1
|
Perryman R, Chau TW, De-Felice J, O’Neill K, Syed N. Distinct Capabilities in NAD Metabolism Mediate Resistance to NAMPT Inhibition in Glioblastoma. Cancers (Basel) 2024; 16:2054. [PMID: 38893173 PMCID: PMC11171005 DOI: 10.3390/cancers16112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) cells require high levels of nicotinamide adenine dinucleotide (NAD) to fuel metabolic reactions, regulate their cell cycle and support DNA repair in response to chemotherapy and radiation. Inhibition of a key enzyme in NAD biosynthesis, NAMPT, has demonstrated significant anti-neoplastic activity. Here, we sought to characterise NAD biosynthetic pathways in GBM to determine resistance mechanisms to NAD inhibitors. GBM cells were treated with the NAMPT inhibitor FK866 with and without NAD precursors, and were analysed by qPCR, Western blot and proliferation assays (monolayer and spheroid). We also measured changes in the cell cycle, apoptosis, NAD/NADH levels and energy production. We performed orthoptic xenograft experiments in athymic nude mice to test the efficacy of FK866 in combination with temozolomide (TMZ). We show that the expression of key genes involved in NAD biosynthesis is highly variable across GBM tumours. FK866 inhibits proliferation, reduces NAD levels and limits oxidative metabolism, leading to G2/M cell cycle arrest; however, this can be reversed by supplementation with specific NAD precursors. Furthermore, FK866 potentiates the effects of radiation and TMZ in vitro and in vivo. NAMPT inhibitors should be considered for the treatment of GBM, with patients stratified based on their expression of key enzymes in other NAD biosynthetic pathways.
Collapse
Affiliation(s)
- Richard Perryman
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London W12 0NN, UK (K.O.)
| | | | | | | | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London W12 0NN, UK (K.O.)
| |
Collapse
|
2
|
Yong J, Cai S, Zeng Z. Targeting NAD + metabolism: dual roles in cancer treatment. Front Immunol 2023; 14:1269896. [PMID: 38116009 PMCID: PMC10728650 DOI: 10.3389/fimmu.2023.1269896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for various oxidation-reduction reactions in mammalian cells, particularly during energy production. Malignant cells increase the expression levels of NAD+ biosynthesis enzymes for rapid proliferation and biomass production. Furthermore, mounting proof has indicated that NAD-degrading enzymes (NADases) play a role in creating the immunosuppressive tumor microenvironment (TME). Interestingly, both inhibiting NAD+ synthesis and targeting NADase have positive implications for cancer treatment. Here we summarize the detrimental outcomes of increased NAD+ production, the functions of NAD+ metabolic enzymes in creating an immunosuppressive TME, and discuss the progress and clinical translational potential of inhibitors for NAD+ synthesis and therapies targeting NADase.
Collapse
Affiliation(s)
- Jiaxin Yong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Songqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
3
|
McKay-Corkum GB, Collins VJ, Yeung C, Ito T, Issaq SH, Holland D, Vulikh K, Zhang Y, Lee U, Lei H, Mendoza A, Shern JF, Yohe ME, Yamamoto K, Wilson K, Ji J, Karim BO, Thomas CJ, Krishna MC, Neckers LM, Heske CM. Inhibition of NAD+-Dependent Metabolic Processes Induces Cellular Necrosis and Tumor Regression in Rhabdomyosarcoma Models. Clin Cancer Res 2023; 29:4479-4491. [PMID: 37616468 PMCID: PMC10841338 DOI: 10.1158/1078-0432.ccr-23-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/23/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Deregulated metabolism in cancer cells represents a vulnerability that may be therapeutically exploited to benefit patients. One such target is nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage pathway. NAMPT is necessary for efficient NAD+ production and may be exploited in cells with increased metabolic demands. We have identified NAMPT as a dependency in rhabdomyosarcoma (RMS), a malignancy for which novel therapies are critically needed. Here we describe the effect of NAMPT inhibition on RMS proliferation and metabolism in vitro and in vivo. EXPERIMENTAL DESIGN Assays of proliferation and cell death were used to determine the effects of pharmacologic NAMPT inhibition in a panel of ten molecularly diverse RMS cell lines. Mechanism of the clinical NAMPTi OT-82 was determined using measures of NAD+ and downstream NAD+-dependent functions, including energy metabolism. We used orthotopic xenograft models to examine tolerability, efficacy, and drug mechanism in vivo. RESULTS Across all ten RMS cell lines, OT-82 depleted NAD+ and inhibited cell growth at concentrations ≤1 nmol/L. Significant impairment of glycolysis was a universal finding, with some cell lines also exhibiting diminished oxidative phosphorylation. Most cell lines experienced profound depletion of ATP with subsequent irreversible necrotic cell death. Importantly, loss of NAD and glycolytic activity were confirmed in orthotopic in vivo models, which exhibited complete tumor regressions with OT-82 treatment delivered on the clinical schedule. CONCLUSIONS RMS is highly vulnerable to NAMPT inhibition. These findings underscore the need for further clinical study of this class of agents for this malignancy.
