of the feeding protocol, serums samples, livers or isolated neutrophils were utilized for molecular biology, biochemistry and pathology analysis. CBD significantly attenuated the alcohol feeding-induced serum transaminase elevations, hepatic inflammation (mRNA expressions of TNFα, MCP1, IL1β, MIP2 and E-Selectin, and neutrophil accumulation), oxidative/nitrative stress (lipid peroxidation, 3-nitrotyrosine formation, and expression of reactive oxygen species generating enzyme NOX2). CBD treatment also attenuated the respiratory burst of neutrophils isolated from chronic plus binge alcohol fed mice or from human blood, and decreased the alcohol-induced increased liver triglyceride and fat droplet accumulation. Furthermore, CBD improved alcohol-induced hepatic metabolic dysregulation and steatosis by restoring changes in hepatic mRNA or protein expression of ACC-1, FASN, PPARα, MCAD, ADIPOR-1, and mCPT-1. Thus, CBD may have therapeutic potential in the treatment of alcoholic liver diseases associated with inflammation, oxidative stress and steatosis, which deserves exploration in human trials.
Collapse
Affiliation(s)
- Yuping Wang
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.,Department of Clinical Microbiology and Immunology, Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou Province, China
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Zongxian Cao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, 91120, Israel
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
18
|
Pharmacologic Effects of Cannabidiol on Acute Reperfused Myocardial Infarction in Rabbits: Evaluated With 3.0T Cardiac Magnetic Resonance Imaging and Histopathology. J Cardiovasc Pharmacol 2016; 66:354-63. [PMID: 26065843 DOI: 10.1097/fjc.0000000000000287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cannabidiol (CBD) has anti-inflammatory effects. We explored its therapeutic effects on cardiac ischemia-reperfusion injury with an experimental imaging platform. Reperfused acute myocardial infarction (AMI) was induced in rabbits with a 90-minute coronary artery occlusion followed by 24-hour reperfusion. Before reperfusion, rabbits received 2 intravenous doses of 100 μg/kg CBD (n = 10) or vehicle (control, n = 10). Evans blue was intravenously injected for later detection of the AMI core. Cardiac magnetic resonance imaging was performed to evaluate cardiac morphology and function. After euthanasia, blood troponin I (cTnI) was assessed, and the heart was excised and infused with multifunctional red iodized oil dye. The heart was sliced for digital radiography to quantify the perfusion density rate, area at risk (AAR), and myocardial salvage index, followed by histomorphologic staining. Compared with controls, CBD treatment improved systolic wall thickening (P < 0.05), significantly increased blood flow in the AAR (P < 0.05), significantly decreased microvascular obstruction (P < 0.05), increased the perfusion density rate by 1.7-fold, lowered the AMI core/AAR ratio (P < 0.05), and increased the myocardial salvage index (P < 0.05). These improvements were associated with reductions in serum cTnI, cardiac leukocyte infiltration, and myocellular apoptosis (P < 0.05). Thus, CBD therapy reduced AMI size and facilitated restoration of left ventricular function. We demonstrated that this experimental platform has potential theragnostic utility.
Collapse
|
19
|
Abdel-Gaber SA, Ibrahim MA, Amin EF, Ibrahim SA, Mohammed RK, Abdelrahman AM. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia–reperfusion-induced hepatic injury in rats. Life Sci 2015; 134:42-8. [DOI: 10.1016/j.lfs.2015.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 12/18/2022]
|
20
|
Moris D, Georgopoulos S, Felekouras E, Patsouris E, Theocharis S. The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe? Expert Opin Ther Targets 2015; 19:1261-75. [PMID: 25936364 DOI: 10.1517/14728222.2015.1043268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In recent years, the endocannabinoid system has emerged as a new therapeutic target in variety of disorders associated with inflammation and tissue injury, including those of the neuronal, liver, renal and cardiovascular system. The aim of the present review is to elucidate the effect of endocannabinoid system on ischemia reperfusion injury (IRI) in different organs and systems. AREAS COVERED The MEDLINE/PubMed database was searched for publications with the medical subject heading Cannabinoids* (CBs), CB receptors*, organ*, ischemia/reperfusion injury*, endocannabinoid* and system*. The initial relevant studies retrieved from the literature were 91 from PubMed. This number was initially limited to 35, after excluding the reviews and studies reporting data for receptors other than cannabinoid. EXPERT OPINION CB2 receptors may play an important compensatory role in controlling tissue inflammation and injury in cells of the neuronal, cardiovascular, liver and renal systems, as well as in infiltrating monocytes/macrophages and leukocytes during various pathological conditions of the systems (atherosclerosis, restenosis, stroke, myocardial infarction, heart, liver and renal failure). These receptors limit inflammation and associated tissue injury. On the basis of preclinical results, pharmacological modulation of CB2 receptors may hold a unique therapeutic potential in stroke, myocardial infarction, atherosclerosis, IRI and liver disease.