Collapse
Affiliation(s)
- Grace B. McKay-Corkum
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Victor J. Collins
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Choh Yeung
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Sameer H. Issaq
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - David Holland
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Ksenia Vulikh
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Yiping Zhang
- National Clinical Target Validation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Unsun Lee
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Kelli Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Jiuping Ji
- National Clinical Target Validation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Baktiar O. Karim
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| |
Collapse
|
4
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Fluorescent and theranostic probes for imaging nicotinamide phosphoribosyl transferase (NAMPT). Eur J Med Chem 2023; 248:115080. [PMID: 36608458 DOI: 10.1016/j.ejmech.2022.115080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) has been regarded as an attractive target for cancer therapy. However, there is a lack of chemical tools for real-time visualization and detection of NAMPT. Herein, the first fluorescent and theranostic probes were designed for imaging NAMPT, which had dual functions of diagnosis and treatment. The designed probes possessed good affinity and environmental sensitivity to NAMPT with a turn-on mechanism and were successfully applied in fluorescence detecting and imaging of NAMPT at the level of living cells and tissue sections. They also effectively inhibited tumor cell proliferation and arrested cell cycle at the G2 phase. These fluorescent probes enabled detection and visualization of NAMPT, representing effective chemical tools for the pathological diagnosis and treatment of cancer.
Collapse
|
6
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
7
|
Deng Y, Hu B, Miao Y, Wang J, Zhang S, Wan H, Wu Z, Lv Y, Feng J, Ji N, Park D, Hao S. A Nicotinamide Phosphoribosyltransferase Inhibitor, FK866, Suppresses the Growth of Anaplastic Meningiomas and Inhibits Immune Checkpoint Expression by Regulating STAT1. Front Oncol 2022; 12:836257. [PMID: 35515130 PMCID: PMC9065474 DOI: 10.3389/fonc.2022.836257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Anaplastic meningioma is classified as a World Health Organization (WHO) grade III tumor and shows a strong tendency to recur. Although the incidence of anaplastic meningioma is low, the high rate of recurrence and death still makes treatment a challenge. A proteomics analysis was performed to investigate the differentially expressed proteins between anaplastic meningiomas and fibrous meningiomas by micro-LC-MS/MS. The key metabolic enzyme nicotinamide phosphoribosyltransferase (NAMPT) showed upregulated expression in anaplastic meningiomas. However, targeting NAMPT to treat anaplastic meningiomas has not been reported. In vitro, NAMPT inhibitor -FK866 reduced the viability of anaplastic meningiomas by inducing cell cycle arrest at the G2/M phase. Intriguingly, the NAMPT inhibitor -FK866 decreased the protein expression of immune checkpoints PD-L1 and B7-H3 by down-regulating the STAT1 and p-STAT1 expression in vitro. Furthermore, FK866 suppressed the growth of anaplastic meningiomas in an in vivo xenograft model. The expression of Ki-67 and immune checkpoint proteins (PD-L1 and B7-H3) showed significant differences between the group treated with FK866 and the control group treated with DMSO. In conclusion, the expression of NAMPT, which plays a crucial role in energy metabolism, was upregulated in anaplastic meningiomas. The NAMPT inhibitor -FK866 significantly suppressed the growth of anaplastic meningiomas in vitro and in vivo. More strikingly, FK866 potently inhibited immune checkpoint protein (PD-L1 and B7-H3) expression by regulating STAT1 in vitro and in vivo. Our results demonstrated that NAMPT inhibitors could potentially be an effective treatment method for patients suffering from anaplastic meningiomas.
Collapse
Affiliation(s)
- Yuxuan Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boyi Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhou Miao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaodong Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Lv
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Deric Park
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, United States
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
ElMokh O, Matsumoto S, Biniecka P, Bellotti A, Schaeuble K, Piacente F, Gallart-Ayala H, Ivanisevic J, Stamenkovic I, Nencioni A, Nahimana A, Duchosal MA. Gut microbiota severely hampers the efficacy of NAD-lowering therapy in leukemia. Cell Death Dis 2022; 13:320. [PMID: 35396381 PMCID: PMC8993809 DOI: 10.1038/s41419-022-04763-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022]
Abstract
Most cancer cells have high need for nicotinamide adenine dinucleotide (NAD+) to sustain their survival. This led to the development of inhibitors of nicotinamide (NAM) phosphoribosyltransferase (NAMPT), the rate-limiting NAD+ biosynthesis enzyme from NAM. Such inhibitors kill cancer cells in preclinical studies but failed in clinical ones. To identify parameters that could negatively affect the therapeutic efficacy of NAMPT inhibitors and propose therapeutic strategies to circumvent such failure, we performed metabolomics analyses in tumor environment and explored the effect of the interaction between microbiota and cancer cells. Here we show that tumor environment enriched in vitamin B3 (NAM) or nicotinic acid (NA) significantly lowers the anti-tumor efficacy of APO866, a prototypic NAMPT inhibitor. Additionally, bacteria (from the gut, or in the medium) can convert NAM into NA and thus fuel an alternative NAD synthesis pathway through NA. This leads to the rescue from NAD depletion, prevents reactive oxygen species production, preserves mitochondrial integrity, blunts ATP depletion, and protects cancer cells from death. Our data in an in vivo preclinical model reveal that antibiotic therapy down-modulating gut microbiota can restore the anti-cancer efficacy of APO866. Alternatively, NAphosphoribosyltransferase inhibition may restore anti-cancer activity of NAMPT inhibitors in the presence of gut microbiota and of NAM in the diet. ![]()
Collapse
Affiliation(s)
- Oussama ElMokh
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Saki Matsumoto
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Paulina Biniecka
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Axel Bellotti
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Karin Schaeuble
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland
| | - Francesco Piacente
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, 1005, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, 1005, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Department of Formation and Research, Lausanne University Hospital and University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Aimable Nahimana
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland.
| | - Michel A Duchosal
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland. .,Service of Hematology, Department of Oncology, Lausanne University Hospital and University of Lausanne, 46, Rue Bugnon, 1011, Lausanne, Switzerland.
| |
Collapse
|
9
|
Subedi A, Liu Q, Ayyathan DM, Sharon D, Cathelin S, Hosseini M, Xu C, Voisin V, Bader GD, D'Alessandro A, Lechman ER, Dick JE, Minden MD, Wang JCY, Chan SM. Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell 2021; 28:1851-1867.e8. [PMID: 34293334 DOI: 10.1016/j.stem.2021.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Current treatments for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), which perpetuate the disease. Here, we performed a metabolic drug screen to identify LSC-specific vulnerabilities and found that nicotinamide phosphoribosyltransferase (NAMPT) inhibitors selectively killed LSCs, while sparing normal hematopoietic stem and progenitor cells. Treatment with KPT-9274, a NAMPT inhibitor, suppressed the conversion of saturated fatty acids to monounsaturated fatty acids, a reaction catalyzed by the stearoyl-CoA desaturase (SCD) enzyme, resulting in apoptosis of AML cells. Transcriptomic analysis of LSCs treated with KPT-9274 revealed an upregulation of sterol regulatory-element binding protein (SREBP)-regulated genes, including SCD, which conferred partial protection against NAMPT inhibitors. Inhibition of SREBP signaling with dipyridamole enhanced the cytotoxicity of KPT-9274 on LSCs in vivo. Our work demonstrates that altered lipid homeostasis plays a key role in NAMPT inhibitor-induced apoptosis and identifies NAMPT inhibition as a therapeutic strategy for targeting LSCs in AML.
Collapse
Affiliation(s)
- Amit Subedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qiang Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dhanoop M Ayyathan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David Sharon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Severine Cathelin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Changjiang Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Veronique Voisin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
10
|
Wang D, Hensman J, Kutkaite G, Toh TS, Galhoz A, Dry JR, Saez-Rodriguez J, Garnett MJ, Menden MP, Dondelinger F. A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates. eLife 2020; 9:e60352. [PMID: 33274713 PMCID: PMC7746236 DOI: 10.7554/elife.60352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells' response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening data on 265 compounds across 1074 cancer cell lines, our models identified 24 clinically established drug-response biomarkers, and provided evidence for six novel biomarkers by accounting for association with low uncertainty. We validated our uncertainty estimates with an additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-response data without replicates, and improves biomarker discovery for precision medicine.
Collapse
Affiliation(s)
- Dennis Wang
- Sheffield Institute for Translational Neuroscience, University of SheffieldSheffieldUnited Kingdom
- Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
| | | | - Ginte Kutkaite
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental HealthNeuherbergGermany
- Department of Biology, Ludwig-Maximilians University MunichMartinsriedGermany
| | - Tzen S Toh
- The Medical School, University of SheffieldSheffieldUnited Kingdom
| | - Ana Galhoz
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental HealthNeuherbergGermany
- Department of Biology, Ludwig-Maximilians University MunichMartinsriedGermany
| | - Jonathan R Dry
- Research and Early Development, Oncology R&D, AstraZenecaBostonUnited States
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine,Faculty of Medicine,Heidelberg Universityand Heidelberg University Hospital, BioquantHeidelbergGermany
| | | | - Michael P Menden
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental HealthNeuherbergGermany
- Department of Biology, Ludwig-Maximilians University MunichMartinsriedGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Frank Dondelinger
- Centre for Health Informatics, Computation and Statistics, Lancaster Medical School, Lancaster UniversityLancasterUnited Kingdom
| |
Collapse
|
11
|
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) with OT-82 induces DNA damage, cell death, and suppression of tumor growth in preclinical models of Ewing sarcoma. Oncogenesis 2020; 9:80. [PMID: 32908120 PMCID: PMC7481307 DOI: 10.1038/s41389-020-00264-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
NAMPT mediates the rate-limiting step of the NAD salvage pathway, which maintains cellular bioenergetics and provides a necessary substrate for functions essential to rapidly proliferating cancer cells. In this study, we evaluated the efficacy and mechanisms of action of OT-82, a novel, high-potency NAMPT inhibitor with a favorable toxicity profile, in preclinical models of Ewing sarcoma (EWS), an aggressive pediatric malignancy with previously reported selective sensitivity to NAMPT inhibition. We show that OT-82 decreased NAD concentration and impaired proliferation of EWS cells in a dose-dependent manner, with IC50 values in the single-digit nanomolar range. Notably, genetic depletion of NAMPT phenocopied pharmacological inhibition. On-target activity of OT-82 was confirmed with the addition of NMN, the product of NAMPT, which rescued NAD concentration and EWS cellular viability. Mechanistically, OT-82 treatment resulted in impaired DNA damage repair through loss of PARP activity, G2 cell-cycle arrest, and apoptosis in EWS cells. Additional consequences of OT-82 treatment included reduction of glycolytic and mitochondrial activity. In vivo, OT-82 impaired tumor growth and prolonged survival in mice bearing EWS xenografts. Importantly, antitumor effect correlated with pharmacodynamic markers of target engagement. Furthermore, combining low-dose OT-82 with low doses of agents augmenting DNA damage demonstrated enhanced antitumor activity in vitro and in vivo. Thus, OT-82 treatment represents a potential novel targeted approach for the clinical treatment of EWS.