Collapse
Affiliation(s)
- Demetrios Moris
- National and Kapodistrian University of Athens , Anastasiou Gennadiou 56, 11474, Athens , Greece +30 210 6440590 ;
| | | | | | | | | |
Collapse
|
21
|
Cannabidiol rescues acute hepatic toxicity and seizure induced by cocaine. Mediators Inflamm 2015; 2015:523418. [PMID: 25999668 PMCID: PMC4427116 DOI: 10.1155/2015/523418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate. Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD), protects against cocaine toxicity. URB597 (1.0 mg/kg) abolished cocaine-induced seizure, yet it did not protect against acute liver injury. Using confocal liver intravital microscopy, we observed that CBD (30 mg/kg) reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure. Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen) increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics. These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse.
Collapse
|
22
|
Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2015. [DOI: 10.1016/j.bjbas.2015.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
23
|
Protective effects of cannabidiol on lesion-induced intervertebral disc degeneration. PLoS One 2014; 9:e113161. [PMID: 25517414 PMCID: PMC4269422 DOI: 10.1371/journal.pone.0113161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/20/2014] [Indexed: 01/08/2023] Open
Abstract
Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously using a 21-gauge needle. MRI and histological evaluation were employed to assess the results. The effects of intradiscal injection of cannabidiol (30, 60 or 120 nmol) injected immediately after lesion were analyzed acutely (2 days) by MRI. The experimental group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses 15 days after lesion/cannabidiol injection. The needle puncture produced a significant disc injury detected both by MRI and histological analyses. Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration.
Collapse
|
24
|
Dioscin Attenuates Hepatic Ischemia-Reperfusion Injury in Rats Through Inhibition of Oxidative-Nitrative Stress, Inflammation and Apoptosis. Transplantation 2014; 98:604-11. [DOI: 10.1097/tp.0000000000000262] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Fouad AA, Al-Mulhim AS, Gomaa W. Protective effect of cannabidiol against cadmium hepatotoxicity in rats. J Trace Elem Med Biol 2013; 27:355-63. [PMID: 23993482 DOI: 10.1016/j.jtemb.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 11/24/2022]
Abstract
The protective effect of cannabidiol, the non-psychoactive component of Cannabis sativa, against liver toxicity induced by a single dose of cadmium chloride (6.5 mgkg(-1) i.p.) was investigated in rats. Cannabidiol treatment (5 mgkg(-1)/day, i.p.) was applied for five days starting three days before cadmium administration. Cannabidiol significantly reduced serum alanine aminotransferase, and suppressed hepatic lipid peroxidation, prevented the depletion of reduced glutathione and nitric oxide, and catalase activity, and attenuated the elevation of cadmium level in the liver tissue resulted from cadmium administration. Histopathological examination showed that cadmium-induced liver tissue injury was ameliorated by cannabidiol treatment. Immunohistochemical analysis revealed that cannabidiol significantly decreased the cadmium-induced expression of tumor necrosis factor-α, cyclooxygenase-2, nuclear factor-κB, caspase-3, and caspase-9, and increased the expression of endothelial nitric oxide synthase in liver tissue. It was concluded that cannabidiol may represent a potential option to protect the liver tissue from the detrimental effects of cadmium toxicity.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
| | | | | |
Collapse
|
26
|
Fouad AA, Albuali WH, Al-Mulhim AS, Jresat I. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:347-357. [PMID: 23721741 DOI: 10.1016/j.etap.2013.04.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/07/2013] [Accepted: 04/21/2013] [Indexed: 06/02/2023]
Abstract