Collapse
|
12
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Cloux AJ, Aubry D, Heulot M, Widmann C, ElMokh O, Piacente F, Cea M, Nencioni A, Bellotti A, Bouzourène K, Pellegrin M, Mazzolai L, Duchosal MA, Nahimana A. Reactive oxygen/nitrogen species contribute substantially to the antileukemia effect of APO866, a NAD lowering agent. Oncotarget 2019; 10:6723-6738. [PMID: 31803365 PMCID: PMC6877101 DOI: 10.18632/oncotarget.27336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023] Open
Abstract
APO866 is a small molecule drug that specifically inhibits nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Although, the antitumor activity of APO866 on various types of cancer models has been reported, information regarding mechanisms by which APO866 exerts its cytotoxic effects is not well defined. Here we show that APO866 induces a strong, time-dependent increase in highly reactive ROS, nitric oxide, cytosolic/mitochondrial superoxide anions and hydrogen peroxide. We provide evidence that APO866-mediated ROS production is modulated by PARP1 and triggers cell death through mitochondria depolarization and ATP loss. Genetic or pharmacologic inhibition of PARP1 prevented hydrogen peroxide accumulation, caspase activation, mitochondria depolarization, ATP loss and abrogates APO866-induced cell death, suggesting that the integrity of PARP1 status is required for cell death. Conversely, PARP1 activating drugs enhanced the anti-leukemia activity of APO866 Collectively, our studies show that APO866 induces ROS/RNS productions, which mediate its anti-leukemia effect. These results support testing new combinatorial strategies to enhance the antitumor activities of APO866.
Collapse
Affiliation(s)
- Anne-Julie Cloux
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dominique Aubry
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Mathieu Heulot
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Oussama ElMokh
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Axel Bellotti
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Karima Bouzourène
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Maxime Pellegrin
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucia Mazzolai
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel A Duchosal
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Kozako T, Aikawa A, Ohsugi T, Uchida YI, Kato N, Sato K, Ishitsuka K, Yoshimitsu M, Honda SI. High expression of NAMPT in adult T-cell leukemia/lymphoma and anti-tumor activity of a NAMPT inhibitor. Eur J Pharmacol 2019; 865:172738. [PMID: 31614144 DOI: 10.1016/j.ejphar.2019.172738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/28/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature T lymphocytes induced by human T-cell leukemia virus-1 and has a poor outcome. New molecular targets for the prevention and treatment of ATL are needed urgently. We previously reported high expression of Sirtuin 1, a nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylase, in primary acute-type ATL cells. NAD+ biosynthesis via nicotinamide phosphoribosyltransferase (NAMPT) modulates Sirtuin 1 activity. Here, we examined the expression and effects of inhibiting NAMPT, a rate-limiting enzyme in NAD+ biosynthesis, in ATL cells. We found that peripheral blood mononuclear cells from patients with acute-type ATL expressed significantly higher levels of NAMPT protein than cells from healthy subjects. FK866, a NAMPT inhibitor, induced apoptosis of freshly isolated ATL cells ex vivo and HTLV-1-infected T-cell lines in vitro, which was accompanied by activation of caspases, DNA fragmentation, and disruption of mitochondrial transmembrane potential. However, a pan-caspase inhibitor failed to prevent this FK866-induced cell death, while FK866 increased the caspase-independent cell death mediator endonuclease G. Intriguingly, FK866 also activated autophagy, as demonstrated by increases in protein levels of autophagosome marker LC3-II. Thus, FK866 simultaneously activated apoptosis and autophagy. Finally, FK866 treatment markedly decreased the growth of human ATL tumor xenografts in immunodeficient mice. We showed that NAMPT is highly expressed in primary ATL cells ex vivo, and that FK866 induces autophagy and caspase-dependent and -independent cell death pathways in vitro and has an anti-tumor activity in vivo. These results suggest a novel therapeutic strategy for patients with this fatal disease.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takeo Ohsugi
- Department of Hematology and Immunology, Rakuno Gakuen University, Hokkaido, Japan
| | - Yu-Ichiro Uchida
- Division of Hematology and Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naho Kato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keisuke Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kenji Ishitsuka
- Division of Hematology and Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
15
|
Mohammadi M, Mianabadi F, Mehrad-Majd H. Circulating visfatin levels and cancers risk: A systematic review and meta-analysis. J Cell Physiol 2019; 234:5011-5022. [PMID: 30471099 DOI: 10.1002/jcp.27302] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Visfatin levels have been reported to be abnormal in many types of cancers. However, epidemiological studies yielded inconsistent results. Therefore, a meta-analysis was performed to assess the association between circulating visfatin levels and cancer risk. A systematic search was conducted for relevant studies in health-related electronic databases up to March 2018. Data related to standard mean difference (SMD) and overall odds ratio (ORS) were collected and analyzed. Summary SMD and pooled OR with 95% CIs were calculated using a random-effect model. Funnel plot and Egger's linear regression test were conducted to examine the risk of publication bias. A total of 27 studies with 2,693 cases and 3,040 healthy controls were included in meta-analysis for pooling SMD analysis. The results of the meta-analysis showed a significant higher visfatin levels in patients with various cancers than in controls, with a pooled SMD of 0.88, 95% CI = 0.56-1.20, p = 0.000. In subgroup, metaregression, Galbraith plot, and sensitivity analysis showed no substantial difference among all the analyzed factors. Data from 14 studies were also used for pooling ORs analysis. Metaresults revealed that high visfatin levels were associated with cancer risk (OR = 1.24, 95% CI: 1.14-1.34, p = 0.000). No evidence of publication bias was observed for pooling ORs and SMD analysis. This meta-analysis indicated a significant association between high circulating visfatin levels and increased risk of various cancers. Visfatin may represent a potential biomarker for early detection of cancers who may benefit from preventive treatment.Note.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Mianabadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Mehrad-Majd