The potential protective effect of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated against doxorubicin cardiotoxicity in rats. Cardiotoxicity was induced by six equal doses of doxorubicin (2.5mgkg(-1) i.p., each) given at 48h intervals over two weeks to achieve a total dose of 15mgkg(-1). Cannabidiol treatment (5mgkg(-1)/day, i.p.) was started on the same day of doxorubicin administration and continued for four weeks. Cannabidiol significantly reduced the elevations of serum creatine kinase-MB and troponin T, and cardiac malondialdehyde, tumor necrosis factor-α, nitric oxide and calcium ion levels, and attenuated the decreases in cardiac reduced glutathione, selenium and zinc ions. Histopathological examination showed that cannabidiol ameliorated doxorubicin-induced cardiac injury. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin in cardiac tissue of doxorubicin-treated rats. These results indicate that cannabidiol represents a potential protective agent against doxorubicin cardiac injury.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Waleed H Albuali
- Department of Pediatrics, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Iyad Jresat
- Department of Biomedical Sciences, Pathology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
27
|
Stanley CP, Hind WH, O'Sullivan SE. Is the cardiovascular system a therapeutic target for cannabidiol? Br J Clin Pharmacol 2013; 75:313-22. [PMID: 22670794 DOI: 10.1111/j.1365-2125.2012.04351.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cannabidiol (CBD) has beneficial effects in disorders as wide ranging as diabetes, Huntington's disease, cancer and colitis. Accumulating evidence now also suggests that CBD is beneficial in the cardiovascular system. CBD has direct actions on isolated arteries, causing both acute and time-dependent vasorelaxation. In vitro incubation with CBD enhances the vasorelaxant responses in animal models of impaired endothelium-dependent vasorelaxation. CBD protects against the vascular damage caused by a high glucose environment, inflammation or the induction of type 2 diabetes in animal models and reduces the vascular hyperpermeability associated with such environments. A common theme throughout these studies is the anti-inflammatory and anti-oxidant effect of CBD. In the heart, in vivo CBD treatment protects against ischaemia-reperfusion damage and against cardiomyopathy associated with diabetes. Similarly, in a different model of ischaemia-reperfusion, CBD has been shown to reduce infarct size and increase blood flow in animal models of stroke, sensitive to 5HT(1A) receptor antagonism. Although acute or chronic CBD treatment seems to have little effect on haemodynamics, CBD reduces the cardiovascular response to models of stress, applied either systemically or intracranially, inhibited by a 5HT(1A) receptor antagonist. In blood, CBD influences the survival and death of white blood cells, white blood cell migration and platelet aggregation. Taken together, these preclinical data appear to support a positive role for CBD treatment in the heart, and in peripheral and cerebral vasculature. However, further work is required to strengthen this hypothesis, establish mechanisms of action and whether similar responses to CBD would be observed in humans.
Collapse
Affiliation(s)
- Christopher P Stanley
- School of Graduate Entry Medicine & Health, Royal Derby Hospital, University of Nottingham, DE22 3DT, UK
| | | | | |
Collapse
|
28
|
Fouad AA, Al-Mulhim AS, Jresat I. Cannabidiol treatment ameliorates ischemia/reperfusion renal injury in rats. Life Sci 2012; 91:284-92. [PMID: 22877651 DOI: 10.1016/j.lfs.2012.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/06/2012] [Accepted: 07/16/2012] [Indexed: 12/11/2022]
Abstract
AIMS To investigate the protective effect of cannabidiol, the major non-psychotropic Cannabis constituent, against renal ischemia/reperfusion injury in rats. MAIN METHODS Bilateral renal ischemia was induced for 30 min followed by reperfusion for 24h. Cannabidiol (5mg/kg, i.v.) was given 1h before and 12h following the procedure. KEY FINDINGS Ischemia/reperfusion caused significant elevations of serum creatinine and renal malondialdehyde and nitric oxide levels, associated with a significant decrease in renal reduced glutathione. Cannabidiol significantly attenuated the deterioration in the measured biochemical parameters induced by ischemia/reperfusion. Histopathological examination showed that cannabidiol ameliorated ischemia/reperfusion-induced kidney damage. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin in ischemic/reperfused kidney tissue. SIGNIFICANCE Cannabidiol, via its antioxidant and anti-inflammatory properties, may represent a potential therapeutic option to protect against ischemia/reperfusion renal injury.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
| | | | | |
Collapse
|