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Posadas I, Alonso-Moreno C, Bravo I, Carrillo-Hermosilla F, Garzón A, Villaseca N, López-Solera I, Albaladejo J, Ceña V. Synthesis, characterization, DNA interactions and antiproliferative activity on glioblastoma of iminopyridine platinum(II) chelate complexes. J Inorg Biochem 2017; 168:46-54. [DOI: 10.1016/j.jinorgbio.2016.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
|
17
|
Dalamaga M, Christodoulatos GS. Visfatin, Obesity, and Cancer. ADIPOCYTOKINES, ENERGY BALANCE, AND CANCER 2017. [DOI: 10.1007/978-3-319-41677-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1450843. [PMID: 28097126 PMCID: PMC5206411 DOI: 10.1155/2016/1450843] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Overcoming temozolomide (TMZ) resistance is a great challenge in glioblastoma (GBM) treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide and has a crucial role in cancer cell metabolism. In this study, we investigated whether FK866 and CHS828, two specific NAMPT inhibitors, could sensitize GBM cells to TMZ. Low doses of FK866 and CHS828 (5 nM and 10 nM, resp.) alone did not significantly decrease cell viability in U251-MG and T98 GBM cells. However, they significantly increased the antitumor action of TMZ in these cells. In U251-MG cells, administration of NAMPT inhibitors increased the TMZ (100 μM)-induced apoptosis and LDH release from GBM cells. NAMPT inhibitors remarkably enhanced the activities of caspase-1, caspase-3, and caspase-9. Moreover, NAMPT inhibitors increased reactive oxygen species (ROS) production and superoxide anion level but reduced the SOD activity and total antioxidative capacity in GBM cells. Treatment of NAMPT inhibitors increased phosphorylation of c-Jun and JNK. Administration of JNK inhibitor SP600125 or ROS scavenger tocopherol with TMZ and NAMPT inhibitors substantially attenuated the sensitization of NAMPT inhibitor on TMZ antitumor action. Our data indicate a potential value of NAMPT inhibitors in combined use with TMZ for GBM treatment.
Collapse
|
19
|
Kennedy BE, Sharif T, Martell E, Dai C, Kim Y, Lee PWK, Gujar SA. NAD + salvage pathway in cancer metabolism and therapy. Pharmacol Res 2016; 114:274-283. [PMID: 27816507 DOI: 10.1016/j.phrs.2016.10.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for various physiological processes including energy metabolism, DNA repair, cell growth, and cell death. Many of these pathways are typically dysregulated in cancer cells, making NAD+ an intriguing target for cancer therapeutics. NAD+ is mainly synthesized by the NAD+ salvage pathway in cancer cells, and not surprisingly, the pharmacological targeting of the NAD+ salvage pathway causes cancer cell cytotoxicity in vitro and in vivo. Several studies have described the precise consequences of NAD+ depletion on cancer biology, and have demonstrated that NAD+ depletion results in depletion of energy levels through lowered rates of glycolysis, reduced citric acid cycle activity, and decreased oxidative phosphorylation. Additionally, depletion of NAD+ causes sensitization of cancer cells to oxidative damage by disruption of the anti-oxidant defense system, decreased cell proliferation, and initiation of cell death through manipulation of cell signaling pathways (e.g., SIRT1 and p53). Recently, studies have explored the effect of well-known cancer therapeutics in combination with pharmacological depletion of NAD+ levels, and found in many cases a synergistic effect on cancer cell cytotoxicity. In this context, we will discuss the effects of NAD+ salvage pathway inhibition on cancer cell biology and provide insight on this pathway as a novel anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Tanveer Sharif
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Emma Martell
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Cathleen Dai
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick W K Lee
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Shashi A Gujar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, NS, Canada.
| |
Collapse
|
20
|
Tateishi K, Iafrate AJ, Ho Q, Curry WT, Batchelor TT, Flaherty KT, Onozato ML, Lelic N, Sundaram S, Cahill DP, Chi AS, Wakimoto H. Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma. Clin Cancer Res 2016; 22:4452-65. [PMID: 27076630 DOI: 10.1158/1078-0432.ccr-15-2274] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Deregulated Myc drives an oncogenic metabolic state, including pseudohypoxic glycolysis, adapted for the constitutive production of biomolecular precursors to feed rapid tumor cell growth. In glioblastoma, Myc facilitates renewal of the tumor-initiating cell reservoir contributing to tumor maintenance. We investigated whether targeting the Myc-driven metabolic state could be a selectively toxic therapeutic strategy for glioblastoma. EXPERIMENTAL DESIGN The glycolytic dependency of Myc-driven glioblastoma was tested using (13)C metabolic flux analysis, glucose-limiting culture assays, and glycolysis inhibitors, including inhibitors of the NAD(+) salvage enzyme nicotinamide phosphoribosyl-transferase (NAMPT), in MYC and MYCN shRNA knockdown and lentivirus overexpression systems and in patient-derived glioblastoma tumorspheres with and without MYC/MYCN amplification. The in vivo efficacy of glycolyic inhibition was tested using NAMPT inhibitors in MYCN-amplified patient-derived glioblastoma orthotopic xenograft mouse models. RESULTS Enforced Myc overexpression increased glucose flux and expression of glycolytic enzymes in glioblastoma cells. Myc and N-Myc knockdown and Myc overexpression systems demonstrated that Myc activity determined sensitivity and resistance to inhibition of glycolysis. Small-molecule inhibitors of glycolysis, particularly NAMPT inhibitors, were selectively toxic to MYC/MYCN-amplified patient-derived glioblastoma tumorspheres. NAMPT inhibitors were potently cytotoxic, inducing apoptosis and significantly extended the survival of mice bearing MYCN-amplified patient-derived glioblastoma orthotopic xenografts. CONCLUSIONS Myc activation in glioblastoma generates a dependency on glycolysis and an addiction to metabolites required for glycolysis. Glycolytic inhibition via NAMPT inhibition represents a novel metabolically targeted therapeutic strategy for MYC or MYCN-amplified glioblastoma and potentially other cancers genetically driven by Myc. Clin Cancer Res; 22(17); 4452-65. ©2016 AACR.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - A John Iafrate
- Department of Pathology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Quan Ho
- Department of Pathology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - William T Curry
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Tracy T Batchelor
- Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts. Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Keith T Flaherty
- Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Maristela L Onozato
- Department of Pathology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Nina Lelic
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Sudhandra Sundaram
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Andrew S Chi
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York.
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Bravo I, Alonso-Moreno C, Posadas I, Albaladejo J, Carrillo-Hermosilla F, Ceña V, Garzón A, López-Solera I, Romero-Castillo L. Phenyl-guanidine derivatives as potential therapeutic agents for glioblastoma multiforme: catalytic syntheses, cytotoxic effects and DNA affinity. RSC Adv 2016. [DOI: 10.1039/c5ra17920c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma is a highly malignant form of brain tumor. In the work described here, several substituted phenyl-guanidine derivatives were developed for application in glioblastoma treatment.
Collapse
Affiliation(s)
- I. Bravo
- Departamento de Química-Física
- Universidad de Castilla-La Mancha
- Facultad de Farmacia
- Campus Universitario de Albacete
- 02071-Albacete
| | - C. Alonso-Moreno
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Universidad de Castilla-La Mancha
- Facultad de Farmacia
- Campus Universitario de Albacete
| | - I. Posadas
- Unidad Asociada Neurodeath CSIC-UCLM
- Departamento de Ciencias Médicas
- Facultad de Farmacia
- Universidad de Castilla-La Mancha
- Campus Universitario de Albacete
| | - J. Albaladejo
- Departamento de Química-Física
- Universidad de Castilla-La Mancha
- Facultad de Ciencias y Tecnologías Químicas
- Campus Universitario de Ciudad Real
- 13071-Ciudad Real
| | - F. Carrillo-Hermosilla
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Universidad de Castilla-La Mancha
- Facultad de Ciencias y Tecnologías Químicas
- Campus Universitario de Ciudad Real
| | - V. Ceña
- Unidad Asociada Neurodeath CSIC-UCLM
- Departamento de Ciencias Médicas
- Facultad de Medicina
- Universidad de Castilla-La Mancha
- Campus Universitario de Albacete
| | - A. Garzón
- Departamento de Química-Física
- Universidad de Castilla-La Mancha
- Facultad de Farmacia
- Campus Universitario de Albacete
- 02071-Albacete
| | - I. López-Solera
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Universidad de Castilla-La Mancha
- Facultad de Ciencias y Tecnologías Químicas
- Campus Universitario de Ciudad Real
| | - L. Romero-Castillo
- Unidad Asociada Neurodeath CSIC-UCLM
- Departamento de Ciencias Médicas
- Facultad de Farmacia
- Universidad de Castilla-La Mancha
- Campus Universitario de Albacete
| |
Collapse
|
22
|
Copy number variants associated with 18p11.32, DCC and the promoter 1B region of APC in colorectal polyposis patients. Meta Gene 2015; 7:95-104. [PMID: 26909336 PMCID: PMC4733217 DOI: 10.1016/j.mgene.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023] Open
Abstract
Familial Adenomatous Polyposis (FAP) is the second most common inherited predisposition to colorectal cancer (CRC) associated with the development of hundreds to thousands of adenomas in the colon and rectum. Mutations in APC are found in ~ 80% polyposis patients with FAP. In the remaining 20% no genetic diagnosis can be provided suggesting other genes or mechanisms that render APC inactive may be responsible. Copy number variants (CNVs) remain to be investigated in FAP and may account for disease in a proportion of polyposis patients. A cohort of 56 polyposis patients and 40 controls were screened for CNVs using the 2.7M microarray (Affymetrix) with data analysed using ChAS (Affymetrix). A total of 142 CNVs were identified unique to the polyposis cohort suggesting their involvement in CRC risk. We specifically identified CNVs in four unrelated polyposis patients among CRC susceptibility genes APC, DCC, MLH1 and CTNNB1 which are likely to have contributed to disease development in these patients. A recurrent deletion was observed at position 18p11.32 in 9% of the patients screened that was of particular interest. Further investigation is necessary to fully understand the role of these variants in CRC risk given the high prevalence among the patients screened.
Collapse
Key Words
- ALL, acute lymphoblastic leukaemia
- BH, Bengamini and Hochberg
- CHAS, Chromosome Analysis Suite
- CN, copy number
- CNV
- CNV, copy number variation
- COSMIC, Catalogue of Somatic Mutations in Cancer
- CRC, colorectal cancer
- Cancer
- DGV, Database of genomic variants
- DNA, deoxyribose nucleic acid
- FAP, familial adenomatous polyposis
- HMDD, human microRNA disease database
- KEGG, Kyoto Encyclopaedia of Genes and Genomes
- Kb, kilobase
- LOH, loss of heterozygosity
- MLPA, multiplex ligation-dependant probe amplification
- MMR, mismatch repair
- NTC, no template control
- QC, quality control
- RNA, ribose nucleic acid
- SNP, single nucleotide polymorphism
- TAM, Tool for the annotation of microRNAs
- TCGA, The Cancer Genome Atlas
- UCSC, University of California, Santa Cruz
- diagnostic testing
- lncRNA, link RNA
- long non-coding RNAs
- mapd, median absolute pairwise difference
- miR, microRNA
- ng, nanogram
- polyposis
Collapse
|
23
|
Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation. Biochimie 2015; 116:141-53. [PMID: 26188110 DOI: 10.1016/j.biochi.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/13/2015] [Indexed: 11/23/2022]
Abstract
UNLABELLED Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells: NAD(P)H quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using β-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy.
Collapse
|
24
|
Sampath D, Zabka TS, Misner DL, O’Brien T, Dragovich PS. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol Ther 2015; 151:16-31. [DOI: 10.1016/j.pharmthera.2015.02.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022]
|
25
|
Shackelford RE, Mayhall K, Maxwell NM, Kandil E, Coppola D. Nicotinamide phosphoribosyltransferase in malignancy: a review. Genes Cancer 2014; 4:447-56. [PMID: 24386506 DOI: 10.1177/1947601913507576] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the rate-limiting step of nicotinamide adenine dinucleotide (NAD) synthesis. Both intracellular and extracellular Nampt (iNampt and eNampt) levels are increased in several human malignancies and some studies demonstrate increased iNampt in more aggressive/invasive tumors and in tumor metastases. Several different molecular targets have been identified that promote carcinogenesis following iNampt overexpression, including SirT1, CtBP, and PARP-1. Additionally, eNampt is elevated in several human cancers and is often associated with a higher tumor stage and worse prognoses. Here we review the roles of Nampt in malignancy, some of the known mechanisms by which it promotes carcinogenesis, and discuss the possibility of employing Nampt inhibitors in cancer treatment.
Collapse
Affiliation(s)
| | - Kim Mayhall
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Emad Kandil
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Domenico Coppola
- Anatomic Pathology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
26
|
Pei J, Moon KS, Pan S, Lee KH, Ryu HH, Jung TY, Kim IY, Jang WY, Jung CH, Jung S. Proteomic Analysis between U87MG and U343MG-A Cell Lines: Searching for Candidate Proteins for Glioma Invasion. Brain Tumor Res Treat 2014; 2:22-8. [PMID: 24926468 PMCID: PMC4049555 DOI: 10.14791/btrt.2014.2.1.22] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 11/30/2022] Open
Abstract
Background To investigate the molecular basis for invasion of malignant gliomas, proteomic analysis approach was carried out using two human glioma cell lines, U87MG and U343MG-A that demonstrate different motility and invasiveness in in vitro experiments. Methods High-resolution two-dimensional gel electrophoresis and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry analysis were performed. Results Nine distinct protein spots that were recognized with significant alteration between the two cell lines. Five of these protein spots were up-regulated in U87MG and four were up-regulated in U343MG-A. Conclusion Among these proteins, cathepsin D was shown to be one of the important proteins which are related with glioma invasion. However, further studies are necessary to reveal the exact role and mechanism of cathepsin D in glioma invasion.
Collapse
Affiliation(s)
- Jian Pei
- Brain Tumor Research Laboratory, Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea. ; Department of Neurosurgery, Worker's Hospital of Tangshan, Tangshan City, China
| | - Kyung-Sub Moon
- Brain Tumor Research Laboratory, Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - SangO Pan
- Department of Chemistry, College of Life Science, Chonnam National University, Gwangju, Korea
| | - Kyung-Hwa Lee
- Brain Tumor Research Laboratory, Department of Pathology, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Hyang-Hwa Ryu
- Brain Tumor Research Laboratory, Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Tae-Young Jung
- Brain Tumor Research Laboratory, Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - In-Young Kim
- Brain Tumor Research Laboratory, Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Woo-Yeol Jang
- Brain Tumor Research Laboratory, Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Chae-Hun Jung
- Department of Chemistry, College of Life Science, Chonnam National University, Gwangju, Korea
| | - Shin Jung
- Brain Tumor Research Laboratory, Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| |
Collapse
|
27
|
Dong WR, Sun CC, Zhu G, Hu SH, Xiang LX, Shao JZ. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD(+) salvage from nicotinamide. BMC Microbiol 2014; 14:29. [PMID: 24506841 PMCID: PMC3923242 DOI: 10.1186/1471-2180-14-29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/03/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In an effort to reconstitute the NAD(+) synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD(+)de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD(+) de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD(+) metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD(+) biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD(+) salvage pathway from nicotinamide. RESULTS Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. CONCLUSIONS Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD(+) salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD(+) salvage pathway might be significant in some bacteria lacking NAD(+) de novo and NAD(+) salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD(+). However, this speculation needs to be experimentally tested.
Collapse
Affiliation(s)
| | | | - Guan Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | | | | | | |
Collapse
|
28
|
Nahimana A, Aubry D, Breton CS, Majjigapu SR, Sordat B, Vogel P, Duchosal MA. The anti-lymphoma activity of APO866, an inhibitor of nicotinamide adenine dinucleotide biosynthesis, is potentialized when used in combination with anti-CD20 antibody. Leuk Lymphoma 2014; 55:2141-50. [PMID: 24283753 DOI: 10.3109/10428194.2013.869325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.
Collapse
Affiliation(s)
- Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne , Lausanne , Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
Ginet V, Puyal J, Rummel C, Aubry D, Breton C, Cloux AJ, Majjigapu SR, Sordat B, Vogel P, Bruzzone S, Nencioni A, Duchosal MA, Nahimana A. A critical role of autophagy in antileukemia/lymphoma effects of APO866, an inhibitor of NAD biosynthesis. Autophagy 2014; 10:603-17. [PMID: 24487122 DOI: 10.4161/auto.27722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.
Collapse
Affiliation(s)
- Vanessa Ginet
- Department of Fundamental Neurosciences; Faculty of Biology and Medicine; University of Lausanne; Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences; Faculty of Biology and Medicine; University of Lausanne; Lausanne, Switzerland
| | - Coralie Rummel
- Department of Fundamental Neurosciences; Faculty of Biology and Medicine; University of Lausanne; Lausanne, Switzerland
| | - Dominique Aubry
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| | - Caroline Breton
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| | - Anne-Julie Cloux
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| | - Somi R Majjigapu
- Laboratory of Glycochemistry and Asymmetric Synthesis; Swiss Federal Institute of Technology (EPFL); Batochime, Lausanne, Switzerland
| | - Bernard Sordat
- Laboratory of Glycochemistry and Asymmetric Synthesis; Swiss Federal Institute of Technology (EPFL); Batochime, Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis; Swiss Federal Institute of Technology (EPFL); Batochime, Lausanne, Switzerland
| | - Santina Bruzzone
- Department of Experimental Medicine; Section of Biochemistry; University of Genoa; Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine; University of Genoa; Genoa, Italy
| | - Michel A Duchosal
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| |
Collapse
|
30
|
Zhang C, Tong J, Huang G. Nicotinamide phosphoribosyl transferase (Nampt) is a target of microRNA-26b in colorectal cancer cells. PLoS One 2013; 8:e69963. [PMID: 23922874 PMCID: PMC3726743 DOI: 10.1371/journal.pone.0069963] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022] Open
Abstract
A number of cancers show increased expression of Nicotinamide phosphoribosyl transferase (Nampt). However, the mechanism through which Nampt is upregulated is unclear. In our study, we found that the Nampt-specific chemical inhibitor FK866 significantly inhibited cell survival and reduced nicotinamide adenine dinucleotide (NAD) levels in LoVo and SW480 cell lines. Bioinformatics analyses suggested that miR-26b targets Nampt mRNA. We identified Nampt as a new target of miR-26b and demonstrated that miR-26b inhibits Nampt expression at the protein and mRNA levels by binding to the Nampt 3′-UTR. Moreover, we found that miR-26b was down regulated in cancer tissues relative to that in adjacent normal tissues in 18 colorectal cancer patients. A statistically significant inverse correlation between miR-26b and Nampt expression was observed in samples from colorectal cancer patients and in 5 colorectal cell lines (HT-29, SW480, SW1116, LoVo, and HCT116). In addition, over expression of miR-26b strongly inhibited LoVo cell survival and invasion, an effect partially abrogated by the addition of NAD. In conclusion, this study demonstrated that the NAD-salvaging biosynthesis pathway involving Nampt might play a role in colorectal cancer cell survival. MiR-26b may serve as a tumor suppressor by targeting Nampt.
Collapse
Affiliation(s)
- Chenpeng Zhang
- Department of Nuclear Medicine, Ren Ji hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jinlu Tong
- Department of Gastroenterology, Shanghai Institute of Gastrointestinal Diseases; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: .
| |
Collapse
|
31
|
Galli U, Travelli C, Massarotti A, Fakhfouri G, Rahimian R, Tron GC, Genazzani AA. Medicinal chemistry of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. J Med Chem 2013; 56:6279-96. [PMID: 23679915 DOI: 10.1021/jm4001049] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide phoshophoribosyltransferase (NAMPT) plays a key role in the replenishment of the NAD pool in cells. This in turn makes this enzyme an important player in bioenergetics and in the regulation of NAD-using enzymes, such as PARPs and sirtuins. Furthermore, there is now ample evidence that NAMPT is secreted and has a role as a cytokine. An important role of either the intracellular or extracellular form of NAMPT has been shown in cancer, inflammation, and metabolic diseases. The first NAMPT inhibitors (FK866 and CHS828) have already entered clinical trials, and a surge in interest in the synthesis of novel molecules has occurred. The present review summarizes the recent progress in this field.
Collapse
Affiliation(s)
- Ubaldina Galli
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Carneiro J, Duarte-Pereira S, Azevedo L, Castro LFC, Aguiar P, Moreira IS, Amorim A, Silva RM. The evolutionary portrait of metazoan NAD salvage. PLoS One 2013; 8:e64674. [PMID: 23724078 PMCID: PMC3665594 DOI: 10.1371/journal.pone.0064674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Nicotinamide Adenine Dinucleotide (NAD) levels are essential for cellular homeostasis and survival. Main sources of intracellular NAD are the salvage pathways from nicotinamide, where Nicotinamide phosphoribosyltransferases (NAMPTs) and Nicotinamidases (PNCs) have a key role. NAMPTs and PNCs are important in aging, infection and disease conditions such as diabetes and cancer. These enzymes have been considered redundant since either one or the other exists in each individual genome. The co-occurrence of NAMPT and PNC was only recently detected in invertebrates though no structural or functional characterization exists for them. Here, using expression and evolutionary analysis combined with homology modeling and protein-ligand docking, we show that both genes are expressed simultaneously in key species of major invertebrate branches and emphasize sequence and structural conservation patterns in metazoan NAMPT and PNC homologues. The results anticipate that NAMPTs and PNCs are simultaneously active, raising the possibility that NAD salvage pathways are not redundant as both are maintained to fulfill the requirement for NAD production in some species.
Collapse
Affiliation(s)
- João Carneiro
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sara Duarte-Pereira
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Luísa Azevedo
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - L. Filipe C. Castro
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR), CIMAR Associate Laboratory, University of Porto, Porto, Portugal
| | - Paulo Aguiar
- CMUP - Centro de Matemática da Universidade do Porto, Porto, Portugal
| | - Irina S. Moreira
- REQUIMTE - Rede de Química e Tecnologia, Faculty of Sciences, University of Porto, Porto, Portugal
| | - António Amorim
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Raquel M. Silva
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|